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Abstract. Techniques are developed to extend the notions of F-splitting ratios to modules
over rings of prime characteristic, which are not assumed to be local. We first develop the
local theory for F-splitting ratio of modules over local rings, and then extend it to the
global setting. We also prove that strong F-regularity of a pair (R, D), where D is a Cartier
algebra, is equivalent to the positivity of the global F-signature s(R, D) of the pair. This
extends a result previously proved by these authors, by removing an extra assumption on
the Cartier algebra.

1. Introduction

This article is focused on extending the notion of F-splitting ratio of a local ring in two
directions: from the local to the global setting, and from the ring to all finitely generated R-
modules. The F-splitting ratio of a local ring, denoted rF (R), is a measure of the asymptotic
free-rank of the modules F e

∗R. More specifically, if (R,m, k) is a local ring with perfect residue
field, for each e ∈ Z>0 we write F e

∗R = R⊕ae(R)⊕Me, where Me has no free summands. It is
easy to see that, under these assumptions, the integers ae(R) do not depend on the chosen
direct sum decomposition. The F-splitting ratio of R is defined as

rF (R) = lim
e→∞

ae(R)
pe sdim(R) ,

where sdim(R) is the splitting dimension of R (see [AE05], and Section 2). The F-splitting
ratio is always positive for F-pure rings. Its existence as a limit was first proved by Tucker
for local rings [Tuc12], while its positivity for F-pure local rings was established in [BST12].

Observe that rF (R) is defined similarly to the F-signature of R; in fact, the two definitions
coincide if and only if sdim(R) = dim(R). However, rF (R) is always positive for an F-pure
ring, while s(R) is non-zero only for strongly F-regular rings.

The splitting dimension and splitting numbers can naturally be reinterpreted for a finitely
generated module M over an F-finite ring which is not necessarily local (see Section 4). We
call our generalization of the splitting dimension the splitting rate of M , and we denote it
by sr(M). When sr(M) > 0, the F-splitting ratio of M is defined as

rF (M) = lim
e→∞

ae(M)
pe sr(M) ,

provided the limit exists.
Our first main result provides strong uniform bounds local splitting numbers of a module.

An immediate consequence of this is the existence of the F-splitting ratio of a module in the
local case.

Polstra was supported in part by NSF Postdoctoral Research Fellowship DMS #1703856, NSF Grant
DMS #2101890, and by a grant from the Simons Foundation, #814268, MSRI.
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Theorem A (see Theorem 4.6). Let R be an F-finite ring, and M be a finitely generated
R-module. Then the local F -splitting ratios rF (MQ) exist for all Q ∈ Spec(R). Furthermore,
there exists a constant C such that for all Q ∈ Spec(R) and e ∈ Z>0,∣∣∣ae(MQ)− pe sr(MQ)rF (MQ)

∣∣∣ 6 Cpe(sr(MQ)−1).

In particular, if (R,m, k) is local and M is a finitely generated R-module, then rF (M) exists
as a limit.

We provide an example to show that, in general, lower semi-continuity may not hold on
the whole spectrum of a ring, even in the case when the ring is a domain (Example 5.4).
This is in contrast with the behavior of several other invariants: Hilbert-Kunz multiplicity
and F-signature [Smi16, Pol18], Frobenius Betti numbers and Frobenius Euler characteristics
[DSPY19a].

Using Theorem A and some partial lower semi-continuity results for the F-splitting ratio
(see Theorem 5.1), we prove the existence of the F-splitting ratio of a module over a ring
which is not necessarily local. We also relate both the splitting rate and the F-splitting ratio
of a module to the respective invariants in the localizations at prime ideals. This last fact
allows us to relate the positivity of rF (R) to the F-purity of R.

Theorem B (see Theorem 5.6). Let R be an F-finite domain of prime characteristic p > 0.
Then

(1) The limit rF (R) exists.
(2) We have equalities

sr(R) = min{sr(RP ) | P ∈ Spec(R)}
and

rF (R) = min{rF (RP ) | sr(R) = sr(RP )}.
(3) rF (R) > 0 if and only if R is F-pure.

Theorem B is here stated only for global F-splitting ratio of the ringR, under the additional
assumption that it is a domain. We refer the reader to 5 for more general results on finitely
generated R-modules. We point out that (3) is an important property of F -splitting ratios
that mimics an important property of F -signature; s(R) > 0 if and only if R is strongly
F -regular. Item (3) follows by item (2) and [BST12, Corollary 4.3].

Among other properties of F-splitting ratios, we prove that if R is a positively graded
algebra over a local ring (R0,m0), then sr(R) = sr(Rm) and rF (R) = rF (Rm), where m =
m0 + R>0 (see Proposition 5.7). This result gives an analogous statement for the global
F-signature (see Corollary 5.8).

In the final section of this article, we positively answer [DSPY19b, Question 4.24]. In
the local case, it was proved in [BST12] that the F-signature of a Cartier algebra D on
R is positive if and only if the pair (R,D) is strongly F-regular. These authors were able
to recover the same result in the global setting, provided the Cartier algebra D satisfies
certain additional assumptions [DSPY19b, Theorem 2.24]. We are able to remove these
extra conditions:

Theorem C. Let R be an F-finite domain, and D be a Cartier algebra on R. Then (R,D)
is strongly F-regular if and only if s(R,D) > 0.

2



2. Background on F-splitting ratio of local rings

Let (R,m, k) be an F-finite local ring of prime characteristic p > 0. Aberbach and Enescu
introduced the concepts of splitting prime and F-splitting ratio of a local F-finite ring in
[AE05]. Assume that R is F-pure, that is, the Frobenius map is pure as a map of rings. In
our assumptions, this is the same as requiring that R is F-split [HR76, Corollary 5.3]. For
a finitely generated R-module M , we let frkR(M) be the maximal rank of a free summand
of M . Equivalently, frkR(M) is the maximal rank of a free module G for which there is a
surjection M → G → 0. For all e ∈ Z>0, we let ae(R) = frkR(F e

∗R) be the e-th splitting
number of R. Let α(m) = logp[F∗k : k]. The splitting dimension of R is

sdim(R) := sup
{
` ∈ Z>0

∣∣∣∣ lim inf
e→∞

ae(R)
pe(`+α(m)) > 0

}
.

The F-splitting ratio of R is defined to be the limit

rF (R) := lim
e→∞

ae(R)
pe(sdim(R)+α(m)) ,

which always exists [Tuc12, Theorem 4.9] and is always positive for F-pure rings by work of
Blickle, Schwede, and Tucker [BST12, Corollary 4.3].

Remark 2.1. Observe that, when sdim(R) = dim(R), the F-splitting ratio is equal to the
F-signature of R.

