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Abstract. Motivated in part by an attempt to understand better the notion of
parameter-like sequence introduced in [Ho3, (2.2)], we study results concerning the
heights of the annihilators and the finiteness of the dimension of the socle in certain
local cohomology modules with support in a parameter ideal. We obtain positive
results under certain hypotheses of low dimension or codimension, but we also find
examples that show, in the general case, that support in a parameter ideal does not
restrict the behavior of local cohomology much more than support in an arbitrary
ideal. The results obtained here strongly suggest that it would be worthwhile to
seek a modification of the notion of parameter-like sequence introduced in [Ho3].

0. Introduction

All rings in this paper are assumed to be commutative, with unity and Noetherian,
unless otherwise specified. Given a local ring, say R, if no other convention is made
its maximal ideal is denoted by mR and its residue class field, i.e., R/mR, is denoted
by kR. However, by (R,m, k) we indicate that R is local with its maximal ideal being
m and its residue field being k = R/m. For a module M over a local ring (R,m, k),
the socle of M is defined as (0 :M m) and is denoted by socR(M) or simply soc(M) if
R is understood. The notation H i

I(M) is used for the i th local cohomology module
of the module M with support in the ideal I. For background on local cohomology
theory, we refer the reader to [BrSh], [GrHa], and [LC].

Given a part of system of parameters x = x1, x2, . . . , xn of R, we want to study
the height of AnnR(Hi

(x)(M)), as well as the dimension of socR(Hi
(x)(M)) as a vector

space over the residue field k. In case R is complete and equidimensional, then by a
result which may be found in [Ho3], R is a module-finite extension of a Gorenstein
domain A that contains x1, x2, . . . , xn as part of a system of parameters of A (while A
may be chosen to be regular if R contains a field). For this reason, we may, in many
cases, focus our attention on Gorenstein domains.

We list some of the results that are obtained in Section 4. We make the convention
that the height of the unit ideal is +∞. By k-dimension we mean dimension as a
vector space over a field k.
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Theorem (See Theorem 4.1, Theorem 4.2). Let (R,m, k) be a complete local do-
main or a local Gorenstein domain and M a finitely generated torsion-free R-module.
Assume dim(R) = d. Let x = x1, x2, . . . , xn be a subsystem of parameters of R. Then

(1) If n = 0, 1, 2, d− 1 or d, socR(H i
(x)(M)) has finite k-dimension for all i ∈ N.

(2) If M satisfies Sd−3, then socR(H i
(x)(M)) has finite k-dimension for all i ∈ N.

(3) If d ≤ 4, then socR(H i
(x)(M)) has finite k-dimension for all i ∈ N.

(4) AnnR(Hn
(x)(M)) has height 0.

(5) If n = 0, 1, 2, d − 1 or d, then AnnR(H i
(x)(M)) has height at least 2 for all

i ≤ n− 1.

One of our main motivations for this paper is to better understand the notion
of parameter-like sequence introduced in [Ho3], where it is was introduced for the
purpose of defining an analogue of tight closure in mixed characteristic smaller than
the notion of solid closure introduced in [Ho2]. Solid closure was shown to be too
large to have the right properties in equal characteristic 0 in [Ro3]. A proof of the
existence of a closure with suitable properties would, for example, settle the local
homological conjecctures (cf. [Du], [Ho1], [Ro1], [Ro2]) for background on these).

Recall that the definition of parameter-like sequence involves a condition that cer-
tain local cohomology modules have annihilators with heights that are “large enough,”
which means that, in a sense, the local cohomology modules themselves are “small.”
Details are given below. Also recall that an R-module M is said to have pure dimen-
sion d is all its nonzero submodules have dimension d. In fact, M has pure dimension
d if and only if dim(R/P ) = d for all P ∈ AssR(M).

Definition 0.1 ([Ho3, (2.2)]). Let (R,m) be a complete local ring of pure dimension
d, S an R-algebra, and x = x1, . . . , xn a (partial or full) system of parameters of
R. Then let T0(S) be the quotient of S by the ideal of all elements that have an
annihilator of positive height in R, and recursively, if Ti(S) has been defined for
i < n, then let Ti+1(S) be the quotient of Ti(S)/xi+1Ti(S) by the ideal of all elements
u ∈ Ti(S)/xi+1Ti(S) such that dim(Ru) < n− (i+ 1). Then we call x parameter-like
in S if Tn(S) 6= 0, and for all i = 0, 1, . . . , n− 1, the height of AnnR

(
Hn−1−i

(x) (Ti(S))
)

(in R) is at least i+ 2. (Recall that the height of the unit ideal is +∞.)

