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ABSTRACT. In this paper, we prove two theorems concerning the test properties of the Frobenius
endomorphism over commutative Noetherian local rings of prime characteristic p. Our first theorem
generalizes a result of Funk-Marley on the vanishing of Ext and Tor modules, while our second
theorem generalizes one of our previous results on maximal Cohen-Macaulay tensor products. In
these earlier results, we replace eR with a more general module eM, where R is a Cohen-Macaulay
ring, M is a Cohen-Macaulay R-module with full support, and eM is the module viewed as an
R-module via the e-th iteration of the Frobenius endomorphism. We also provide examples and
present applications of our results, yielding new characterizations of the regularity of local rings.

1. INTRODUCTION

Throughout the paper, all rings are assumed to be commutative and Noetherian. By (R,m,k),
we mean that R is a local ring with a unique maximal ideal m and residue field k.

Let R be a ring of prime characteristic p, F : R→ R be the Frobenius endomorphism, and let M
be an R-module. Each iteration Fe of F defines a new R-module structure on M, denoted by eM,
whose scalar multiplication is given as follows: For r ∈ R and x ∈ eM, we have that r · x = rpe

x.
We say that R is F-finite if, for some e> 1 (or equivalently, for all e> 1), the module eR is finitely
generated over R; see, for example, [24]. We denote by Fe

R(−) the scalar extension along the eth
iteration Fe

R : R→ R of F . Thus, if ∑i ni⊗ si ∈ Fe
R(M), where Fe

R(M) = M⊗R
eR, ni ∈M and ri ∈ R,

then r ·
(

∑i ni⊗ si
)
= ∑i ni⊗ (rsi), with rsi being the product of r and si in R. Note that Fe

R(M) is
the S-module M⊗R S obtained via the base change Fe : R→ S = R.

The module structure of eR (as an R-module) contains important information about the homo-
logical properties of the ring R. For example, a remarkable result of Kunz [17] shows that R is
regular if and only if eR is a flat R-module for some (or equivalently, for all) e> 1; see also [3] and
[25] for extensions of this result. Motivated by Kunz’s result, the test properties of the Frobenius
endomorphism have been extensively studied.

If N is a finitely generated R-module, it follows from the work of Herzog [12] and Peskine-
Szpiro [23, 24] that pdR(N) < ∞ if and only if TorR

i (
eR,N) = 0 for infinitely many e and for

all i > 1. Avramov-Miller [4] showed that, if R is a complete intersection, the vanishing of a
single TorR

n (
eR,N) for some e> 1 and n> 1 suffices to conclude that pdR(N)< ∞. Koh-Lee [16]

developed ideas rooted in techniques of Burch [7], Herzog [12], and Hochster [13], and showed
that eR detects the finiteness of N even when finitely many Tor modules vanish. Specifically, Koh-
Lee proved that, given integers e� 0 and t > 1, if TorR

i (
eR,N) = 0 for all t, . . . , t +depth(R), then

pdR(N) < ∞. They further showed that in the case where R is Cohen–Macaulay, the number of
vanishing Tor modules can be reduced by one. We refer the reader to the expository work [21] of
Miller for further details.

In this paper, we focus on the following result of Funk-Marley [9, 10], which examines the
vanishing of TorR

i (
eR,N) for the case where R is Cohen-Macaulay and N is possibly an infinitely

generated R-module.
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1.1 (Funk-Marley [9, 3.1 and 3.2]). Let (R,m,k) be a d-dimensional Cohen-Macaulay local ring
of prime characteristic p, with d > 1, and let N be an R-module. Given integers e� 0 and t > 1,
the following hold:

(i) If TorR
i (

eR,N) = 0 for all i = t, . . . , t +d−1, then fdR(N)6 d.
(ii) If R is F-finite and ExtiR(

eR,N) = 0 for all i = t, . . . , t +d−1, then idR(N)6 d.

One of the main goals of this paper is to generalize the result of Funk-Marley stated in 1.1. In
fact, we prove more and establish the following theorem:

Theorem 1.2. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a finitely
generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be an R-module.
Assume depth(R)> 1. Given integers t > 1 and e� 0, we have the following:

(i) If TorR
i (

eM,N) = 0 for all i = t, . . . , t +d−1, then fdR(N)6 d.
(ii) If R is F-finite and ExtiR(

eM,N) = 0 for all i = t, . . . , t +d−1, then idR(N)6 d.
(iii) If N is finitely generated and ExtiR(N, eM) = 0 for all i = t, . . . , t+d−1, then pdR(N)6 t−1.

Parts (i) and (ii) of Theorem 1.2 recover the aforementioned result of Funk-Marley for the case
where M = R. Note that, in each part of Theorem 1.2, only d consecutive vanishings of Ext or Tor
modules are needed to conclude the homological property the module of N.

We first record several preliminary results in Section 2 and then prove the first two parts of The-
orem 1.2 as Theorem 3.2 in Section 3. The third part of Theorem 1.2 is established as Theorem 4.3
in Section 4. Additionally, in Example 3.4, we show that the conclusion of Theorem 1.2 may fail
if the ring R in question has zero depth.

Li [18] proved that, if (R,m,k) is a Cohen-Macaulay local ring, N is a finitely generated R-
module with rank, and Fe

R(N) is maximal Cohen-Macaulay for some e� 0, then N is free. In [8],
the authors of the present paper replaced the rank hypothesis on N with the weaker assumption
that N is generically free, and proved the following result:

1.3 (Celikbas-Sadeghi-Yao [8, 1.3]). Let (R,m,k) be a Cohen-Macaulay local ring of prime char-
acteristic p, and let M and N be finitely generated R-modules. Assume N is generically free, that
is, Np is free over Rp for all p ∈ Ass(R). If Fe

R(N) is maximal Cohen-Macaulay for some e� 0,
then N is free.

In Section 4, as a byproduct of Theorem 1.2(iii), we generalize 1.3 and prove the following
result; see Corollary 4.5. Note that Fe

R(N)⊗R M is the S-module (N⊗R S)⊗S M, where R→ S = R
is the e-th iteration of the Frobenius endomorphism.

Theorem 1.4. Let (R,m,k) be a local ring of prime characteristic p, and let M and N be finitely
generated R-modules. Assume the following conditions hold:

(i) M is Cohen-Macaulay and SuppR(M) = Spec(R).
(ii) N is generically free, that is, Np is a free Rp-module for all p ∈ Ass(R).

If Fe
R(N)⊗R M is maximal Cohen-Macaulay for some e� 0, then N is free.

Examples 4.8 and 4.9 showcase the necessity of the hypotheses SuppR(M) = Spec(R) and N is
generically free in Theorem 1.4. An immediate consequence of Theorem 1.4 over one-dimensional
rings can be stated as follows:

Corollary 1.5. Let (R,m,k) be a one-dimensional reduced local ring of prime characteristic p
and let 0 6= I be an ideal of R. If Fe

R(N)⊗R I is torsion-free for some finitely generated R-module
N and e� 0, then N is free.