Continue to let (R,m, k) denote an F-finite and F-pure local ring of prime characteristic
p > 0. For each e ∈ Z>0 let Ie = {r ∈ R | R ·F e∗ (r)−−−→ F e

∗R is not pure} be the e-th splitting
ideal of R. Aberbach and Enescu show in [AE05] that P := ⋂

e∈Z>0 Ie is a prime ideal of R
and R/P is a strongly F-regular local ring. The ideal P is called the splitting prime of the
local ring R. Moreover, it is shown in [BST12] that the splitting dimension of R is the Krull
dimension of the local ring R/P .

We recall that a graded Fp-subalgebra D of⊕e∈Z>0 HomR(F e
∗R,R), with D0 = HomR(R,R)

and multiplication ϕ • ψ = ϕ ◦ F e
∗ψ ∈ De+e′ for all ϕ ∈ De and ψ ∈ De′ , is called a Cartier

algebra. If De = HomR(F e
∗R,R) for all e, we refer to D as the full Cartier algebra on R. See

[BST12] for more details on Cartier algebras.
If I ⊆ R is an ideal, then we let DR/I be the Cartier algebra on R/I whose e-th graded

component is denoted by DR/I,e and consists of R/I-linear maps ϕ : F e
∗ (R/I)→ R/I which

can be factored through an R-linear map φ : F e
∗R → R. That is, there exists commutative

diagram of R-modules of the form

F e
∗ (R/I) ϕ // R/I

F e
∗R

OO

∃φ // R

OO

Observe that the construction of this Cartier algebra did not require R to be local. Moreover,
if P is a prime ideal of R which contains I, then the localized Cartier algebra (DR/I)P agrees
with DRP /IRP .

We now recall the definition of splitting numbers of a pair (R,D) in the local case. Let
(R,m, k) be a local F-finite and F-pure ring of prime characteristic p > 0, and D be a Cartier
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algebra. We let ae(R,D) be the largest rank of a free D-summand of F e
∗R. More explicitly,

we look at the largest rank of a free R-module G ∼=
⊕
R for which there is a surjection

F e
∗R

ϕ−→ G→ 0, with ϕ that is a direct sum of elements in De when viewed as an element of
HomR(F e

∗R,G) ∼=
⊕HomR(F e

∗R,R). It was proved in [BST12] that, if D is the full Cartier
algebra on R, and P is the splitting prime of R, one has

ae(R) = ae(R/P ,DR/P).
We record the following theorem of Blickle, Schwede, and Tucker for future reference.
Theorem 2.2 ([BST12]). Let (R,m, k) be a local F-finite and F-pure ring of prime charac-
teristic p > 0. Let D be the full Cartier algebra on R, and P be the splitting prime of R. Then
ae(R) = ae(R/P ,DR/P) for all e ∈ Z>0, and thus rF (R) = s(R/P ,DR/P) = rF (R/P ,DR/P).
In particular, the F-splitting ratio of R is strictly positive.

3. Uniform bounds for splitting numbers

With the goal in mind of extending the theory of F-splitting ratios to modules over rings
which are not necessarily local, we must first discuss and understand properties of centers
of F-purity, i.e., compatibly split subvarieties, whose properties are developed by Schwede
in [Sch09] and [Sch10], and by Kumar and Mehta in [KM09].

Let R be an F-finite ring of prime characteristic p > 0, not necessarily local, and M be
a finitely generated R-module. For e ∈ Z>0 we let ae(M) = frkR(F e

∗M), and assume that
ae(M) > 0 for some e. Under these assumptions, we make the following definition.
Definition 3.1. We define the F-splitting rate of M to be

sr(M) := sup
{
` ∈ Z>0

∣∣∣∣ lim inf
e→∞

ae(M)
pe`

> 0
}
.

If (R,m, k) is local, then sr(R) = sdim(R) + α(m). Moreover, if P the splitting prime of
(R,m, k), then sr(R) = γ(R/P) by [AE05, Theorem 1.1] and [BST12, Corollary 4.3]. When
ae(M) = 0 for all e ∈ Z>0 we set sr(M) = −1.

Now assume that R is F-finite and F-pure, that is, ae(R) > 0 for some (equivalently, for
all) e ∈ Z>0. An ideal P ∈ Spec(R) is called a center of F-purity if for every x ∈ P and
every e ∈ Z>0 the map

RP
·F e∗x−−→ F e

∗ (RP )
is not pure as a map of RP -modules. If R is local and P the splitting prime of R then P is
the unique maximal center of F-purity of R, [Sch10, Remark 4.4]. An important property
enjoyed by all F-finite F-pure rings is that they only admit finitely many centers of F-purity
[Sch09, Theorem C].

Also crucial to our proof of existence of global F-splitting ratio will be that Cartier algebras
of the form DR/I described above satisfy the following technical condition.
Condition 3.2. Let R be an F-finite ring and D a Cartier algebra. We say that D satisfies
condition (∗) if we require that for each ϕ ∈ De+1 that the natural map i ◦ ϕ ∈ De where
i : F e

∗R→ F e+1
∗ R is the Frobenius.

Lemma 3.3. Let R be an F-finite ring of prime characteristic p > 0 and I ⊆ R be an ideal.
Assume that the Cartier algebra D on R satisfies (∗). Then the Cartier algebra DR/I on R/I
satisfies condition (∗) as well.
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Proof. Let ϕ ∈ DR/I,e+1, and i : F e
∗ (R/I) → F e+1

∗ (R/I) be the Frobenius map on F e
∗ (R/I).

We are assuming there exists a commutative diagram of R-modules of the form

F e
∗ (R/I) i // F e+1

∗ (R/I) ϕ // R/I

F e
∗R

OO

// F e+1
∗ R

OO

φ // R

OO

The Frobenius map on F e
∗ (R/I) can be lifted by the Frobenius map on F e

∗R. Therefore the
above commutative diagram can be filled in, and it follows that ϕ ◦ i ∈ DR/I,e. �

We use the following notation: given a prime P ∈ Spec(R) we let α(P ) = logp[F∗κ(P ) :
κ(P )] and γ(R) = max{α(P ) | P ∈ Spec(R)}. Moreover, given a pair (R,D), P ∈ Spec(R)
and e ∈ Z>0, we let ae(RP ,DP ) be the maximal rank of a free DP -summand of F e

∗ (RP ). In
the case when D = HomR(F e

∗R,R) is the full Cartier algebra, we simply write ae(RP ), which
is also equal to frkRP (F e

∗RP ). We are almost ready to prove a uniform bound result for the
localized splitting numbers ae(RP ) of an F-finite ring R, but first we recall a uniform bound
found in [Pol18]. In the proof of [Pol18, Theorem 6.4] it is shown that if D is a Cartier
algebra satisfying condition (∗) then there exists a constant C such that∣∣∣∣∣ae(RP ,DP )

peγ(RP ) − s(RP ,DP )
∣∣∣∣∣ 6 C

pe

for all e ∈ N and P ∈ Spec(R). We record this uniform bound for future reference.