With this notion of parameter-like sequence, Hochster showed the following result
in [Ho3, (2.3)]: If R is a complete local domain and R→ S is a module-finite extension
of domains, then every full system of parameters of R is a parameter-like sequence in
S.

More generally, suppose that (R,m)→ (S, n) is a local extension of complete local
domains such that ht(mS) = ht(m), i.e., some (or equivalently, every) system of
parameters of R is a partial system of parameters of S. One might also hope that
any partial or full system of parameters x = x1, . . . , xn of R (with n ≤ dim(R)) is
parameter-like in S and hence, in particular, that the height of AnnR

(
Hn−1

(x) (S)
)

is at

least 2. However, the answer is not clear even in the case where R = S. Studying this
type of question was one of the main motivations for the work in this paper. While
we were able to obtain certain positive results, the examples in Section 5 show that
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this is not true in general: in fact, the annihilator AnnR
(

Hn−1
(x) (S)

)
can be 0 (see

Example 5.3).

1. Preliminaries

Remark 1.1. It is straightforward to check that, given ideals I, J of a local ring
(R,m) such that I + J is m-primary, Hj

J(Hi
I(M)) ∼= Hj

m(Hi
I(M)) for all i, j ∈ N.

In fact, for any ideals I, J of any Noetherian ring R and for any R-module M , we
have Hj

J(Hi
I(M)) ∼= Hj

I+J(Hi
I(M)) ∼= Hj√

I+J
(Hi

I(M)) for all i, j ∈ N. To see this, it

suffices to show Hj
J(Hi

I(M)) ∼= Hj
I+J(Hi

I(M)). Then, by induction on the number of

generators of I, it suffices to show, for any x ∈ I, Hj
J(Hi

I(M)) ∼= Hj
(x)+J(Hi

I(M)) for

all i, j ∈ N. But this is a consequence of the following exact sequence

· · · → Hj−1
J (Hi

I(M)x)→ Hj
(x)+J(Hi

I(M))→ Hj
J(Hi

I(M))→ Hj
J(Hi

I(M)x)→ · · ·

and the fact that Hj−1
J (Hi

I(M)x) = Hj
J(Hi

I(M)x) = 0.

Lemma 1.2. Let (R,m, k) be a local ring and 0 → M1 → M2 → M3 be an exact
sequence of R-modules. If both soc(M1) and soc(M3) have finite dimension over k,
then so does soc(M2).

Proof. This follows from the fact that HomR(R
m
, ) is left exact. �

Lemma 1.3. Let (R,m, k) be a local ring, x = x1, x2, . . . , xn ∈ R, and M be a finitely
generated R-module. Then

(1) For a fixed i, if Hj
(x)(M) = 0 for all j < i, then H0

m(Hi
(x)(M)) ∼= Hi

m(M) and

thus socR(Hi
(x)(M)) has finite dimension as a k-vector space.

(1′) For i ∈ {0, 1}, socR(Hi
(x)(M)) has finite dimension as a k-vector space.

(2) If n = 0, 1 or if dim(R/(x)) = 0, 1, then socR(Hi
(x)(M)) has finite k-dimension

for all i.
(3) If dim(R) ≤ 3 and x is part of a system of parameters of R, then the socle of

Hi
(x)(M) has finite dimension as a k-vector space for all i.

Proof. Choose y = y1, y2, . . . , yc ∈ R such that their images form a full system of
parameters of R/(x). Form Cech complexes C(x)(M) and C(y)(R). Then

Hi
(
C(x)(M)⊗R C(y)(R)

)
= Hi

m(M)

for all i. One of the spectral sequences of the double complex C(x)(M) ⊗R C(y)(R)

has Ep,q
2 = Hq

(y)(H
p
(x)(M)) with maps dp,q2 : Ep,q

2 → Ep−1,q+2
2 for all p, q.

(1) This follows from the above spectral sequence: By the assumption, we know
that H0

m(Hi
(x)(M)) = Ei,0

2 = Ei,0
∞
∼= Hi

m(M).

