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Abstract. We extend the notion of Frobenius Betti numbers to large classes of finitely
generated modules over rings of prime characteristic, which are not assumed to be local.
To do so, we introduce new invariants, that we call Frobenius Euler characteristics. We
prove uniform convergence and upper semi-continuity results for Frobenius Betti numbers
and Euler characteristics. These invariants detect the singularities of a ring, extending two
results from the local to the global setting.

1. Introduction

Throughout this article, R will denote a commutative Noetherian ring with unity, and of
prime characteristic p > 0. For e ∈ Z>0, let F e : R→ R be the e-th iterate of the Frobenius
endomorphism, that is, the pe-th power map on R. Moreover, let F e

∗R denote R as a module
over itself, under restriction of scalars via F e. Unless otherwise stated, we assume that R is
F-finite, that is, the Frobenius is a finite map.

A clear methodology for globalizing measurements of singularities associated with the
Frobenius endomorphism is established in [DSPY19]. In [DSPY19], these authors extended
the definitions of Hilbert-Kunz multiplicity and F-signature to rings that are not neces-
sarily local by combining strong convergence results unique to prime characteristic rings
with techniques of basic element theory. We follow closely the methodology/philosophy of
[DSPY19] in order to globalize Frobenius Betti numbers (see [DSHNB17]). However, the ex-
plicit differences in the numerical invariants considered in this paper, as compared to those
of [DSPY19], requires unique attention to verify that they can indeed be defined and provide
useful measurements of singularities for rings which are not assumed to be local.

When (R,m, k) is a local ring, Frobenius Betti numbers provide an asymptotic measure
of the Betti numbers of the modules F e

∗R. More explicitly, the i-th Frobenius Betti number
of R is defined as

βFi (R) = lim
e→∞

λR(TorRi (k, F e
∗R))

rank(F e
∗R) .

Here, λR(−) denotes the length of an R-module. To prove our results about Frobenius Betti
numbers, we introduce certain auxiliary invariants, that we call Frobenius Euler character-
istics, and we denote by χFi (R). If (R,m, k) is local, these invariants are defined as

χFi (R) = lim
e→∞

 i∑
j=0

(−1)i−j
λR(TorRj (k, F e

∗R))
rank(F e

∗R)

 .
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Our first main result consists in proving upper semi-continuity results and uniform con-
vergence results for the sequences converging to these two invariants (see Proposition 3.1
and Theorem 3.4). As a consequence, we obtain upper semi-continuity of such invariants.

Theorem A (See Corollary 3.5). Let R be an F-finite domain of prime characteristic p > 0.
The functions P 7→ βFi (RP ) and P 7→ χFi (RP ) are upper semi-continuous functions as maps
from Spec(R) to R.

Next, we define Frobenius Betti numbers and Frobenius Euler characteristic for rings that
are not necessarily local, giving an appropriate interpretation of the numerators in the limits
above as minimal number of generators of syzygies in appropriate resolutions, which we call
minimal.

Theorem B (See Theorem 4.10). Let R be an F-finite domain of prime characteristic p > 0,
not necessarily local. Then

(1) The limits βFi (R) and χFi (R) exist.
(2) We have equality χFi (R) = max{χFi (RP ) | P ∈ Spec(R)}.

We are stating Theorem B only for global Frobenius Betti numbers and Frobenius Euler
characteristic of the ring R. In Section 4, however, we obtain more general results for global
Frobenius Betti numbers of any finitely generated R-module.

We also point out that part (2) of Theorem B shows how global Frobenius Euler charac-
teristics are related to local Frobenius Euler characteristics. An analogous relation does not
hold in full generality for global Frobenius Betti numbers (see Example 4.12).

Our third result is a way to detect the singularities of a ring using global Frobenius Betti
numbers and Euler characteristics. This extends analogous statements, that were previously
known only for local rings [AL08, PS19].

Theorem C (See Theorems 4.17 and 4.18). Let R be an F-finite domain of prime charac-
teristic p > 0. The following conditions are equivalent:

(1) R is regular.
(2) βFi (R) = 0 for some (equivalently, for all) i > 0.
(3) R is strongly F-regular and χFi (R) = (−1)i for some (equivalently, for all) i > 0.

Finally, we also show an associativity formula for Frobenius Betti numbers, that generalizes
that for Hilbert-Kunz multiplicities (see Corollary 4.16), and we show that if R is a positively
graded algebra over a local ring (R0,m0), then βFi (R) = βFi (Rm) and χFi (R) = χFi (Rm), where
m = m0 +R>0 (see Proposition 4.19).

2. Background on Frobenius Betti numbers of local rings

Let (R,m, k) be an F-finite local ring of dimension d. For an R-module M , we denote
by F e

∗M the module structure on M induced by restriction of scalars via F e : R → R, the
e-th iterate of the Frobenius endomorphism on R. For any R-module L of finite length,
and any finitely generated R-module M , the R-module TorRi (L, F e

∗M) has finite length, for
all i > 0 and all e ∈ Z>0. For a prime ideal P of R, let κ(P ) denote the residue field
RP/PRP

∼= (R/P )P of the local ring RP . We set γ(R) = max{α(P ) | P ∈ Spec(R)}, where
α(P ) = logp[F∗κ(P ) : κ(P )]. Moreover, given a finitely generated R-module M , we set
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γ(M) = γ(R/ ann(M)). In [Sei89], Seibert proves that the limit

βFi (L,M, γ) = lim
e→∞

λR
(
TorRi (L, F e

∗M)
)

peγ

exists for every integer γ > γ(M). When L = R/m, we simply denote βFi (R/m,M, γ) by
βFi (M,γ). In addition, if γ = γ(M), we only write βFi (M), omitting γ from the notation,
and we call this invariant the i-th Frobenius Betti number of M . We warn the reader that, in
[DSHNB17], the normalization factor in the denominator of the i-th Frobenius Betti number
is chosen to be peγ(R), rather than peγ(M).