Theorem 3.4 ([Pol18, Proof of Theorem 6.4]). Let R be an F-finite ring, and D be a Cartier
algebra satisfying condition (∗). There exists a constant C such that for all P ∈ Spec(R)
and all e ∈ Z>0 ∣∣∣ae(RP ,DP )− peγ(RP ) s(RP ,DP )

∣∣∣ 6 Cpe(γ(RP )−1).

Using this, we obtain uniform bounds for the difference of localized splitting numbers of
an F-finite F-pure ring and the corresponding F-splitting ratios.

Theorem 3.5. Let R be an F-finite ring and F-pure ring. There is a constant C ∈ R such
that for all P ∈ Spec(R) and e ∈ Z>0∣∣∣ae(RP )− pe sr(RP )rF (RP )

∣∣∣ 6 Cpe(sr(RP )−1).

Proof. Let Y = {p1, . . . , pN} be the finitely many centers of F-purity of Spec(R), and D be
the full Cartier algebra on R. Observe that D trivially satisfies condition (∗). For each pi,
let Ci be a constant as in Theorem 3.4 for the pair (R/pi,DR/pi). We claim that we can
choose C = max{C1, . . . , CN}. In fact, given P ∈ Spec(R), there is a unique pi ∈ Y such
that piRP is the splitting prime of RP . If we let S = R/pi, by Theorem 2.2 we have that
ae(RP ) = ae(SP ,DSP ) and rF (RP ) = rF (SP ,DSP ). As the Cartier algebra DS still satisfies
conition (∗), it then follows from Theorem 3.4 that∣∣∣ae(RP )− pe sr(RP )rF (RP )

∣∣∣ =
∣∣∣ae(SP ,DSP )− pe sr(RP )rF (SP ,DSP )

∣∣∣
6 Cip

e(γ(SP )−1) 6 Cpe(sr(RP )−1). �

A consequence of Theorem 3.5 is the following:
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Corollary 3.6. Let R be an F-finite and F-pure ring of prime characteristic p > 0. Then
the normalized splitting number functions ãe : Spec(R) → R mapping P 7→ ae(RP )/pe sr(RP )

converge uniformly as e → ∞ to the F-splitting ratio function rF : Spec(R) → R mapping
P 7→ rF (RP ).

4. F-splitting ratio of modules over local rings

The theory of splitting ratios over a local ring developed in [AE05] and [BST12] only
concerns itself with the Frobenius splitting numbers ae(R) of a local ring (R,m, k). In this
section we extend the local theory by studying the Frobenius splitting numbers of finitely
generated modules. We first make a more general definition.

Definition 4.1. Let R be an F-finite ring of prime characteristic p > 0, and M be a finitely
generated R-module. If ae(M) > 0 for some e ∈ Z>0, we let

rF (M) = lim
e→∞

ae(M)
pe sr(M) ,

provided the limit exists. If ae(M) = 0 for all e ∈ Z>0, we let rF (M) = 0.

The goal of this section is to prove the existence of the limit when R is assumed to be
local.

We begin with the following observation.

Lemma 4.2. Let (R,m, k) be a local F-finite ring of prime characteristic p > 0 and let M
be a finitely generated R-module. If ae0(M) > 0 for some e0 ∈ Z>0 then sr(M) = sr(R).

Proof. Choose an onto R-linear map R⊕n → M . Then ae(M) 6 nae(R) and it follows that
sr(M) 6 sr(R). If F e0

∗ M
∼= R ⊕Me0 for some e0 then F e+e0

∗ M ∼= F e
∗R ⊕ F e

∗Me0 for each
e ∈ Z>0. Therefore ae(R) 6 ae+e0(M) for each e ∈ Z>0 and sr(R) 6 sr(M). �

In what follows, it will be useful to keep track of the primes P for which the splitting rate
of M is non-negative. We make the following definition.

Definition 4.3. Let R be an F-finite ring andM a finitely generated R-module. The F-split
locus of M is fs(M) = {P ∈ Spec(R) | F e

∗ (MP ) has a free summand for some e > 0}.

Observe that, if F e
∗ (MP ) has a free summand, then so does F e

∗ (RP ). Therefore fs(M) ⊆
fs(R). Moreover, Lemma 4.2 proves that, if P ∈ fs(M), then the splitting rates of MP and
RP agree. Our next lemma establishes the existence of the F-splitting ratio of a finitely
generated module over a local ring (R,m, k) under the assumption that m is the splitting
prime ideal of R.

Lemma 4.4. Let (R,m, k) be an F-finite and F-pure local ring, with m being its splitting
prime. Let γ = γ(R/m). For every e > 0, write F e

∗M
∼= R⊕ae(M) ⊕Me. Then

(1) The sequence {ae(R)/peγ} is the constant sequence {1}. In particular rF (R) = 1.
(2) The sequence {ae(M)/peγ}e>0 is a bounded non-decreasing sequence of integers, and

therefore eventually constant. In particular, the F-splitting ratio rF (M) exists. More-
over, sr(M) = γ ⇐⇒ rF (M) > 0 ⇐⇒ m ∈ fs(M).

(3) If ae(M)/peγ = rF (M) then ae′(Me) = 0 for all e′ > 0.
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Proof. If we let Ie = {r ∈ R | R ·F e∗ r−−→ F e
∗R does not split} then Ie is an m-primary ideal such

that λ(R/Ie) = ae(R)
peγ

, and ⋂e∈Z>0 Ie is the splitting prime of R, see [AE05, Corollary 2.8 and
Theorem 3.3]. Hence Ie = m for each e ∈ Z>0 and therefore λ(R/Ie) = ae(R)

peγ
= 1 for each

e ∈ Z>0.
Given finitely generated moduleM we let Ie(M) = {m ∈M | R ·F e∗m−−−→ F e

∗M does not split}.
It is known, and easy to prove, that Ie(M) is a submodule of M containing m[pe]M and
λ(M/Ie(M)) = ae(M)

peγ
is an integer.

As M is a homomorphic image of R⊕n for some integer n > 0, we see that

ae(M)
peγ

6
ae(R⊕n)
peγ

= ae(R)n
peγ

= n.

Also observe that for all e′ > 0, we have ae+e′(M) = ae(M)ae′(R) + ae′(Me) = ae(M)pe′γ +
ae′(Me) and hence

ae+e′(M)
p(e+e′)γ = ae(M)

peγ
+ ae′(Me)
p(e+e′)γ >

ae(M)
peγ

.

In summary, {ae(M)/peγ}e>0 is a non-decreasing sequence of integer values with an upper
bound. So it is eventually constant. All remaining claims follow immediately. �

Let (R,m, k) be a local ring, not necessarily of prime characteristic, andM a finitely gener-
ated R-module. Similar to the above, we define I(M) = {m ∈M | R ·m−→M does not split}.
Then I(M) ⊆ M is a submodule of M satisfying mM ⊆ I(M) and λ(M/I(M)) = frk(M).
We refer to I(M) as the non-split submodule of M . Notice that I(F e

∗M) = F e
∗ Ie(M). Our

next lemma studies the behavior of non-split submodules under R-linear maps.