(1′) If i = 0, this is a special case of (1). If i = 1, then observe that H1
x(M) ∼=

H1
(x)(M/H0

(x)(M)). Now apply (1) to H1
(x)(M/H0

(x)(M)) as H0
(x)(M/H0

(x)(M)) = 0.
(2) The cases where n = 0 and dim(R/(x)) = 0 are straightforward. The case

where n = 1 follows from (1′). The case where dim(R/(x)) = 1 follows from the
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above spectral sequence (mapping cone in this case): We have exact sequences

0→ H1
(y1)

(Hi−1
(x) (M))→ Hi

m(M)→ H0
(y1)

(Hi
(x)(M))→ 0

for all i. Since Hi
m(M) is an Artinian R-module and, by Remark 1.1, H0

(y1)
(Hi

(x)(M)) ∼=
H0

m(Hi
(x)(M)) for every i, we have that H0

m(Hi
(x)(M)) is Artinian over R. Hence

socR(Hi
(x)(M)) has finite k-dimension for every i.

(3) This follows immediately from (2). �

Before stating Lemma 1.5, we make a remark. For any ring R and any ideal I of
R, the height of I is denoted by htR(I).

Remark 1.4. Let R be a ring, P ∈ Spec(R), E(R/P ) the injective hull of R/P over
R (or over RP ), and M a finitely generated R-module. Notice that

AnnRP
(HomRP

(MP , E(R/P ))) ⊇ AnnRP
(MP ) = (AnnR(M))P .

This implies that AnnR(HomRP
(MP , E(R/P ))) ⊇ AnnR(M), which then implies

AnnRP
(HomRP

(MP , E(R/P ))) ⊇ (AnnR(HomRP
(MP , E(R/P ))))P

⊇ (AnnR(M))P .

By Matlis duality, we have HomRP
(HomRP

(MP , E(R/P )), E(R/P )) ∼= M̂P , in which

M̂P stands for the PP -adic completion of MP . This shows

AnnRP
(HomRP

(MP , E(R/P ))) ⊆ AnnRP
(M̂P ) = AnnRP

(MP ) = (AnnR(M))P .

Combining the above, we get

AnnRP
(HomRP

(MP , E(R/P ))) = (AnnR(HomRP
(MP , E(R/P ))))P

= (AnnR(M))P .

Finally, we see

htRP

(
AnnRP

(HomRP
(MP , E(R/P )))

)
= htR

(
AnnR(HomRP

(MP , E(R/P )))
)
.

(Indeed, if an ideal I of R satisfies I = {r ∈ R | r/1 ∈ IP}, then htRP
(IP ) = htR(I).)

The next lemma will be used in proving Theorem 4.2. Notice that the local version
of the lemma was proved in [Ho3, Lemma 2.1(b)].

Lemma 1.5 (Compare with [Ho3, Lemma 2.1(b)]). Let R be a Gorenstein ring, S
be a multiplicatively closed subset of R with dim(S−1R) = n, x = x1, x2, . . . , xn be a
sequence of elements in R such that htS−1R(S−1(x)) = n, and M be a finitely generated
torsion-free R-module. Then htR(AnnR(Hi

(x)(S
−1M))) ≥ 2 for every i ≤ n− 1.

Proof. Say that P1, P2, . . . , Pr are all the minimal prime ideals over (x)R that do not
intersect with S. Then S−1P1, S

−1P2, . . . , S
−1Pr are all the minimal prime ideals over

S−1(x), which are also maximal ideals of S−1R. Then, for every i, we have a natural
isomorphism

Hi
(x)(S

−1M) ∼=
r⊕
j=1

Hi
(x)(MPj

)
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since every element in Hi
(x)(S

−1M) is killed by a power of S−1(x). Hence

AnnR(Hi
(x)(S

−1M)) =
r⋂
j=1

AnnR(Hi
(x)(MPj

)).