Theorem 1.2(iii), in addition to Theorem 1.4, has other applications, namely Corollaries 4.4,
4.6, and 4.7. Moreover, in Corollary 4.10, we obtain new characterizations of the regularity in
terms of the vanishing of Ext and Tor.
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2. PRELIMINARIES

In this section, we record several preliminary results and observations that are necessary for our
arguments in the subsequent sections. For the main results of this paper, one can skip this section
and proceed to Section 3 and Section 4.

2.1. Let (R,m,k) be a local ring and let M be an R-module.

(i) We set M∨=HomR
(
M,ER(k)

)
, where ER(k) is the injective hull of k. Note that HomR(−,ER(k))

is a faithful exact functor.
(ii) Assume that M is finitely generated over R. Given n> 1, we denote by Ωn

RM the n-th syzygy
of M, namely, the image of the n-th differential map in a minimal free resolution of M. By
convention, Ω0

RM = M.
(iii) If M 6= 0 is finitely generated over R and dimR(M) = t, we define the Hilbert-Samuel multi-

plicity of M as

eR(M) = t! lim
n→∞

lengthR(M/mnM)

nt ,

which is a positive integer; see, for example, [19, Page 107].

2.2. Let (R,m,k) be a local ring and let X , N be R-modules.

(1) Assume SocR(X)*mX and let x ∈ SocR(X)−mX . This implies that Rx∼= k and the nonzero
map Rx ↪→X�X/mX , x 7→ x, splits. Therefore, Rx ↪→X splits and thus k is a direct summand
of X as an R-module.

(2) Assume R has prime characteristic p and X = eM for some R-module M 6= 0 and e> 0.
(i) If SocR(X)*mX , that is, e(0 :M m[pe])* e(m[pe]M

)
, then part (1) shows that k is a direct

summand of eM as an R-module.
(ii) Assume that M is finitely generated over R with depthR(M) = 0. For all e� 0, we have

e(0 :M m[pe]) = SocR(
eM) ⊇ e(SocR(M)

)
* e(m[pe]M

)
. Hence, part (i) shows that k is a

direct summand of eM for every e� 0.
(iii) Assume that (R,m,k) is Artinian. Then e(0 :M m[pe]) * e(m[pe]M

)
for all e� 0. By

part (i), k is a direct summand of eM for all e� 0. Thus, given i> 1, if ExtiR(
eM,N) = 0

for some e� 0, then ExtiR(k,N) = 0 and hence N is injective; see [6, 3.1.12] and also
[11, 2.0.10].

2.3. Let (R,m,k) be a local ring of prime characteristic p. There exists a local flat ring homo-
morphism (R,m,k)→ (S,n, `) such that S is F-finite, mS = n and |`| = ∞; hence S is faithfully
flat over R, dim(S) = dim(R) and e(R) = e(S); it also follows that R is Cohen-Macaulay (respec-
tively, regular) if and only if S is Cohen-Macaulay (respectively, regular). (For example, with
R̂ ∼= k[[x1, . . . ,xm]]/I, we can pick S = k[[x1, . . . ,xm]]/Ik[[x1, . . . ,xm]], where k is the algebraic clo-
sure of k.) In the case where S is such an extension of R and M is a finitely generated R-module, it
follows that M is a Cohen-Macaulay R-module with SuppR(M) = Spec(R) if and only if M⊗R S
is a Cohen-Macaulay S-module with SuppS(M⊗R S) = Spec(S); also, M is free over R if and only
if M⊗R S is free over S.

2.4. Let (R,m,k) be a local ring of prime characteristic p and let M 6= 0 be a finitely generated
R-module. We set:

crsp(M) =min{e> 0 | (0 :M/xM) m
[pe])*m[pe](M/xM) for an M-regular sequence x},

drsp(M) =min{e> 0 |m[pe]M ⊆ (x)M for a system of parameters x on M}.

It seems unknown whether or not sup{crsp(Mp) | p ∈ SuppR(M)} is finite in general.
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2.5. Let (R,m,k) be a local ring of prime characteristic p and let M 6= 0 be a finitely generated
Cohen-Macaulay R-module. Then crsp(M)6 drsp(M). If |k|= ∞, then drsp(M)6 dlogp eR(M)e;
see, for example, [8, 2.4]. Therefore, we have

sup
{

crsp(Mp) | p ∈ SuppR(M)
}
6

{
max

{
dlogp eR(M)e, crsp(M)

}
dlogp eR(M)e if |k|= ∞

,

sup
{

drsp(Mp) | p ∈ SuppR(M)
}
6

{
max

{
dlogp eR(M)e, drsp(M)

}
dlogp eR(M)e if |k|= ∞

.

2.6. Let R→ S be a ring homomorphism, M be an S-module, and let X be an R-module.
(i) HomR(M,X) has an S-module structure as follows: For s ∈ S and α ∈ HomR(M,X), we

define s ·α ∈ HomR(M,X) as (s ·α)(m) = α(sm) for all m ∈M.
(ii) HomR(X ,M) has an S-module structure as follows: For s ∈ S and α ∈ HomR(X ,M), we

define s ·α ∈ HomR(X ,M) as (s ·α)(n) = sα(x) for all x ∈ X .
(iii) M⊗R X has an S-module structure as follows: For s∈ S and ∑i mi⊗xi ∈M⊗R X , with mi ∈M

and xi ∈ X , we define s · (∑i mi⊗ xi) = ∑i(smi)⊗ xi ∈M⊗R X .

The following observation is used in several proofs in the sequel. Note that, over a Noetherian
ring, every finitely generated module is finitely presented.

2.7. Let f : R→ S be a ring homomorphism, A be an R-module, and let B be an S-module. Assume
E is an injective S-module. Given n> 0, the following hold:

(i) HomS
(

TorR
n (A,B),E

)∼= ExtnR
(
A,HomS(B,E)

)
; see [26, 10.63].

(ii) If A is finitely presented over R, then HomS
(

ExtnR(A,B),E
)∼= TorR

n
(
A,HomS(B,E)

)
.

(iii) If (R,m,k) is local, R = S, and f = id, then parts (i) and (ii) imply that:

fdR(B) = idR(B∨) and idR(B) = fdR(B∨).

2.8 (Auslander-Buchsbaum [2]). Let (R,m,k) be a d-dimensional local ring and let N be an R-
module. If idR(N)< ∞, then idR(N)6 d. Thus, if fdR(N)< ∞, then fdR(N)6 d; see 2.7(iii).

The next observation is used in the proofs of Lemma 3.8 and Proposition 3.11.