Lemma 4.5. Let (R,m, k) be a local ring (of any characteristic), let M , N and K be finitely
generated R-modules, f ∈ HomR(M,N) and g ∈ HomR(N,K). Let I(M), I(N) and I(K)
be the non-split submodules of M , N and K respectively.

(1) We have frk(N) > λ(M/(g ◦ f)−1(I(K))).
(2) Further assume that R is an F-finite ring of prime characteristic p, M = K and

g ◦ f = c1M for some c ∈ R. Then, for all e > 0,

ae(N) > ae(M)− λ(M/(Ie(M) + cM))peγ(m).

Proof. For (1) first observe that g(I(N)) ⊆ I(K). Else, if there exists n ∈ I(N) such
that g(n) 6∈ I(K) then there is ϕ : K → R such that ϕ(g(n)) = 1 contradicting the
assumption n ∈ I(N). Therefore g(f(f−1(I(N)))) ⊆ g(I(N)) ⊆ I(K). In particular,
f−1(I(N)) ⊆ (g ◦ f)−1(I(K)) and hence

frk(N) = λ(N/I(N))) > λ(M/f−1(I(N))) > λ(M/(g ◦ f)−1(I(K))).

We now prove part (2). Suppose (R,m, k) is an F-finite ring of prime characteristic
p > 0. For each e > 0, the induced maps F e

∗ f and F e
∗ g satisfy F e

∗ g ◦ F e
∗ f = (F e

∗ c)1F e∗M . So
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(F e
∗ g ◦ F e

∗ f)−1(I(F e
∗M)) = (I(F e

∗M) :F e∗M F e
∗ c) = F e

∗ (Ie(M) :M c). By (1), we see

ae(N) = frk(F e
∗N) > λ(F e

∗M/F e
∗ (Ie(M) :M c)) = λ(M/(Ie(M) :M c))peα(m)

= [λ(M/Ie(M))− λ(M/(I(M) + cM))]peγ(m)

= λ(M/Ie(M))peα(m) − λ(M/(I(M) + cM))peα(m)

= ae(M)− λ(M/(Ie(M) + cM))peα(m).

The equation λ(M/(Ie(M) :M c)) = λ(M/Ie(M))−λ(M/(Ie(M)+ cM)) follows since length
is additive and there is short exact sequence

0→M/(Ie(M) :M c)→M/Ie(M)→M/(Ie(M) + cM)→ 0. �

We are now ready to accomplish two tasks simultaneously: proving the existence of the
F-splitting ratio of a finitely generated module over a local ring, and a uniform convergence
result which extends Theorem 3.5 to finitely generated modules.

Theorem 4.6. Let R be an F-finite ring, M a finitely generated R-module, and for each
prime ideal Q ∈ fs(R) let P(Q) be the splitting prime ideal of RQ. Then rF (MQ) =
rF (MP(Q))rF (RQ) and sr(MQ) = sr(MP(Q)) for all Q ∈ fs(R). Moreover, there exists a
constant C such that for all Q ∈ Spec(R) and e ∈ Z>0,∣∣∣ae(MQ)− pe sr(MQ)rF (MQ)

∣∣∣ 6 Cpe(sr(MQ)−1).

Proof. If Q 6∈ fs(R) then ae(MQ) = ae(RQ) = 0 for all e ∈ Z>0 and any choice of constant
C > 0 satisfies the desired inequality for all such prime ideals. Furthermore, as the F-pure
locus fs(R) is open, we can write fs(R) = Spec(R) r V (f1, . . . , fn) = D(f1) ∪ · · · ∪ D(fn)
where f1, . . . , fn generate the defining ideal of the non-F-pure locus of R. Therefore fs(R)
is covered by finitely many principal open sets of the form Spec(Rf ) with each Rf being
F-pure. Thus we may prove the theorem for each of these pieces of the affine cover and
assume for the remainder of the proof that R is an F-pure ring. In particular, R has only
finitely many centers of F-purity (see [Sch09, Theorem C] and [KM09, Theorem 1.1]).

Our approach is to stratify Spec(R) as a finite union of locally closed sets of the form
V (P) ∩ D(s) where P is the unique maximal center of F-purity of D(s). We then provide
a uniform constant C for which the desired inequality holds for each of piece of the strat-
ification. For each center of F-purity P , let Q(P) = {Q ∈ Spec(R) | P(Q) = PRQ}. If
Q ∈ Spec(R) then P(Q) = PRQ if and only if PRQ is the splitting prime ideal of RQ, i.e.,
the maximal center of F-purity of RQ. Let P1, . . . ,P` be all the centers of F-purity that
are not subsets of P , and let ∩`i=1Pi = (s1, . . . , st). We may assume that sj /∈ P for all
j = 1, . . . , t. In fact, ∩`i=1Pi 6⊆ P , and we can assume s1 /∈ P ; if sj ∈ P for some j > 1, then
we can replace sj by s1 + sj. We have that Q ∈ Q(P) if and only if Q ∈ V (P)r V (∩`i=1Pi),
which is equivalent to Q ∈ ∪tj=1(V (P)∩D(sj)). Note that, for each j = 1, . . . , t, the centers
of F-purity of Spec(R) contained inD(sj) are subsets of P , so P is the unique maximal center
of F-purity in D(sj). Because there are only finitely many centers of F-purity P ∈ Spec(R),
we can realize Spec(R) as a finite union of locally closed sets of the form V (P)∩D(s) where
P is the unique maximal center of F-purity of D(s). If Q is in one such V (P) ∩D(s) then
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we replace R by Rs and may assume that R has a unique maximal center of F-purity P and
Q ∈ Q(P) = V (P) ⊆ Spec(R). 1

If rF (MP) = 0 then rF (MQ) = 0 and the conclusion holds for all Q ∈ Q(P). So we assume
rF (MP) > 0 for the rest of proof. Let γ = γ(P) = sr(MP). By Lemma 4.4, there exists e0
such that ae0(MP)/pe0γ = rF (MP). Let a = ae0(MP). Then F e0

∗ MP
∼= R⊕aP ⊕ (Me0)P over

RP , for some finitely generated R-module Me0 . Lifting to R, we obtain R-linear maps
R⊕a → F e0

∗ M → R⊕a and F e0
∗ M → R⊕a ⊕Me0 → F e0

∗ M

such that both compositions are multiplication by some c ∈ R \ P . Applying Lemma 4.5 to
the composition map R⊕a → F e0

∗ M → R⊕a, we see that for all Q ∈ Q(P) and e > 0,
ae0+e(MQ) > a · (ae(RQ)− λ(RQ/(Ie(RQ) + cRQ))peγ(Q)).