Thus, for each i ≤ n − 1, it suffices to show that AnnR(Hi
(x)(MPj

)) (as an ideal of
R) has height ≥ 2 for every 1 ≤ j ≤ r. By Remark 1.4, it suffices to show that
AnnRPj

(Hi
(x)(MPj

)) (as an ideal of RPj
) has height ≥ 2 for every i ≤ n− 1 and every

1 ≤ j ≤ r.
Therefore we may assume that R is Gorenstein local and x is a system of parameters

without loss of generality. For completeness, we provide a proof of this local case,
although it is essentially the same as that of [Ho3, Lemma 2.1(b)]. Say that our local
Gorenstein ring is (R,m, k) and E := ER(k) is the injective hull of the residue field k.
By local duality, we have Hi

(x)(M) ∼= HomR(Extn−iR (M,R), E). Therefore it is enough

to prove AnnR(Extn−iR (M,R)) has height ≥ 2 for every i ≤ n − 1. Suppose, on the
contrary, that AnnR(Extn−iR (M,R)) ⊆ P ∈ Spec(R) with ht(P ) ≤ 1 for some i ≤ n−1.
Then Extn−iRP

(MP , RP ) 6= 0, which contradicts the fact that Extn−iRP
(MP , RP ) = 0 since

MP is torsion-free over RP and n− i ≥ 1 while RP has injective dimension equal to
dim(RP ) ≤ 1. �

2. Partial S2-ification

Let A ⊆ (R,m) be an extension of domains such that R is local satisfying S2 and
M be a finitely generated torsion-free R-module. Denote M∗ := HomR(M,R). Then
the natural R-homomorphism h : M →M∗∗ is injective. We will identify M with the
R-submodule h(M) of M∗∗.

Let x = x1, x2, . . . , xn ∈ A, where n ≥ 2, be a sequence such that ht((x)R) = n.
We will construct what we call a partial S2-ification of M on I = (x)A, which will
be denoted by M

∗∗p
I or simply M∗∗p if I is understood. Before constructing M∗∗p

explicitly, we need a definition. We say that y, z ∈ A are special in I if there exist
x′1, . . . , x

′
n−2 ∈ A such that

√
(x′1, . . . , x

′
n−2, y, z)A =

√
IA. Now we define M

∗∗sp
I as

the R-submodule of M∗∗ generated by

{α ∈M∗∗ | yα, zα ∈M for some y, z special in I}.
Notice that (M

∗∗sp
I )∗∗ = M∗∗, which, by induction, shows that

M
∗∗sp
I ⊆ (M

∗∗sp
I )

∗∗sp
I ⊆ ((M

∗∗sp
I )

∗∗sp
I )

∗∗sp
I ⊆ · · · (⊆M∗∗)

form an ascending chain of R-submodules of M∗∗. This chain stabilizes by the Noe-
therian assumption. We call the stable submodule, denoted by M

∗∗p
I , of M∗∗, the

partial S2-ification of M on I. (The subring A could be as small as the subring of
R generated over the prime subring by x1, x2, . . . , xn and could also be as large as R
itself. Our notion of partial S2-ification depends strongly on the choice of A. Given
x1, x2, . . . , xn, the larger the ring A is, the larger M

∗∗p
I is.)

Lemma 2.1. Keeping the above assumptions and notations, we have

(1) If y, z ∈ A are special in I, then y, z form a regular sequence on M
∗∗p
I .
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(2) Hn
I (M) ∼= Hn

I (M
∗∗p
I ).

Proof. (1) Given y, z ∈ A which are special in I, it suffices to show that if yu = zv
for some u, v ∈ M

∗∗p
I then v ∈ yM

∗∗p
I . Since R satisfies S2, y, z form a regular

sequence on M∗∗. Therefore v = yw, u = zw for some w ∈ M∗∗, which forces
w ∈ (M

∗∗p
I )

∗∗sp
I ) = M

∗∗p
I by the construction of M

∗∗p
I .

(2) It is enough to show Hn
I (M) ∼= Hn

I (M
∗∗sp
I ), which, by the construction of M

∗∗sp
I ,

reduces to showing Hn
I (M) ∼= Hn

I (M + Rα) with α ∈ M∗∗ such that yα, zα ∈ M for
some y, z special in I. For this, consider the short exact sequence

0→M →M +Rα→ M +Rα

M
→ 0,

which gives a long exact sequence

· · · → Hn−1
I

(
M+Rα
M

)
→ Hn

I (M)→ Hn
I (M +Rα)→ Hn

I

(
M+Rα
M

)
→ 0.

Since there exist x′1, . . . , x
′
n−2 ∈ A such that

√
(x′1, . . . , x

′
n−2, y, z)A =

√
IA and y, z ∈

Ann
(
M+Rα
M

)
, we have

Hi
I

(
M+Rα
M

) ∼= Hi
(x′1,...,x

′
n−2)

(
M+Rα
M

)
= 0

for i = n− 1, n. Thus Hn
I (M) ∼= Hn

I (M +Rα). �

3. Weak syzygies

In the situation of Lemma 3.1 below, we think of Mr as a weak syzygy of M0 in a
somewhat technical sense.