2.9. Let (R,m,k) be a d-dimensional local ring and let N be an R-module. Consider a minimal
injective resolution of N:

I = (0−→ I0 h1−−→ I1 h2−−→ ·· · hn−−→ In hn+1−−→ In+1 −→ ·· ·),

where I j =
⊕

p∈Spec(R)

ER(R/p)⊕µ j(p,N) and µ j(p,N) = rankk(p)
(

Ext j
Rp
(k(p),N)

)
for j > 0. Here,

µ j(p,N) is not necessarily finite. Note that HomRp(k(p),(h j)p) = 0 for j > 0. If q ∈ Spec(R)
and we localize I at q, then the resulting Iq is a minimal injective resolution of Nq over Rq and
I j
q =

⊕
p⊆q

ER(R/p)⊕µ j(p,N) for all j > 0; see, for example, [5] and [15, 3.15 and Appendix 20-24].

Assume idRp(Np) < ∞ for all p ∈ Spec(R)−{m}. Then idRp(Np) 6 dim(Rp) 6 d− 1 for all
p ∈ Spec(R)−{m}; see 2.8. This implies that Ii = ER(k)⊕µi(m,N) for all i> d. Consequently, I has
the following form:

I = (0→ I0→ ··· → Id−1→ ER(k)⊕µd(m,N) hd+1−−→ ER(k)⊕µd+1(m,N)→ ·· ·).

2.10. Let (R,m,k) be a local ring, I be an ideal of R such that
√

I =
√

AnnR(M), M be a finitely
generated R-module, and let N be an R-module. Then,

(i) HomR(M,N) = 0 ⇐⇒ gradeR(I,N)> 1 ⇐⇒ HomR(R/I,N) = 0; see [6, 1.2.3 or 1.2.10(e)].
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(ii) It follows from part (i) and 2.7(i) that

M⊗R N = 0 ⇐⇒ HomR(M,N∨) = 0 ⇐⇒ HomR(R/I,N∨) = 0

⇐⇒ (R/I⊗R N)∨ = 0 ⇐⇒ R/I⊗R N = 0 ⇐⇒ N = IN.

(iii) If SuppR(M) = Spec(R) (or equivalently, I = 0), it follows from parts (i) and (ii) that

HomR(M,N) = 0 ⇐⇒ M⊗R N = 0 ⇐⇒ N = 0.

(iv) AssR(HomR(M,N)) = SuppR(M)∩AssR(N); see, for example, [6, 1.2.28].

Remark 2.11. Assume I, M, and N are as in 2.10, but R is (Noetherian as always) not necessarily
local. Then the implications considered in 2.10 still hold since they can all be verified locally.
More precisely, HomR(M,N) = 0 ⇐⇒ HomR(R/I,N) = 0 and M⊗R N = 0 ⇐⇒ N = IN.
Also, we have that: SuppR(M) = Spec(R) =⇒ HomR(M,N) = 0 ⇐⇒ N = 0 ⇐⇒ M⊗R N = 0.
These implications establish the fact AssR

(
HomR(M,N)

)
= SuppR(M)∩AssR(N), namely the

equality stated in 2.10(iv), still holds.

2.12. Let (R,m,k) be a local ring and let M be a finitely generated R-module. Consider a minimal

free representation P1
∂1−→ P0 → M→ 0. The transpose TrR M of M is defined as the cokernel of

the R-dual map ∂ ∗1 = HomR(∂1,R). We refer the reader to [1] for the details of the following:
(i) There is an exact sequence of R-modules 0→M∗→ P∗0 → P∗1 → TrR M→ 0.

(ii) It follows that, up to isomorphism, TrR M is uniquely determined.
(iii) It follows that, up to projectives, TrR(TrR M)∼= M.
(iv) M is free if and only if TrR M is free.

The following result from [8] is necessary for our proof of Theorem 1.4.

2.13 ([8, 2.2]). Let (R,m,k) be a local ring and let M and N be finitely generated R-modules.
Assume n> 1 is an integer. Assume further the following conditions hold:

(i) Np is free for all p ∈ Spec(R)−{m}.
(ii) depthR(M⊗R N)> n.

(iii) depthR(M)> n−1.
Then ExtiR(TrR N,M) = 0 for all i = 1, . . . ,n.

3. A GENERALIZATION OF A RESULT OF FUNK-MARLEY

Let us start by recalling the result of Funk-Marley stated in the introduction; see 1.1.

3.1 (Funk-Marley [9, 3.1 and 3.2]). Let (R,m,k) be a d-dimensional Cohen-Macaulay local ring
of prime characteristic p, with d > 1, and let N be an R-module. Given integers t > 1 and e� 0,
the following hold:

(i) If TorR
i (

eR,N) = 0 for all i = t, . . . , t + r−1, then fdR(N)6 d.
(ii) If R is F-finite and ExtiR(

eR,N) = 0 for all i = t, . . . , t + r−1, then idR(N)6 d.

The original statement of 3.1 in [9] includes the case where d = 0; in fact this case follows
from the techniques of Koh-Lee used in the proof of [16, 2.6]; see also [9, 2.8] and [20, 2.2.8].
Note also that [9, 3.1 and 3.2], namely 3.1, is stated in terms of complexes of R-modules, but its
proof naturally reduces to the case of modules. For this reason, we consider only modules when
generalizing 3.1 in Theorems 3.2 and 4.3, which can also be extended to the complex case in a
similar manner, as explained in the proof of [9, 3.1].

The main results of this section are captured in the following theorem, featured in the introduc-
tion as parts (i) and (ii) of Theorem 1.2.
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Theorem 3.2. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a finitely
generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be an R-module.
Assume depth(R)> 1. Given t > 1 and e� 0, the following hold:

(i) If TorR
i (

eM,N) = 0 for all i = t, . . . , t +d−1, then fdR(N)6 d.
(ii) If R is F-finite and ExtiR(

eM,N) = 0 for all i = t, . . . , t +d−1, then idR(N)6 d.

Remark 3.3. Let R be a ring of prime characteristic p, M be a finitely generated R-module such
that SuppR(M) = Spec(R), and let N be an R-module. Let e> 0.

(i) Assume R is F-finite. Then HomR(
eM,N) = 0 =⇒ N = 0; see 2.10(iii).

(ii) Without the F-finite assumption, we have eM⊗N = 0 =⇒ N = 0, as locally this reduces to
the F-finite case and then follows from 2.10(iii).

Thus, Theorem 3.2 still holds when t = 0. This relies on SuppR(
eM) = Spec(R) and does not

depend on the choice of e or M being Cohen-Macaulay.

Theorem 3.2 generalizes 3.1 in the case where depth(R)> 1. For a generalization of 3.1 in the
case where depth(R) = 0 (that is, the d = 0 case of 3.1), see Proposition 3.10. Before presenting
our proof of Theorem 3.2 at the end of the section, we would like to discuss the sharpness of the
result and list some corollaries of the theorem. We will also prove Propositions 3.10 and 3.11,
which the proof of Theorem 3.2 relies on.

The following example shows that the positive depth assumption on the ring is necessary for
Theorem 3.2.