Therefore
ae0+e(MQ)
p(e0+e)γ >

a · (ae(RQ)− λ(RQ/(Ie(RQ) + cRQ))qγ(Q))
p(e0+e)γ

= a

pe0γ

(
ae(RQ)
peγ

− λ(RQ/(Ie(RQ) + cRQ))
pe dim(RQ/PRQ)

)

> rF (MP)
(
ae(RQ)
peγ

− λ(RQ/(Q[pe] + P + cR)RQ)
pe dim(RQ/PRQ)

)
.

The last inequality comes from the observation that (Q[pe] +P + cR)RQ ⊆ Ie(RQ) + cRQ for
all e ∈ N. Indeed, Q[pe]RQ ⊆ Ie(RQ) for all e, see [Tuc12, Lemma 4.4], and PRQ ⊆ Ie(RQ)
for all e since PRQ = ∩e∈NIe(RQ) by [AE05] and [Sch10, Remark 4.4].

By Theorem 3.5 there exists a constant C1, independent of e and Q ∈ Q(P), such that
ae(RQ)
peγ

> rF (RQ) − C1
pe
, where γ = sr(MP) as above. This is because, by Lemma 4.2, we

have sr(MP) = sr(RP). Moreover, since sdim(RQ) = dim(RQ/PRQ), we have sr(RP) =
sr(RQ) for all Q ∈ Q(P). Thus, γ = sr(MP) = sr(RP) = sr(RQ) for all Q ∈ Q(P). By
[Pol18, Proposition 3.3], there exists a constant C2, independent of e and Q ∈ Q(P), such
that λ(RQ/(Q[pe]+P+cR)Q)

p
e dim(RQ/PRQ) 6 C2

pe
. Therefore the constant C = rF (MP)pe0(C1 + C2), which is

independent of e and Q ∈ Q(P), is such that
ae0+e(MQ)
p(e0+e)γ > rF (MP)rF (RQ)− C

pe+e0
.

An argument similar to the above, applied to the composition of maps F e0
∗ M → R⊕a ⊕

Me0 → F e0
∗ M , will provide the existence of a constant C ′, independent of Q ∈ Q(P) and e,

such that
ae0+e(MQ)
p(e0+e)γ 6 rF (MP)rF (RQ) + C ′

pe+e0
.

This shows, in particular, that ae(MQ)
peγ

converges uniformly to rF (MP)rF (RQ) > 0, and thus
γ = sr(MP) = sr(MQ), for all Q ∈ Q(P). All assertions of the theorem now follow. �

1We thank the anonymous referee for pointing out this simpler approach: With P ranging over the finitely
many centers of F-purity of R, the subsets Q(P) give rise to a partition of Spec(R). So it suffices to pick a
center of F-purity P and prove the claims (including the existence of a constant C) for all Q ∈ Q(P). The
rest of the proof works verbatim, without replacing R by its localization Rs.
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5. Lower semi-continuity and global F-splitting Ratio

The main purpose of this section is to prove existence of the global F-splitting ratio of a
finitely generated module M .

We first need to establish some lower semi-continuity results for F-splitting ratios. We
will see that, unlike the F-signature, the F-splitting ratio of an F-finite domain may not be
a lower semi-continuous function.

Let R be an F-finite ring andM a finitely generated R-module. For each−1 6 ` 6 γ(R) we
set W`(M) = {P ∈ Spec(R) | sr(MP ) = `}. From Lemma 4.2 and subsequent observations,
we have that W`(M) = W`(R) ∩ fs(M) for all ` > 0.

Theorem 5.1. Let R be an F-finite and F-pure ring of prime characteristic p > 0, set
X = Spec(R) and let M be a finitely generated R-module. Then there is a finite stratification
of X into locally closed quasi-compact subsets such that the restriction of the F-splitting
ratio function on each subset is lower semi-continuous. Specifically, X = ⋃γ(R)

i=−1Wi(M),
Wi(M) ∩Wj(M) = ∅ whenever i 6= j, the sets Wi(M) are locally closed and quasi-compact,
and the function rF : Spec(R) → R mapping P 7→ rF (MP ) is lower semi-continuous when
restricted to each Wi(M).

Proof. The functions ae : Spec(R) → R mapping P 7→ ae(MP ) are easily checked to be
lower semi-continuous, see [EY11, Proposition 2.2]. The normalized functions ãe mapping
P 7→ ae(MP )/pe sr(MP ) are therefore lower semi-continuous when restricted to each of the
subsets W`(M). It follows that the function rF is lower semi-continuous when restricted
to each W`(M) as it is realized as the uniform limit of lower semi-continuous functions by
Theorem 4.6. It is also easy to see that the sets W−1(M),W0(M), . . . ,Wγ(R)(M) are disjoint
and X = ⋃γ(R)

i=−1Wi(M). It remains to show each of the sets W`(M) are locally closed and
quasi-compact.

We adopt the convention that Wi(M) = ∅ if i < −1, and we let P(Q) denote the splitting
prime of RQ. For every Q ∈ Spec(R), and every −1 6 ` 6 γ(R), Theorem 4.6 shows that
sr(MQ) = sr(MP(Q)), and hence Q ∈ W`(M) if and only if P(Q) ∈ W`(M).

Let {p1, . . . , pN} be the finitely many centers of F-purity of R that are contained in fs(M).
Relabeling if necessary, we may assume γ(R/pj) = ` if and only if 1 6 j 6 i, and γ(R/pj) < `
if and only if i+ 1 6 j 6 t. Observe that

W`(M) =
 i⋃
j=1

V (pj)
r

 t⋃
j=i+1

V (pj)
 =

 i⋃
j=1

V (pj)
 ∩

X r
t⋃

j=i+1
V (pj)

 ,
hence it is a locally closed set. Finally, note that every locally closed set of Spec(R), with R
Noetherian, is quasi-compact. �

Corollary 5.2. Let R be an F-finite and F-pure ring and let M be a finitely generated
R-module. For ` > 0, if W`(M) 6= ∅, then the F-splitting ratio function defined by rF :
Spec(R) → R mapping P 7→ rF (MP ) has a nonzero minimum value when restricted to
W`(M).

Proof. The function rF is lower semi-continuous when restricted to the non-empty quasi-
compact set W`(M) and therefore attains a minimum value. �
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The F-splitting ratio function is generally not a lower semi-continuous function when
viewed as a function on the spectrum of a ring. We provide an example of such a ring, but
first we need a lemma.
Lemma 5.3. Let (R,m, k) be an F-finite and F-pure ring satisfying the following:

(1) R is F-pure;
(2) R is not strongly F-regular;
(3) RP is strongly F-regular for all P 6= m;
(4) RP is not regular for some P 6= m.

Then the F-splitting ratio function rF : Spec(R)→ R is not lower semi-continuous.