Lemma 3.1. Let (R,m, k) be a Noetherian local ring and I be an ideal of R. For
integers r > 0, e ≥ 0 and finitely generated R-modules M0,Mr, suppose there exists
an exact sequence

0→Mr → Gr−1 → Gr−2 → · · · → G1 → G0 →M0 → 0

of finitely generated R-modules such that depthI(Gi) ≥ e+ i+ 1 for all 0 ≤ i ≤ r− 1.
Then

(1) He
I(M0) is isomorphic to an R-submodule of He+r

I (Mr).
(2) soc(He

I(M0)) has finite dimension over k if and only if soc(He+r
I (Mr)) does.

Proof. For every 1 ≤ i ≤ r − 1, there exists Mi ⊆ Gi−1 such that

0→Mi → Gi−1 →Mi−1 → 0

is exact for every i = 1, 2, . . . , r. Then, using the long exact sequence for local
cohomology and the fact that He+i−1

I (Gi−1) = 0, we have an exact sequence

0→ He+i−1
I (Mi−1)→ He+i

I (Mi)→ He+i
I (Gi−1)

for every i = 1, 2, . . . , r. Part (1) follows immediately.
(2) By part (1), we see that if soc(He+r

I (Mr)) has finite dimension over k, then
so does soc(He

I(M0)). On the other hand, for each i = 1, 2, . . . , r, we notice that
Hj
I(Gi−1) = 0 for all j < e+i, which implies that soc(He+i

I (Gi−1)) has finite dimension
over k by Lemma 1.3 (1). Therefore the other direction (“only if”) of the conclusion
follows from applying Lemma 1.2 repeatedly. �
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Corollary 3.2. Let (R,m) be a Cohen-Macaulay local ring. Let x = x1, x2, . . . , xn
be part of a system of parameters of R. Then, for any finitely generated R-module
N and any e ∈ N, He

(x)(N) is isomorphic to an R-submodule of Hn
(x)(M) for some

finitely generated R-module M .

Proof. We may assume 0 ≤ e < n. Let M be a (n− e)-th syzygy of N . By the above
lemma, we have that He

(x)(N) is isomorphic to an R-submodule of Hn
(x)(M). �

Remark 3.3. Let (R,m, k) be a complete equidimensional local ring (e.g., a complete
domain) and x = x1, x2, . . . , xn ∈ R be a part of a system of parameters of R. By a
result in [Ho3, (2.2) (a)], R is module-finite extension of a Gorenstein local subring
A containing x as a part of a system of parameters. For this reason, we may do the
following:

(1) If we want to investigate whether He
(x)(M) has height 2 annihilator, we may as-

sume without loss of generality that R is Gorenstein (hence Cohen-Macaulay).
(2) If we want to investigate whether He

(x)(M) has a finite dimensional socle, we
may assume without loss of generality that R is Gorenstein (hence Cohen-
Macaulay) and (by the preceding corollary) it suffices to study the same ques-
tions for Hn

(x)(M), the highest cohomology, for all R-modules M .

4. Two Main Results

Theorem 4.1. Let (R,m, k) be a complete local domain or a local Gorenstein domain
and M a finitely generated R-module. Assume dim(R) = d. Let x = x1, x2, . . . , xn be
part of a system of parameters of R. Then

(1) If n = 0, 1, d− 1 or d, then socR(Hi
(x)(M)) has finite k-dimension for all i.

(2) If, for some j, M satisfies Sj−1, then socR(Hi
(x)(M)) has finite k-dimension

for all i ≤ j.
(2′) If M satisfies Sn−1, then socR(Hi

(x)(M)) has finite k-dimension for all i.

(2′′) If M is torsion-free over R and n = 2, then socR(Hi
(x)(M)) has finite k-

dimension for all i.
(3) If M satisfies Sd−3, then socR(Hi

(x)(M)) has finite k-dimension for all i.

(4) If d ≤ 4 and M is torsion-free over R, then socR(Hi
(x)(M)) has finite dimen-

sion as a k-vector space for all i.

Proof. This reduces to the Gorenstein case. Moreover, we may restrict our attention
to the cases when i ≤ n.