Example 3.4. Let R = Fp[[x,y]]/(x2,xy) and let M = R/(x). Then R is F-finite, depth(R) = 0,
dim(R) = 1, and M is a Cohen-Macaulay R-module such that SuppR(M) = Spec(R). Moreover,
eM ∼= M⊕pe

for all e> 0.
Let N = R/(y). Then TorR

1 (M,N) = 0 so that TorR
1 (

eM, ,N) = 0 for all e > 0. If pdR(N) < ∞,
then N is free since depth(R) = 0. Hence pdR(N) = fdR(N) = ∞. This shows that the positive
depth assumption is needed for Theorem 3.2(i).

Next let N = M. Then Ext1R(M,N) = 0 so that Ext1R(
eM,M) = 0 for all e > 0. If idR(N) < ∞,

then idR(N) = depth(R) = 0, that is, N is injective. Hence, idR(N) = ∞ (one can also conclude
that idR(N) = ∞ since R is not Cohen-Macaulay). This shows that the positive depth assumption
is needed for Theorem 3.2(ii).

We give several corollaries of Theorem 3.2. The next corollary covers the particular case where
S = R̂, the m-adic completion of (R,m).

Corollary 3.5. Let f : (R,m,k)→ (S,n, `) be a flat local ring homomorphism, where R is a d-
dimensional local ring of prime characteristic p and mS = n, M be a finitely generated Cohen-
Macaulay R-module such that SuppR(M) = Spec(R), and let N be a finitely generated S-module.
Assume depth(R)> 1. Given t > 1 and e� 0, if TorR

i (
eM,N) = 0 for all i = t, . . . , t +d−1, then

pdS(N)6 d.

Proof. Observe TorR
i (k,N)∼= TorS

i (`,N) for all i > 0. By Theorem 3.2, we have that fdR(N)6 d.
Set r = fdR(N). It follows that TorR

r (k,N) 6= 0 = TorR
r+1(k,N). Therefore, pdS(N) = r 6 d. �

Corollary 3.6. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a finitely
generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be an R-module.
Assume depth(R)> 1. Given t > 1 and e� 0, if ExtiR(

eM,N∨) = 0 for all i = t, . . . , t +d−1, then
idR(N∨)6 d.

Proof. The vanishing of ExtiR(
eM,N∨) yields the vanishing of TorR

i (
eM,N); see 2.7(i). Thus

idR(N∨) = fdR(N)6 d by Theorem 3.2(i) and 2.7(iii). �
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Corollary 3.7. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a
finitely generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be an
R-module. Assume depth(R) > 1. Given t > 1 and e� 0, assume at least one of the following
conditions holds:

(i) ExtiR
(

N,
(eM

)∨)
= 0 for all i = t, . . . , t +d−1.

(ii) ExtiR
(

N, e(M∨))= 0 for all i = t, . . . , t +d−1.

Then fdR(N)6 d.

Proof. The vanishing of ExtiR
(
N,(eM)∨

)
yields the vanishing of TorR

i
(
N, eM

)
; see 2.7(i). Hence

case (i) follows from Theorem 3.2(i).
Similarly, the vanishing of ExtiR

(
N, e(M∨)

)
yields the vanishing of TorR

i
(
N, eM

)
; see 2.7(i).

Therefore, case (ii) also follows from Theorem 3.2(i). �

Next, we prepare some auxiliary results for the proof of Theorem 3.2. To begin with, we present
Lemma 3.8 and Corollary 3.9 which are akin to [9, 4.5 and 4.6].

Lemma 3.8. Let (R,m,k) be a d-dimensional F-finite local ring of prime characteristic p, M be
a finitely generated R-module such that SuppR(M) = Spec(R), and let N be an R-module. Set
δ = max{depthRp

(Mp) | p ∈ Spec(R)} and let t > 1 be an integer. If

sup{e | ExtiR(
eM,N) = 0 for all i = t, . . . , t +δ}> sup{crsp(Mp) | p ∈ Spec(R)},

then idR(N)6 d. In particular, if ExtiR(
eM,N) = 0 for all i = t, . . . , t +δ and for infinitely many e,

then idR(N)6 d.

Proof. Set d = dim(R) = d. We proceed by induction on d to show that idR(N) < ∞. The case
where d = 0 follows from 2.2(2)(iii). Hence, we assume d > 1.

As R is F-finite, eM is a finitely presented R-module and hence ExtiR(
eM,N)p ∼= ExtiRp

(eMp,Np)

for all p∈ Spec(R). So, for all p∈ Spec(R)−{m}, the induction hypothesis dictates idRp(Np)<∞.
According to 2.9, N has a minimal injective resolution of the form

I = (0→ I0→ ·· · → Id−1→ ER(k)⊕µd → ··· → ER(k)⊕µt+d → ·· ·),

in which µi = µi(m,N) for i > d. Say depthR(M) = v. By assumption, there exists e > crsp(M)

such that ExtiR(
eM,N) = 0 for i= t, . . . , t+v. Since e> crsp(M), there exists a maximal M-regular

sequence x= {x1, . . . ,xv} such that
(
0 :M/(x)M m[pe]

)
*m[pe]

(
M/(x)M

)
; see 2.4. Thus, k is a direct

summand of e(M/(x)M
)
; see 2.2.

As x1 is M-regular, there is an short exact sequence 0→ eM → eM → e(M/x1M)→ 0. This,
together with ExtiR(

eM,N) = 0 for i = t, . . . , t + v, implies that

ExtiR(
e(M/x1M),N) = 0 for all i = t +1, . . . , t + v.

As x = {x1, . . . ,xv} is M-regular, inductively we get Extt+d
R

(e(M/(x)M),N
)
= 0. Therefore,

Extt+v
R (k,N) = 0 since k is a direct summand of e(M/(x)M). In view of 2.9, we deduce

µt+v = rankk(Extt+v
R (k,N)) = 0.

Thus It+v = ER(k)⊕µt+v = 0 and idR(N)< t+v. Consequently, by 2.8, we see that idR(N)6 d. �

The next result is a corollary of Lemma 3.8.

Corollary 3.9. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a
finitely generated R-module such that SuppR(M) = Spec(R), and let N be an R-module. Let S be
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a ring extension of R as in 2.3. Set δ = max{depthSp(M⊗R Sp) | p ∈ Spec(S)} and let t > 1 be an
integer. If

sup{e | TorR
i (

eM,N) = 0 for all i = t, . . . , t +δ}> sup{crsp(M⊗Sp) | p ∈ Spec(S)},

then fdR(N) 6 d. In particular, if TorR
i (

eM,N) = 0 for all i = t, . . . , t + δ and for infinitely many
e, then fdR(N)6 d.

Proof. It suffices to show fdS(N⊗R S)6 dim(S). Thus, given the assumption, we may assume that
R= S is already F-finite. By 2.7(i), the vanishing of TorR

i (
eM,N) yields vanishing of ExtiR(

eM,N∨).
Now the claim follows from Lemma 3.8; see 2.7(iii). �

As an application of Lemma 3.8 and Corollary 3.9, we obtain the following proposition that
generalizes a result of Takahashi-Yoshino [27, 5.3].