Proof. For each e ∈ Z>0 let Ie = {r ∈ R | R ·F e∗ (r)−−−→ F e
∗R is not pure} be the eth splitting

ideal of R and set P = ⋂
e∈Z>0 Ie. Recall that P is referred to as the splitting prime of R,

and since R is assumed to be not strongly F-regular, the closed set V (P) is contained in the
non-strongly F-regular locus of R. Therefore P = m and it is straightforward to check that
ae(R) = ae(R/m) = [k1/pe : k] for all e. In particular, ae(R)/pe sr(R) = 1 for all e and therefore
rF (R) = 1. However, localizing at a prime P 6= m for which RP is not regular it follows RP

is strongly F-regular by assumption but not regular and therefore rF (RP ) = s(RP ) < 1 by
[HL02, Corollary 16] and therefore the F-splitting function is not lower semi-continuous. �
Theorem 5.4. There exist an F-finite ring R for which the F-splitting ratio function is not
lower semi-continuous as a function from Spec(R) to R.
Proof. Let k be a perfect field of prime characteristic p and let A be a non-regular strongly
F-regular ring of finite type over k, write A = k[x1, . . . , xn]/I, with I ⊆ (x1, . . . , xn), and
assume A(x1,...,xn) is a non-regular local ring. Let B = A[v] and R = {f ∈ B | f(0, . . . , 0, 0) =
f(0, . . . , 0, 1)} localized at the maximal ideal R∩ (x1, . . . , xn, v)B = R∩ (x1, . . . , xn, v−1)B.
The ring R is realized as a fiber product, i.e. a gluing of the local rings B(x1,...,xn,v) and
B(x1,...,xn,v−1) at their maximal ideals. It readily follows that the conductor ideal of R inside
its normalization is the unique maximal ideal of R and R is isomorphic to localizations of
B on the punctured spectrum. Hence R is strongly F -regular on the punctured spectrum,
but not an isolated singularity. Moreover, R is an F -pure ring since there exists splittings of
B(x1,...,xn,v) and B(x1,...,xn,v−1) compatible at the residue field level of these rings. Moreover,
the conductor ideal is compatible under all R-linear maps F e

∗R→ R by [MS12, Lemma 3.1].
Therefore R is not strongly F -regular and satisfies all hypotheses of Lemma 5.3.2 �

For convenience of the reader, we recall the following:
Theorem 5.5 ([Sta82, DSPY18]). Let R be a Noetherian ring of Krull dimension d < ∞
and M a finitely generated R-module. If frkRP (MP ) > dim(R/P ) + k for all P ∈ Spec(R),
then frkR(M) > k. In particular, frkR(M) > min{frkRP (MP ) | P ∈ Spec(R)} − d.

We are finally ready to show the existence of the global F-splitting ratio of modules, and
relate it to the F-splitting ratio of the localization at prime ideals.
Theorem 5.6. Let R be an F-finite ring of prime characteristic p > 0 and M a finitely
generated module. Then

2If the reader was interested in finding an example of normal ring whose F -splitting ratio function is not
lower semi-continuous, then one would could instead consider the cone of a singular Calabi-Yau 3-fold and
show such a ring localized at the homogeneous maximal ideal satisfies the hypotheses of Lemma 5.3.
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(1) We have sr(M) = min{sr(MP ) | P ∈ Spec(R)}.

(2) The limit rF (M) = lim
e→∞

ae(M)
pe sr(M) exists, and it is positive if sr(M) > 0.

(3) We have rF (M) = min{rF (MP ) | sr(MP ) = sr(M)}. In particular, rF (M) is positive
whenever there exists e ∈ Z>0 and onto R-linear map F e

∗M → R.
(4) If sr(R) = 0, then the sequence {ae(R)} is the constant sequence {1}. Therefore, we

have rF (R) = 1.
(5) If sr(M) = 0 then the sequence {ae(M)} is a non-decreasing sequence of eventu-

ally positive integers bounded from above, hence is eventually the constant sequence
{rF (M)}.

Proof. If there exists a prime ideal P ∈ Spec(R) such that ae(MP ) = 0 for all e ∈ Z>0, i.e.,
if W−1(M) 6= ∅, then all statements of the theorem trivially follow, and we have rF (M) = 0.

For the remainder of the proof, we assume that W−1(M) = ∅. Since ae(M) 6 ae(MP ) for
all P ∈ Spec(R), it easily follows that sr(M) 6 min{sr(MP ) | P ∈ Spec(R)}.

First, assume that min{sr(MP ) | P ∈ Spec(R)} > 0. For each e ∈ Z>0, we let Pe ∈
Spec(R) be such that ae(MPe) = min{ae(MP ) | P ∈ Spec(R)}. If we set d = dim(R), it
follows from Theorem 5.5 that ae(M) > ae(MPe) − d. Let C be as in Theorem 4.6, and let
r = min{rF (MP ) | P ∈ Spec(R)}. Such an r exists, and is positive by Corollary 5.2. In
particular, we have

ae(M) > ae(MPe)− d > rF (MPe)pe sr(MPe ) − Cpe(sr(MPe )−1) − d
> rpe sr(MPe ) − Cpe(sr(MPe )−1) − d.

Since sr(MPe) > 0, it follows that ae(M) > rpe

2 for all e � 0, and therefore sr(M) > 0.
Moreover, we have that sr(MPe) > sr(M) only for finitely many values of e. Else, from the
inequalities above we would get

r 6
ae(M)
pe sr(MPe ) + C

pe
+ d

pe sr(MPe ) 6
ae(M)

pe(sr(M)+1) + C

pe
+ d

pe(sr(M)+1) ,

for infinitely many values of e. Because sr(M) > 0, the expression on the right hand side
can be made arbitrarily close to 0 for e � 0, contradicting the fact that r > 0. Therefore
we have sr(MPe) = sr(M) for all e � 0 and, in particular, this gives the reverse inequality
sr(M) > min{sr(MP ) | P ∈ Spec(R)}. This finishes the proof of (1) under the assumption
that min{sr(MP ) | P ∈ Spec(R)} > 0.

Continue to assume that ` = sr(M) > 0, and let Pe ∈ Spec(R) be as above. We have
already observed that sr(MPe) = ` for all e� 0. Moreover, there are inequalities

ae(MPe)− d
pe`

6
ae(M)
pe`

6
ae(MPe)
pe`

.

Under the assumption that ` > 0, parts (2) and (3) follow if lim
e→∞

ae(MPe )
pe`

exists and is equal to
min{rF (MP ) | sr(MP ) = `}. But this is indeed the case since the F-splitting ratio function
restricted to the quasi-compact set W`(M) = {P ∈ Spec(R) | sr(MP ) = `} is the uniform
limit of the lower semi-continuous functions ae(−)

pe`
. In particular, the minimum the functions

ae(−)
pe`

onW`(M) converges to the minimum of the F-splitting ratio functions onW`(M). This
proves (2) and (3) under the assumption that min{sr(MP ) | P ∈ Spec(R)} > 0.
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Now we prove (4), so we assume sr(R) = 0. By what we have shown above, we must
necessarily have 0 = sr(R) 6 min{sr(RP ) | P ∈ Spec(R)} 6 0, and thus sr(RP ) = 0 for
some P ∈ Spec(R). Observe that we have sr(RP ) > α(P ), with equality if and only if PRP

is the splitting prime of RP . Thus, sr(RP ) = 0 implies that PRP is the splitting prime of
RP , and that κ(P ) is perfect. It is well-known that an F -finite ring is F -pure if and only
if RP is F -pure for all P ∈ Spec(R), see for example [ST12, Exercise 2.10]. It follows from
Lemma 4.4 that 1 6 ae(R) 6 ae(RP ) = 1 for all e ∈ Z>0, and therefore ae(R) = 1 for all
e ∈ Z>0. This proves (4).