(1) This follows from Lemma 1.3 (2) immediately.
(2) It is enough to prove the case when i = j, which follows from the fact that M is

a (j−1)-th syzygy by [EG, Theorem 3.8, p. 51]. Indeed, since M is a (j−1)-th syzygy
of a finitely generated R-module, say N , then, by Lemma 3.1, it suffices to show that
H1

(x)(N) has a finite dimensional socle. But this is covered in Lemma 1.3 (1′).
(2′) This is a special case of part (2) above.
(2′′) This case is a special case of (2′) above. But it also follows from partial S2-

ification of M on I = (x1, x2)R and Lemma 1.3 (1): Indeed, we have an exact sequence

0 → M → M
∗∗p
I → N → 0 of finitely generated R-modules with

√
AnnR(N) ⊇ I.
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Thus we have H1
I(N) = H2

I(N) = 0 = H0
I(M

∗∗p
I ) = H1

I(M
∗∗p
I ), which gives H2

I(M) ∼=
H2
I(M

∗∗p
I ). But H2

I(M
∗∗p
I ) has a finite dimension socle by Lemma 1.3 (1). When i < 2,

it follows from Lemma 1.3 (1′) that socR(Hi
(x)(M)) has finite k-dimension.

(3) This follows from parts (1) and (2′) combined. Indeed, by (1), we only need to
consider the case where n ≤ d− 2. But n ≤ d− 2 and Sd−3 imply Sn−1 on M , which,
by (2′), shows that socR(Hi

(x)(M)) is a finite-dimensional k-vector space for all i.
(4) This follows from (1) and (2′′) combined, and also from (3). �

Theorem 4.2. Let R be a domain with dim(R) = d, M a finitely generated torsion-
free R-module, and x = x1, x2, . . . , xn elements of R. Then

(1) If R is Gorenstein and ht((x)R) = h, then AnnR(Hh
(x)(M)) has height 0.

(2) If (R,m, k) be a complete local domain and x is part of a system of parameters
of R, then AnnR(Hn

(x)(M)) has height 0.
(3) If x is part of a system of parameters of R and n = 0, 1, 2, d − 1 or d, then

AnnR(Hi
(x)(M)) has height at least 2 for i ≤ n− 1.

Proof. (1) Choose P ∈ Spec(R) such that (x)R ⊆ P and htP = h. Then it
follows from the proof of [Ho3, (2.1) (c)] that AnnRP

(Hh
(x)(MP )), which contains

(AnnR(Hh
(x)(M)))P , has height 0 in RP . Hence AnnR(Hh

(x)(M)) has height 0 in R.
(2) This reduces to the (complete) Gorenstein case by [Ho3, (2.1) (a)]. Then this

is a special case of (1).
(3) Denote I = (x)R. The cases where n = 0, 1 are straightforward while the

case where n = d is covered in [Ho3] (also in Lemma 1.5). If n = 2, then the exact
sequence

0→M →M
∗∗p
I → N → 0

as in the proof of Theorem 4.1 (2′′) implies that H1
I(M) ∼= H0

I(N) = N , whose
annihilator has height ≥ 2 in R. Finally, suppose n = d − 1. Choose x ∈ m such
that x′ = x1 . . . , xd−1, x is a system of parameters for R. Then, for each i, we have
an exact sequence (by using a spectral sequence (as in the proof of Lemma 1.3) or by
using the mapping cone)

· · · → Hi
(x′)(M)→ Hi

(x)(M)→ Hi
(x)(Mx)→ · · · .

As we already know that AnnR(Hi
(x′)(M)) has height ≥ 2 for every i ≤ d− 1 (which

is the case of n = d), it suffices to prove that AnnR(Hi
(x)(Mx) (as an ideal of R) has

height ≥ 2 for every i ≤ n−1 = d−2. But the latter statement is evident by applying
Lemma 1.5 to R, S = {xm |m ∈ N}, x and M . �

5. Examples

Example 5.1 (Hartshorne). Let k[[U, V,X, Y ]] be a formal power series ring over a

field k in variables U, V,X, Y . Then H2
(X,Y )

(k[[U,V,X,Y ]]
(UX−V Y )

)
has infinite dimensional socle.
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(For a quick proof of this, we notice that k[[U,V,X,Y ]]
(UX−V Y )

may be identified with the

subring k[[X, Y,XT, Y T ]] of k[[X, Y, T ]] and hence

soc
(

H2
(X,Y )

(k[[U, V,X, Y ]]

(UX − V Y )

))
∼= (0 :H2

(X,Y )(k[[X,Y,XT,Y T ]])
(X, Y,XT, Y T )).