Proposition 3.10. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a
finitely generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be an
R-module. Then, given t > 1 and e� 0, the following hold:

(i) If TorR
i (

eM,N) = 0 for all i = t, . . . , t +d, then fdR(N)6 d.
(ii) If R is F-finite and ExtiR(

eM,N) = 0 for all i = t, . . . , t +d, then idR(N)6 d.

Proof. For (i), we may assume that R is F-finite with |k| = ∞; see 2.3. In this case, we have
sup{crsp(Mp) | p ∈ Spec(R)}6 dlogp eR(M)e< ∞. The rest follows from Corollary 3.9.

For (ii), without the assumption that |k|= ∞, we have the following:

sup{crsp(Mp) | p ∈ Spec(R)}6max{dlogp eR(M)e, crsp(M)}< ∞.

The rest follows from Lemma 3.8. �

Our proof of Proposition 3.11 is inspired by some of the techniques employed by Funk-Marley
in the proof of [9, 3.2]. To distinguish various module structures in the proof, we present 3.11 in
the context of a general ring homomorphism f : R→ S. Subsequently, in the proof of Theorem 3.2,
we apply Proposition 3.11 to Fe : R→ R, the iterated Frobenius endomorphism. Recall that, over
a local ring (R,m,k), we set (−)∨ = HomR

(
−, ER(k)

)
.

Proposition 3.11. Let f : (R,m,k)→ (S,n, `) be a module-finite local homomorphism of local
rings, with d = dim(R)> 1, M be an S-module, and let N be an R-module. Assume the following:

(i) ExtiR(M,N) = 0 for all i = t, . . . , t +d−1 for some t > 1.
(ii) M is a finitely generated S-module such that SuppR(M) = Spec(R).

(iii) There exists x = {x1, . . . , xd} ⊆ n such that x is M-regular and mM ⊆ (x)M.
(iv) idRp(Np)< ∞ for all p ∈ Spec(R)−{m}.
(v) fdRp

(
(N∨)p

)
< ∞ for all p ∈ Ass(R).

Then idR(N)6 d.

Proof. As idRp(Np) < ∞ for each p ∈ Spec(R)−{m}, 2.9 dictates that N has a minimal injective
resolution of the following form:

I = (0→ I0 h1−→ ·· · → Id−1 hd−→ ER(k)⊕µd(m,N)→ ··· ht+d−−→ ER(k)⊕µt+d(m,N)→ ·· ·).

We apply HomR(M,−) to I and use our assumption (i) to obtain an exact sequence:

(3.11.1) Mt−1
gt−−→ ·· · gt+d−2−−−→Mt+d−2

gt+d−1−−−→Mt+d−1
gt+d−−−→Mt+d

ρ−→C −→ 0,

where Mi = HomR(M, Ii), gi = HomR(M,hi) and C = coker(gt+d). Note that each Mi is an S-
module; see 2.6(i). Hence, C is an S-module as well.
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Claim 1. The induced sequence Mt+d−1
gt+d−−−→Mt+d

ρ−→C −→ 0 is exact, in which

Mi = HomR(M/(x)M, Ii), gt+d = HomR(M/(x)M,ht+d) and C = HomS(S/(x),C).

Proof of Claim 1. As Ii is injective over R and x1 is regular on M, an application of HomR(−, Ii)

to the exact sequence 0→M x1−→M −→M/x1M→ 0 induces an short exact sequence:

(Λi) 0←−Mi
x1←−−Mi←− HomR(M/x1M, Ii)←− 0.

We combine the short exact sequences (Λi), for all i = t − 1, . . . , t + d, with the exact sequence
(3.11.1), and obtain the following exact sequence of S-modules:

HomR(M/x1M, It)→ ·· · → HomR(M/x1M, It+d)→ HomS(S/x1S,C)→ 0.

Inductively, as x = {x1, . . . ,xd} is an M-regular sequence, we realize the following exact sequence
of S-modules that is naturally induced from (3.11.1), as claimed:

HomR(M/(x)M, It+d−1)
gt+d−−→ HomR(M/(x)M, It+d)

ρ−→ HomS(S/(x)S,C)→ 0.

Claim 2. ker(ρ) = 0.
Proof of Claim 2. The assumption mM ⊆ (x)M says that, as an R-module, M/(x)M is a direct sum
of k. Since I is a minimal injective resolution of N, we see that

gt+d = HomR(M/(x)M,ht+d) = 0.

In view of the exact sequence in Claim 1, we get ker(ρ) = 0. Moreover, ρ can be identified as
HomS(S/(x),ρ) up to the natural isomorphism HomS(S/(x),Mi) ∼= HomR(M/(x)M, Ii). Hence
(0 :ker(ρ) (x))∼= ker(ρ) = 0. Given that M is finitely generated over R, we have

AssR(ker(ρ))⊆ AssR(Mt+d)⊆ AssR(ER(k)⊕µd+t(m,N))⊆ {m}.

Thus AssS(ker(ρ)) ⊆ {n}, as n is the only prime ideal of S lying over m. So, if ker(ρ) 6= 0, then
n ∈ AssS(ker(ρ)) and hence 0 6= (0 :ker(ρ) n) ⊆ (0 :ker(ρ) (x)), which contradicts the conclusion
(0 :ker(ρ) (x)) = 0 above. This completes the proof of Claim 2.

Now that we know ker(ρ) = 0, the exact sequence (3.11.1) forces gt+d = 0, which gives rise to
an exact sequence as follows:

HomR(M, It+d−2)
gt+d−1−−−−→ HomR(M, It+d−1)−−−→ 0.

Since M is finitely presented over R, we apply (−)∨ to the exact sequence above and obtain the
following exact sequence in light of 2.7(ii):

(3.11.2) M⊗R (It+d−2)∨
1⊗h∨t+d−1←−−−−−−M⊗R (It+d−1)∨←−−− 0.

Next, let us return to the injective resolution I of N. Consider the exact sequence

0−→ N −→ I0 h1−−→ ·· · −−→ It+d−2 ht+d−1−−−→ It+d−1 θ−→ D−→ 0,

where D is the cokernel of the map ht+d−1. Applying (−)∨ to the exact sequence above, we get
an exact sequence:

(3.11.3) 0←− N∨←− (I0)∨←− ·· · ←− (It+d−2)∨
h∨t+d−1←−−− (It+d−1)∨

θ∨←−− D∨←− 0

with each (Ii)∨ flat over R; see 2.7(iii). In particular, we see

AssR(D∨)⊆ AssR((It+d−1)∨)⊆ Ass(R).

Claim 3. (D∨)p = 0 for all p ∈ Ass(R).
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Proof of Claim 3. Fix any p ∈ Ass(R). From assumption (v), we see fdRp((N
∨)p)6 dim(Rp)6 d;

see 2.8. Thus, (3.11.3) localized at p gives rise to a flat resolution of Np over Rp, which can be
used to compute TorRp

i (−,(N∨)p). By 2.7(ii), we have

TorRp

t+d−1

(
Mp,(N∨)p

)
=
(

TorR
t+d−1(M,N∨)

)
p
∼=
(

Extt+d−1
R (M,N)∨

)
p
= 0.