Now suppose that min{sr(MP ) | P ∈ Spec(R)} = 0. Let P ∈ Spec(R) be such that
sr(MP ) = 0. By Lemma 4.2, this also gives sr(RP ) = sr(R) = 0. To prove (5), we choose for
each e ∈ Z>0 a direct sum decomposition F e

∗M
∼= R⊕ae(M) ⊕Me. Then

F e+1
∗ M ∼= F∗R

⊕ae(M) ⊕ F∗Me.

As R is F-pure, F e
∗R
⊕ae(M) has a free summand of rank ae(M), and therefore ae+1(M) >

ae(M). To see that the sequence {ae(M)} is bounded from above, choose an onto map
R⊕N → M . By part (4), the condition that sr(R) = 0 implies that ae(R⊕N) = N for
each e ∈ Z>0, and therefore ae(M) 6 N for all e ∈ Z>0. We have now proven, under
the assumption that min{sr(MP ) | P ∈ Spec(R)} = 0, that the sequence {ae(M)} is a
non-decreasing sequence of non-negative integers, and is therefore eventually the constant
sequence {rF (M)}.

To complete the proof it is enough to show that rF (M) = min{rF (MP ) | sr(MP ) = 0},
which concludes (5). Moreover, since min{rF (MP ) | sr(MP ) = 0} > 0 by Corollary 5.2, this
also implies ae(M) = rF (M) > 0 for e� 0. Hence sr(M) = 0, which concludes the proof of
parts (1), (2), and (3).

Let {P1, . . . , Ps} be the set of maximal objects, with respect to containment, of the set
of all centers of F-purity of R. We refer to them as the maximal centers of F-purity of R.
We may assume that sr(MPi) = 0 for all 1 6 i 6 r, and sr(MPi) > 0 for r + 1 6 i 6 s.
From what shown above, we know that for all e� 0 we have F e

∗M
∼= R⊕rF (M) ⊕Me, where

F e′
∗ Me does not have a free summand for all e′ > 0. We claim that frk((Me)Pi) > 1 for all
r+ 1 6 i 6 s. To see this, we assume by contradiction that, for some r+ 1 6 i 6 s, we have
frk((Me)Pi) = 0 for infinitely many e ∈ Z>0. Then the splitting rate of MPi would be 0, and
this contradicts our arrangement of the maximal centers of F-purity of R.

Suppose rF (M) < min{rF (MP ) | sr(MP ) = 0}. Then frk((Me)Pi) > 0 for each 1 6 i 6 r,
and e� 0. Then for each 1 6 i 6 s we can find mi ∈Me and hi ∈ HomR(Me, R) such that
hi(mi) 6∈ Pi. By prime avoidance we can find for each 1 6 i 6 s an element ri ∈

(⋂
j 6=i Pj

)
r

Pi. Letm = ∑
rimi and h = ∑

rihi. Then x := h(m) = ∑∑
rirjhi(mj) 6∈

⋃s
i=1 Pi. Therefore

the element x avoids all maximal centers of F-purity of R, hence all centers of F-purity of R.
In particular, if Q ∈ Spec(R), then there exists eQ ∈ Z>0 such that RQ

·F e′∗ x−−−→ F e′
∗ RQ splits for

all e′ > eQ. Therefore, the union of the sets Ue′ := {Q ∈ Spec(R) | RQ
·F e′∗ x−−−→ F e′

∗ RQ splits} is
equal to Spec(R). Moreover, they are open sets, and they form an ascending chain [HH89].
By quasi-compactness of Spec(R), there exists e′ ∈ Z>0 such that Ue′ = Spec(R). Therefore

R
F e
′
∗ x−−→ F e′

∗ R splits, since splitting of is a local condition. Suppose ϕ : F e′
∗ R → R satisfies

ϕ(F e′
∗ x) = 1. Then, the composition F e′

∗ Me
F e
′
∗ h−−→ F e′

∗ R
ϕ−→ R maps F e

∗m 7→ 1, and this
13



contradicts the property that F e′
∗ Me does not have a free R-summand for all e′ > 0. This

completes the proof. �

We end this section by showing that the global F-splitting ratio of a positively graded
algebra is equal to the F-splitting ratio at the irrelevant maximal ideal.
Proposition 5.7. Let (R0,m0, k) be an F-finite local ring and let R be a positively graded
algebra of finite type over R0. Let R>0 be the ideal of R generated by elements of positive
degree and m = m0 + R>0. Suppose that M is a finitely generated graded R-module. We
have the equality ae(M) = ae(Mm). In particular, we have sr(M) = sr(Mm), and rF (M) =
rF (Mm).
Proof. Since ae(M) 6 ae(Mm) always holds, it is sufficient to prove the other inequality.
To this end, we observe that F e

∗M is a Q-graded module. Hence, we can find a graded
isomorphism F e

∗M
∼=
⊕be
i=1R[ni]⊕Me, where ni ∈ Q, and Me is a Q-graded module with no

graded free summands. Here, R[ni] denotes the cyclic Q-graded free module whose generator
is in degree −ni. We claim that (Me)m has no free summands either. In fact, if it did, there
would be a surjective Rm-linear map (Me)m → Rm. Such a map lifts to an R-linear map
ϕ : Me → R with ϕ(Me) 6⊆ m. Since HomR(Me, R) is a graded module, we can find a graded
component ψ of ϕ that still satisfies ψ(Me) 6⊆ m. Such a map ψ gives rise to a graded free
summand of Me, contradicting our assumptions. This shows that ae(M) > be = ae(Mm), as
claimed. �

Corollary 5.8. Let R and m be as in Proposition 5.7. We have s(R) = s(Rm) .
Proof. In our assumptions, the ideal defining the non-strongly F-regular locus is homogeneous
[LS99, Lemma 4.2]. If R is not strongly F-regular, then Rm is also not strongly F-regular;
thus, s(R) = s(Rm) = 0 in this case. Now assume R is strongly F-regular. Then Rm is also
strongly F-regular, and thus sr(Rm) = γ(Rm) = γ(R). Using Proposition 5.7, we conclude
that sr(R) = γ(R), and hence s(R) = rF (R) = rF (Rm) = s(Rm). �

6. Positivity of F-signature of Cartier algebras and strong F-regularity

This section is devoted to giving a positive answer to [DSPY19b, Question 4.24]. We recall
the following condition from [DSPY19b]. For unexplained notation and terminology we refer
to Subection 2.4 of the same article.
Condition 6.1. We say that (R,D) satisfies condition (†) if at least one of the following
conditions is satisfied:

• D satisfies condition (∗), as in 3.2.
• D = Cat for some ideal a ⊆ R and t > 0.
• R is normal and D = C(R,∆) for some effective Q-divisor ∆.