We know that

H2
(X,Y )(k[[X, Y,XT, Y T ]]) ∼=

k[[X, Y,XT, Y T ]]XY
k[[X, Y,XT, Y T ]]X + k[[X, Y,XT, Y T ]]Y

.

For any n ∈ N, let

an =
Xn(Y T )n

(XY )n+1
=

T n

XY
∈ k[[X, Y,XT, Y T ]]XY ⊂ k[[X, Y, T ]]XY

and

αn ∈
k[[X, Y,XT, Y T ]]XY

k[[X, Y,XT, Y T ]]X + k[[X, Y,XT, Y T ]]Y

be the class of an.
Now it is straightforward to check that Ann(αn) = (X, Y,XT, Y T ) for all n and
{αn |n ∈ N} is independent over k.)

Example 5.2. Let R = k[[U, V,X, Y, Z]] be a formal power series ring over a field k in

variables U, V,X, Y, Z and P = (UX−V Y, Z). Then H2
(X,Y,Z)(

R
P

) ∼= H2
(X,Y )

(k[[U,V,X,Y ]]
(UX−V Y )

)
and H2

(X,Y,Z)(
R
P

) embeds into H3
(X,Y,Z)(P ), in which the embedding follows from the

long exact sequence induced from the short exact sequence 0→ P → R→ R/P → 0.
From Example 5.1, we immediately see that H3

(X,Y,Z)(P ) also has infinite dimen-

sional socle. Now let S = R ⊕ X
1
2P , which is a domain under the obvious ad-

dition and multiplication. Actually, S is module-finite over R and, as R-modules,
S = R⊕X 1

2P ∼= R⊕ P . Therefore, S is complete local with its maximal ideal equal
to mS = mR + X

1
2P and residue field equal to k. Also, we have m2

S ⊂ mRS, so that
mRS is an mS-primary ideal. Since

socR(H3
(X,Y,Z)(S)) ∼= socR(H3

(X,Y,Z)(R))⊕ socR(H3
(X,Y,Z)(P ))

has infinite dimension, we deduce that socS(H3
(X,Y,Z)(S)) also has infinite dimension

as a k-vector space. (If, on the contrary, (0 :H3
(X,Y,Z)(S)

mS) has finite dimension, then

H0
mS

(H3
(X,Y,Z)(S)) will be an Artinian S-module. Consequently, (0 :H3

(X,Y,Z)(S)
m2
S) and

hence (0 :H3
(X,Y,Z)(S)

mR) would have finite dimension, a contradiction.) Also observe

that X, Y, Z form part of a system of parameters of S while dim(S) = 5.

Example 5.3. Let A = k[[U, V,W,X, Y, Z]] be a power series ring in 6 variables over
a field k and

Q = (UX − V Y, UZ −WX,V Z −WY )A = I2
(
U V W
X Y Z

)
.

ThenA/Q is isomorphic to the subringB = k[[X, Y, Z,XT, Y T, ZT ]] of k[[X, Y, Z, T ]].
Let R = k[[X, Y, Z]] with maximal ideal m = mR = (X, Y, Z)R. Then, for every
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n ∈ N, we have B ∼= mnT n ⊕Wn (for some Wn) as R-modules. Clearly mn ∼= mnT n

as R-modules and, hence,

AnnR(H1
(X,Y,Z)(B)) ⊆ AnnR(H1

(X,Y,Z)(m
n))

for all n ∈ N. Moreover, as

AnnR(H1
(X,Y,Z)(m

n)) = AnnR(H0
(X,Y,Z)(R/m

n)) = AnnR(R/mn) = mn

for every n, we conclude that

AnnR(H1
(X,Y,Z)(B)) ⊆ ∩∞n=1m

n = 0.

This implies that AnnR(H2
(X,Y,Z)(Q)) = 0 since

H2
(X,Y,Z)(Q) ∼= H1

(X,Y,Z)(A/Q) ∼= H1
(X,Y,Z)(B).

Now let S = A ⊕X 1
2Q, which is a complete local domain module finite over A. We

see that AnnR(H2
(X,Y,Z)(S)) = 0 since S ∼= A⊕Q as A-modules (hence as R-modules).

Observe that X, Y, Z is part of a system of parameters of S and dim(S) = 6.
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