Moreover, we have TorRp

t+d(Mp,(N∨)p) = 0 since t + d > fdRp((N
∨)p). Next, we apply Mp⊗Rp −

to (3.11.3) localized at p. The vanishing of TorRp

i (Mp,(N∨)p), for i = t+d−1 and i = t+d, forces
the following exact sequence:

Mp⊗Rp ((I
t+d−2)∨)p

1⊗(h∨t+d−1)p←−−−−−−−Mp⊗Rp ((I
t+d−1)∨)p

1⊗(θ∨)p←−−−−−Mp⊗Rp (D
∨)p←− 0.

Comparing this with (3.11.2) localized at p, we see Mp⊗Rp (D
∨)p = 0. Hence (D∨)p = 0 since

SuppRp
(Mp) = Spec(Rp); see 2.10. This completes the proof of Claim 3.

Overall, we have AssR(D∨) ⊆ Ass(R) and (D∨)p = 0 for all p ∈ Ass(R). This forces D∨ = 0,
which implies D = 0. Therefore, idR(N)< t +d, so idR(N)6 d by 2.8. �

We are now ready to prove Theorem 3.2, which is a consequence of Propositions 3.10 and 3.11.
Recall that F : R→ R denotes the Frobenius endomorphism.

Proof of Theorem 3.2. It suffices to prove part (i) for the case where R is F-finite with |k| = ∞;
see 2.3. Thus, we can obtain part (i) from part (ii) via duality; see 2.7(iii).

To prove part (ii), note that eM is a finitely generated (and hence a finitely presented) R-module
with SuppR(

eM) = SuppR(M) = Spec(R). By our choice of e, there exists an M-regular sequence
x = {x1, . . . , xd} ⊆ m such that m(eM) ⊆ e((x)M); see 2.4. In light of 2.7(ii), the vanishing
of ExtiR(

eM,N) implies the vanishing of TorR
i (

eM,N∨) for all i = t, . . . , t + d − 1. Therefore,
idRp(Np) < ∞ and fdRp

(
(N∨)p

)
< ∞ for all p ∈ Spec(R)−{m}; see Proposition 3.10. Note that

Ass(R) ⊆ Spec(R)−{m} since depth(R) > 1. Now we apply Proposition 3.11, with R = S and
f = Fe, and deduce that idR(N)6 d. �

Remark 3.12. We conclude this section by pointing out some lower bounds for the integer e that
ensure the validity of the proofs of certain previously stated results.
(a) In part (i) of both Theorem 3.2 and Proposition 3.10, it is enough to assume e> dlogp eR(M)e.
(b) In part (ii) of both Theorem 3.2 and Proposition 3.10, it is enough to assume e> dlogp eR(M)e

if |k|= ∞. Also, if |k|< ∞, it is enough to assume e>max
{
dlogp eR(M)e, drsp(M)

}
.

(c) In Corollaries 3.5, 3.6, and 3.7, it is enough to assume e> dlogp eR(M)e.

It is proved in [14, 2.17] that, if R is an excellent ring and M is a finitely generated R-module,
then the set sup{eRm(Mm) : m ∈Max(R)} is finite; see [14, 2.17] We use this fact and state a
global version of Theorem 3.2.

Theorem 3.13. Let R be a d-dimensional ring of prime characteristic p, with d> 1, M be a finitely
generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be an R-module.
Assume depth(Rm)>min

{
1,dim(Rm)

}
for each maximal ideal m of R.

(i) Assume R is excellent, s = sup{eRm(Mm) : m ∈Max(R)}, and let e be an integer such that
e> dlogp se. Given t > 1, if TorR

i (
eM,N) = 0 for all i = t, . . . , t +d−1, then fdR(N)6 d.

(ii) Assume R is F-finite and the residue field of Rm is infinite for each maximal ideal m of R. Let
e be an integer such that e > sup

{
dlogp eRm(Mm)e, drsp(Mm) : m ∈Max(R)

}
. Given t > 1,

if ExtiR(
eM,N) = 0 for all i = t, . . . , t +d−1, then idR(N)6 d.

Proof. Note that s<∞ due to [14, 2.17]. In proving the first part, we have that TorRm
i (eMm,Nm)= 0

for all i = t, . . . , t + d − 1. If dim(Rm) = 0, then the residue field of Rm is a direct summand
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of eMm, and hence fdRm(Nm) 6 dim(Rm) 6 d; see 2.2(2)(i). On the other hand, if dim(Rm) >
1, then part (i) of Theorem 3.2 yields fdRm(Nm) 6 d; see Remark 3.12(a). This implies that
fdR(N) 6 d as flat dimension can be computed locally. We can prove the second part sim-
ilarly since sup

{
dlogp eRm(Mm)e, drsp(Mm) : m ∈Max(R)

}
is finite under our setting; see Re-

mark 3.12(a). �

4. ON THE HOMOLOGICAL PROPERTIES OF THE FROBENIUS ENDOMORPHISM

The aim of this section is to prove Theorem 1.2(iii) and also obtain Proposition 1.4. Recall that
Proposition 1.4 generalizes [8, 1.3], recalled as 1.3 in the introduction.

The layout of this section is as follows: We begin by preparing some auxiliary results. Then
we establish Theorem 1.2(iii) in Theorem 4.3. Finally, making use of 2.13 and Theorem 4.3, we
produce a proof of Proposition 1.4. Along the way, we also discuss the sharpness of our results;
see Examples 4.8 and 4.9.

The first auxiliary result, namely Proposition 4.1, is akin to [16, 2.6] and [22, Theorem A]. Even
though it suffices to apply the proposition to the identity map 1R : R→ R in the sequel, we present
it more generally in terms of a ring homomorphism f : R→ S.

Proposition 4.1. Let f : (R,m,k)→ (S,n, `) be a local homomorphism of local rings of prime
characteristic p with d = dim(R), M 6= 0 be a finitely generated R-module with v = depthR(M),
and let N be a finitely generated S-module. Given t > 1 and e > crsp(M), if ExtiR(N, eM) = 0 for
all i = t, . . . , t + v, then fdR(N)6 t−1 and hence pdR(N)6 t−1+d.

Proof. By our choice of e, there exists a maximal M-regular sequence x = {x1, . . . ,xv} such that k
is a direct summand of e(M/(x)M) over R; see 2.2 and 2.4.

As x1 is M-regular, there is an short exact sequence 0→ eM → eM → e(M/x1M)→ 0. This,
together with ExtiR(N, eM) = 0 for i = t, . . . , t + v, implies that

ExtiR(N, e(M/x1M)) = 0 for all i = t, . . . , t + v−1.