Using the same notation as in Section 5, we now recall the definition of global F-signature
of a pair (R,D). Given an F-finite and F-pure ring R, and a Cartier algebra D , the F-
signature of (R,D) is

s(R,D) = lim
e→∞

ae(R,D)
peγ(R) .

When D is the full Cartier algebra, we simply write s(R) for s(R,D). In this case, if we
also have γ(R) = sr(R), the global F-signature s(R) coincides with the global F-splitting
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ratio rF (R) defined in Section 5. The limit above was shown to exist in [DSPY19b, Theorem
4.19]. In the same article, a global version of a result of Blickle, Schwede and Tucker [BST12],
relating the positivity of s(R,D) to the strong F-regularity of the pair (R,D) was established
in this setup.
Theorem 6.2. [DSPY19b, Corollary 4.23] Let R be an F-finite domain, and let D be a
Cartier algebra satisfying condition (†). Then s(R,D) > 0 if and only if (R,D) is strongly
F-regular

The way Theorem 6.2 was proved in [DSPY19b] was by exploiting the relation
s(R,D) = min{s(RP ,DP ) | P ∈ Spec(R)}.

Since the strong F-regularity of (R,D) is equivalent to such minimum being positive, this
was sufficient. However, the proof of the equality between the global F-signature of (R,D)
and the minimum of the local invariants required some semi-continuity results, that are only
known to hold under the additional assumption that (†) holds [Pol18, PT18]. The goal of
this section is to show that Theorem 6.2 is true without assuming (†). In particular, we
will provide a direct way to show that the signature of a strongly F-regular pair (R,D) is
positive, without looking at the corresponding invariants in the localizations at prime ideals.

We start with two preparatory lemmas.
Lemma 6.3. [BST12, Lemma 3.13c] and [PT18, Lemma 4.2] Let R be an F-finite normal
domain and let ϕ ∈ HomR(F e

∗R,R). There exists 0 6= z ∈ R such that for all n ∈ Z>0, and
all ψ ∈ HomR(F ne

∗ R,R), there exists r ∈ R such that
zψ = ϕn(F ne

∗ r−)

where ϕn = ϕ ◦ F e
∗ϕ ◦ F 2e

∗ ϕ ◦ · · · ◦ F
(n−1)e
∗ ϕ and ϕn(F ne

∗ r−) is composition of the maps

F ne
∗ R

·Fne∗ r−−−→ F ne
∗ R

ϕn−→ R.

Lemma 6.4. Let R be a strongly F-regular F-finite domain. Then there exists ε > 0 such
that for all e ∈ Z>0, ae(R) > ε rank(F e

∗R).
Proof. As R is strongly F-regular, s(R) > 0 by [DSPY19b, Theorem 4.15]. Hence, there
exists e′ ∈ Z>0 such that for all e > e′, ae(R)/ rank(F e

∗R) > s(R)/2. Let

ε = min
{

a1(R)
rank(F∗R) , ...,

ae′(R)
rank(F e′

∗ R) ,
s(R)

2

}
.

Then ae(R) > ε rank(F e
∗R) for all e ∈ Z>0. �

The following theorem extends [DSPY19b, Corollary 4.20], giving a positive answer to
[DSPY19b, Question 4.21].
Theorem 6.5. Let R be an F-finite domain and let D be a Cartier algebra. Then (R,D) is
strongly F-regular if and only if s(R,D) > 0.
Proof. If (R,D) is not strongly F-regular, then there exists P ∈ Spec(R) such that (RP ,DP )
is not strongly F-regular. Since ae(R,D) 6 ae(RP ,DP ), we get s(R,D) 6 s(RP ,DP ) = 0.

Conversely, suppose that (R,D) is strongly F-regular. Then R is strongly F-regular and
by Lemma 6.4 there exists ε > 0 such that ae(R) > ε rank(F e

∗R) for all e ∈ Z>0. Let e0 ∈ Z>0
be such that ε > 1

pe0 . If rank(F e
∗R) = 1 for each e ∈ Z>0, then R is a perfect field and there
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is nothing to prove. We assume R is not a perfect field so that, for all e > e0, pe0 divides
rank(F e

∗R). Let `e = rank(F e
∗R)/pe0 , so that ae(R) > `e for each e ∈ Z>0.

Let e1 > 0 be such that ae1(R,D) > 0, and let ϕ ∈ De1 be a non-zero map. Let z be as
in Lemma 6.3. In particular, for each n ∈ Z>0 and for each ψ ∈ HomR(F ne1

∗ R,R), the map
zψ belongs to Dne1 . Consider integers of the form e = ne1 > e0. As ae(R) > `e, we can
write F e

∗R
∼= R⊕`e ⊕Me for some R-module Me. Let λ1, . . . , λ`e ∈ F e

∗R form a basis for the
free summand R⊕`e of F e

∗R. Denote by λ̃i : F e
∗R → R the R-linear map defined by λi 7→ 1,

λj 7→ 0 for all j 6= i, and x 7→ 0 for all x ∈Me.
We chose 0 6= z ∈ R such that zλ̃i ∈ De, and zλ̃i maps λi 7→ z and λj 7→ 0 for all j 6= i.

As (R,D) is strongly F-regular, there exists e2 ∈ Z>0 and γ ∈ De2 such that γ(F e2
∗ z) = 1.

Then the R-linear maps γi := γ ◦ F e2
∗ zλ̃i : F e+e2

∗ R → R are elements of De+e2 such that
F e2
∗ λi 7→ 1 and F e2

∗ λj 7→ 0 for all j 6= i. Therefore, for each e = ne1 > e0, we have

ane1+e2(R,D) > `ne1 = rank(F ne1
∗ R)

pe0
= rank(F ne1+e2

∗ R)
pe0 rank(F e2∗ R) ,

and thus

s(R,D) = lim
e′∈ΓD→∞

ae′(R,D)
rank(F e′

∗ R) = lim
n→∞

ane1+e2(R,D)
rank(F ne1+e2∗ R) >

1
pe0 rank(F e2∗ R) > 0. �

Remark 6.6. As pointed out above, the proof of Theorem 6.2 contained in [DSPY19b] re-
quires the extra assumption that (†) holds, because it is based on the equality s(R,D) =
min{s(RP ,DP ) | P ∈ Spec(R)}. Theorem 6.5 settles the positivity of s(R,D) for strongly
F-regular pairs (R,D), but it does not indicate any progress in the direction of showing that
s(R,D) is equal to the minimum of the local invariants. In particular, it does not show the
existence of a prime P ∈ Spec(R) such that s(R,D) = s(RP ,DP ).
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