Inductively, as x = {x1, . . . ,xv} is M-regular, we get ExttR(N, e(M/(x)M)) = 0. Since k is a direct
summand of e(M/(x)M), we see that ExttR(N,k) = 0, which implies fdR(N)6 t−1; see [22, 2.1].
Note that every flat R-module has projective dimension at most d; see [28, 4.2.8]. Therefore, we
conclude that pdR(N)6 t−1+d. �

As in Propositions 3.11 and 4.1, we present Proposition 4.2 in the context of a general ring
homomorphism f : R→ S, allowing us to distinguish various module structures in the proof. When
Proposition 4.2 is applied in the proof of Theorem 4.3, the homomorphism will be Fe : R→ R, the
e-th iteration of the Frobenius endomorphism.

Proposition 4.2. Let (R,m,k) be a local ring, f : R→ S be a ring homomorphism, N be a finitely
generated R-module, and let M be a finitely generated S-module. Assume the following hold:

(i) ExtiR(N,M) = 0 for all i = t, . . . , t +d−1 for some d > 1 and t > 1.
(ii) There exists x = {x1, . . . ,xd} ⊆ Jac(S) such that x is M-regular and mM ⊆ (x)M.

Then HomR
(
Ωt

R(N),M
)
= 0.

Proof. Consider a minimal free resolution of N over R:

F = (· · · −→ Ft+d
ht+d−−→ Ft+d−1

ht+d−1−−−→ ·· · ht+1−−→ Ft
ht−−→ Ft−1 −→ ·· · −→ 0).

Applying HomR(−,M) to F and using assumption (i), we get an induced exact sequence:

(4.2.1) Mt+d
gt+d←−−Mt+d−1

gt+d−1←−−− ·· · gt+1←−−Mt
gt←−−Mt−1

ι←− G←− 0,
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in which Mi = HomR(Fi,M), gi = HomR(hi,M), and G = ker(gt). All Mi, and hence G, are S-
modules; see 2.6(ii). In fact, each Mi is isomorphic to a finite direct sum of M. Thus all Mi are
finitely generated S-modules.

As Fi is free over R and x1 is regular on M, an application of HomR(Fi,−) to the exact sequence
0→M x1−−→M −→M/x1M→ 0 induces an short exact sequence:

(Γi) 0−→Mi
x1−−→Mi −→ HomR(Fi,M/x1M)−→ 0.

We combine the exact sequences (Γi), for all i = t− 1, . . . , t + d, with the exact sequence (4.2.1)
and obtain the following exact sequence of S-modules:

HomR(Ft+d−1,M/x1M)← ··· ← HomR(Ft−1,M/x1M)← G/x1G← 0.

Inductively, as x = {x1, . . . ,xd} is an M-regular sequence, we realize the following exact sequence
of S-modules that is naturally induced from (4.2.1):

(4.2.2) Mt
gt←−−−Mt−1

ι←−− G←−− 0,

in which Mi = HomR(Fi,M/(x)M), gt = HomR(ht ,M/(x)M) and G = G/(x)G. Up to isomor-
phism, we may write Mi = Mi/(x)Mi = Mi⊗S S/(x)S, G = G⊗S S/(x)S and thus ι = ι⊗1S/(x)S.

The assumption mM ⊆ (x)M implies that M/(x)M is annihilated by m. Since F is a minimal
free resolution of N, we conclude gt = HomR(ht ,M/(x)M) = 0. Thus, the exactness of (4.2.2)
forces im(ι) = ker(gt) = Mt−1, meaning that im(ι)+(x)Mt−1 = Mt−1. As Mt−1 is finitely gener-
ated over S and (x)S⊆ Jac(S), we obtain im(ι) = Mt−1, thanks to Nakayama’s lemma. This forces
ker(gt+1) = im(gt) = 0 due to the exactness of (4.2.1). Finally, as Ωt

R(N)∼= coker(ht+1), we see

HomR
(
Ω

t
R(N),M

)∼= ker
(

HomR(ht+1,M)
)
= ker(gt+1) = 0. �

Equipped with Propositions 4.1 and 4.2, we are now ready to prove the result stated in Theo-
rem 1.2(iii).

Theorem 4.3. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a finitely
generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be a finitely
generated R-module. Assume depth(R) > 1. Given t > 1 and e� 0, if ExtiR(N, eM) = 0 for all
i = t, . . . , t +d−1, then pdR(N)6min{t−1, depth(R)}.

Proof. Note that, by our choice of e, there exists x= {x1, . . . , xd}⊆m such that x is M-regular and
m(eM) ⊆ e((x)M); see 2.4. Upon an application of Proposition 4.2 to Fe : R→ R, the vanishing
of ExtiR(N, eM) for i = t, . . . , t +d−1 implies HomR

(
Ωt

R(N), eM
)
= 0.

To prove the claim by contradiction, suppose Ωt
R(N) 6= 0 and pick p ∈AssR(Ω

t
R(N))⊆Ass(R).

Note that p 6= m since depth(R) > 1. It follows from Proposition 4.1 that pdRp
(Np) < ∞. Hence,

Np is free by the Auslander-Buchsbaum formula. So, Ωt
R(N)p 6= 0 is free over Rp. Also, since

SuppR(
eM) = SuppR(M) = Spec(R), we see that (eM)p 6= 0. Hence HomRp(Ω

t
R(N)p,(

eM)p) 6= 0,
which contradicts the conclusion HomR

(
Ωt

R(N), eM
)
= 0. Thus Ωt

R(N) = 0, so pdR(N) 6 t− 1.
This proves that pdR(N)6min{t−1, depth(R)}. �

We now record several corollaries of Theorem 4.3. It is worth noting that the positive depth
assumption in the theorem is necessary; see Example 3.4.

Corollary 4.4. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a
finitely generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be a
finitely generated R-module. Assume depth(R) > 1. Given t > 1 and e� 0, assume that at least
one of the following conditions holds:

(i) TorR
i

(
N,
(eM

)∨)
= 0 for all i = t, . . . , t +d−1.
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(ii) TorR
i

(
N, e(M∨))= 0 for all i = t, . . . , t +d−1.

Then pdR(N)6min{t−1, depth(R)}.
Proof. The vanishing of TorR

i
(
N,(eM)∨

)
yields the vanishing of ExtiR

(
N, eM

)
; see 2.7(ii). Hence

case (i) follows from Theorem 4.3. Similarly, the vanishing of TorR
i
(
N, e(M∨)

)
yields the vanish-

ing of ExtiR
(
N, eM

)
; see 2.7(ii). Therefore, case (ii) also follows from Theorem 4.3. �

Recall that Fe
R(−) denotes the scalar extension along Fe : R→ R, the e-th iteration of the Frobe-

nius endomorphism. Given R-modules X and Y , it follows that X ⊗R
eY ∼= e(Fe

R(X)⊗R Y ) and
Fe

Rp
(Xp) ∼= (Fe

R(X))p for all p ∈ Spec(R). Moreover, SuppR(X) = SuppR(F
e

R(X)) in case X is a
finitely R-module.

Next, we provide a proof of Proposition 1.4 and restate it here the convenience of the reader.

Corollary 4.5. Let (R,m,k) be a local ring of prime characteristic p, and let M and N be finitely
generated R-modules. Assume the following conditions hold:

(i) M is Cohen-Macaulay and SuppR(M) = Spec(R).
(ii) N is generically free, that is, Np is a free Rp-module for all p ∈ Ass(R).

If Fe
R(N)⊗R M is a maximal Cohen-Macaulay R-module for some e� 0, then N is free.

Proof. Without loss of generality we may assume R is F-finite and |k|=∞; see 2.3. Set d = dim(R)
and proceed by induction on d.

As R is F-finite, the assumption that Fe
R(N)⊗R M is maximal Cohen-Macaulay can be inter-

preted as that the module N⊗R
eM is maximal Cohen-Macaulay. If depth(R) = 0, then N is free

since we assume it is generically free. Hence, we assume depth(R) > 1. Note that, by the induc-
tion hypothesis, we may assume Np is a free Rp-module for all p ∈ Spec(R)−{m}. Note also
that depthR(

eM) = d = depthR(N⊗R
eM). Therefore, we use 2.13 for the case where n = d and

conclude that ExtiR(TrR N, eM) = 0 for all i = 1, . . . ,d. Now Theorem 4.3 implies that TrR N is free.
Consequently, N is free; see 2.12(iv). �

Corollary 4.6. Let (R,m,k) be a local ring of prime characteristic p, and let M and N be finitely
generated R-modules. Assume the following conditions hold:

(i) M is Cohen-Macaulay.
(ii) M has constant rank on Min(R) and N is generically free.

If Fe
R(N)⊗R M is maximal Cohen-Macaulay for some e� 0, then N is free.

Proof. Suppose Min(R) * SuppR(M). Then SuppR(M)∩Min(R) = /0 since M has constant rank
on Min(R). This implies that dimR(M) < dim(R). However, this is not possible as dim(R) =
dimR

(
Fe

R(N)⊗R M
)
6 dimR(M). So, Min(R)⊆ SuppR(M) and hence SuppR(M) = Spec(R). Now,

the claim follows from Theorem 4.5. �

Corollary 4.7. Let (R,m,k) be a local ring of prime characteristic p, M be a finitely generated
Cohen-Macaulay R-module, and let N be a finitely generated R-module. Assume:

(i) For each p ∈Min(R), there is an integer rp > 1 such that Mp
∼= R⊕rp

p .
(ii) N is generically free and dimR(N) = dim(R).

If Fe
R(N)⊗R M is Cohen-Macaulay for some e� 0, then N is free.

Proof. It follows that dimR
(
Fe

R(N)⊗R M
)
= dimR

(
Fe

R(N)
)
= dimR(N)= dim(R) because SuppR(M)=

Spec(R). Now, the claim follows from Theorem 4.5. �

We illustrate the sharpness of Theorem 1.4 with some examples. Specifically, Example 4.8
demonstrates that the theorem’s conclusion may fail if the module M in question does not have full
support. Similarly, Example 4.9 highlights the necessity of the assumption that M is generically
free for the theorem to hold.
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Example 4.8. Let R = Fp[[x,y]]/(xy), M = R/(x), and N = M. Note that M is maximal Cohen-
Macaulay, and Np is a free Rp-module for all p ∈ Ass(R). It follows that N ⊗R

eM is maximal
Cohen-Macaulay for all e> 0 since N⊗R

eM ∼= N⊗R M⊕pe ∼= M⊕pe
. However, N is not free. Here

we have that Spec(R) 3 (y) /∈ SuppR(M).

Example 4.9. Let R= Fp[[x,y]]/(x2,xy), M = R/(x), and N =M. Note that M is Cohen-Macaulay,
SuppR(M) = Spec(R), and Np is a free Rp-module for all p ∈Min(R). It follows that N⊗R

eM is
maximal Cohen-Macaulay for all e> 0 since N⊗R

eM ∼= M⊕pe
. However, N is not free. Here we

have that Ass(R) 3m /∈Min(R).

It is proved in [3, 1.1] that, if there is a finitely generated module N 6= 0 over a local ring R of
prime characteristic p such that fdR(

rN)< ∞ or idR(
rN)< ∞ for some r > 1, then R is regular. We

use this fact and obtain the following consequences of Theorem 1.2; cf. [29, 6.8 and 6.10].

Corollary 4.10. Let (R,m,k) be a d-dimensional local ring of prime characteristic p, M be a
finitely generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N 6= 0 be
a finitely generated R-module. Assume depth(R) > 1. Given t > 1, r > 1 and e� 0, we further
assume that at least one of the following conditions holds:

(i) TorR
i (

eM, rN) = 0 for all i = t, . . . , t +d−1.
(ii) R is F-finite and ExtiR(

eM, rN) = 0 for all i = t, . . . , t +d−1.
(iii) rN is finitely generated over R and ExtiR(

rN, eM) = 0 for all i = t, . . . , t +d−1.
Then R is regular.

Proof. In view of Theorem 1.2, the claims follow from [3, 1.1]. �

Remark 4.11. We conclude this section by pointing out some lower bounds for the integer e that
ensure the validity of the proofs of certain previously stated results.
(a) In both Corollary 1.3 and Theorem 4.5, it is enough to assume e> dlogp eR(M)e.
(b) In both Theorem 4.3 and Corollary 4.4, it is enough to assume e > dlogp eR(M)e. This is

because, in their proofs, we may use 2.3 and assume |k|= ∞.
(c) In Corollary 4.10, it is enough to assume e>max

{
dlogp eR(M)e, drsp(M)

}
. Also, if |k|= ∞,

then it is enough to assume e> dlogp eR(M)e in Corollary 4.10.

We do not know whether or not the Cohen-Macaulay assumption on M is necessary in Theo-
rem 1.4. This raises the following question:

Question 4.12. Let (R,m,k) be a local ring of prime characteristic p and let M and N be finitely
generated R-modules. Assume SuppR(M) = Spec(R) and N is generically free. If Fe

R(N)⊗R M is
maximal Cohen-Macaulay for some e� 0, then must N be free? What if R is Cohen-Macaulay,
or N = M?

We complete this section with a global version of Theorem 4.3; we skip its proof as it is similar
to that of Theorem 3.13.

Theorem 4.13. Let R be a d-dimensional excellent ring of prime characteristic p, M be a finitely
generated Cohen-Macaulay R-module such that SuppR(M) = Spec(R), and let N be a finitely
generated R-module. Assume depth(Rm)>min

{
1,dim(Rm)

}
for each maximal ideal m of R. Set

s = sup{eRm(Mm) : m ∈Max(R)}, and let e be an integer such that e > dlogp se. Given t > 1, if
ExtiR(N, eM) = 0 for all i = t, . . . , t +d−1, then pdR(N)6min{t−1, depth(R)}.
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