Observe that, for all e, the length λR(TorRi (R/m, F e
∗M)) in the numerator of βFi (M) is

the i-th Betti number of the R-module F e
∗M . Moreover

βF0 (M,γ(R)) = lim
e→∞

λR(R/m⊗R F e
∗M)

peγ(R) = eHK(M)

is the Hilbert-Kunz multiplicity of M , with respect to the maximal ideal m.
To ease up the notation, we often write βi(e,m,M) for λR(TorRi (R/m, F e

∗M)). More
generally, for P ∈ Spec(R) and integers e, i > 0, we define

βi(e, P,M) = λRP (TorRPi (κ(P ), F e
∗ (MP ))).

With this notation, the i-th Frobenius Betti number of MP as an RP -module is

βFi (MP ) = lim
e→∞

βi(e, P,M)
peγ(MP ) .

Remark 2.1. We warn the reader about a potential source of confusion with our notation.
If we view MP as an R-module, βFi (MP ) is equal to lim

e→∞
βi(e,m,MP )/peγ(MP ). On the other

hand, viewing MP as an RP -module, βFi (MP ) is equal to lim
e→∞

βi(e, P,MP )/peγ(MP ). We
could fix the problem by specifying the underlying ring; however, when writing βFi (MP ) for
a finitely generated R-module M , we will always view MP as an RP -module, to guarantee
that the module stays finitely generated. Therefore, we will not specify the underlying ring,
to avoid making the notation heavier.

3. Uniform convergence and upper semi-continuity results

A key ingredient that is used in [DSPY19] for developing a global theory of Hilbert-
Kunz multiplicity and F-signature are certain semicontinuity results. In particular, to relate
the global Hilbert-Kunz multiplicity to the invariants in the localization, the upper semi-
continuity of the functions

λe : Spec(R) // R

P // λRP (MP/P
[pe]MP )

pe ht(P )

for locally equidimensional excellent rings, and the uniform convergence to their limit, play a
crucual role. The upper semi-continuity was first established in [Kun76] (Kunz claimed that
this result was true for an equidimensional ring, but Shepherd-Barron noted in [SB79] that
the locally equidimensional assumption is needed). The uniform convergence was established
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in [Pol18, Theorem 5.1]. An immediate consequence of these two facts is that the Hilbert-
Kunz function is upper semi-continuous on the spectrum of a locally equidimensional ring
[Smi16, Pol18].

As for the Hilbert-Kunz multiplicity, βFi (−) is additive on short exact sequences, there-
fore for several arguments we can reduce to the case M = R/q, where q is a prime. We
warn the reader that this does not allow us to reduce to the case when R is a domain, as
for the Hilbert-Kunz multiplicity. In fact, we still have to compute the lengths modules
TorRPi (κ(P ), F e

∗ (R/q)P ) over the rings RP . This complicates the arguments for the Frobe-
nius Betti numbers, and adds some technical work to the proofs of uniform convergence and
upper semi-continuity in this section.

We now recall some general notions regarding semi-continuity. Let X be a topological
space. A function f : X → R is upper semi-continuous if for all x ∈ X, for all ε > 0, there
exists an open set U ⊆ X containing x such that f(y) < f(x) + ε for all y ∈ U . We say
that f is dense upper semi-continuous if, for all x ∈ X, there exists an open set U ⊆ X
containing x such that f(y) 6 f(x) for all y ∈ U .

In what follows, it will be helpful to consider an Euler characteristic version of the Frobe-
nius Betti numbers, in part inspired by Dutta multiplicities [Dut83]. For integers i, e > 0,
a finitely generated R-module M , and a prime P ∈ Spec(R), recall that we have defined
βi(e, P,M) = λRP (TorRPi (κ(P ), F e

∗ (MP ))). In the same setup, we let

χi(e, P,M) =
i∑

j=0
(−1)i−jβj(e, P,M).

Proposition 3.1. Let R be an F-finite ring, and M be a finitely generated R-module. For
i ∈ Z>0, and e ∈ Z>0, the functions

P ∈ Spec(R) 7→ βi(e, P,M) and P ∈ Spec(R) 7→ χi(e, P,M)
are dense upper semi-continuous. In particular, they are upper semi-continuous.

Proof. Let P ∈ Spec(R), and let e > 0. Consider a minimal free resolution of F e
∗ (MP ):

. . . // R
βi(e)
P

ϕi // R
βi−1(e)
P

ϕi−1 // . . . . . . // R
β0(e)
P

ϕ0 // F e
∗ (MP ) // 0,

where βj(e) = βj(e, P,M) is the j-th Betti number of F e
∗ (MP ) as an RP -module. Since

the rank of each free RP -module in the resolution is finite, for all j we can find lifts ψj ∈
HomR(Rβj(e), Rβj−1(e)) of ϕj from RP to R, giving maps

. . . // Rβi(e) ψi // Rβi−1(e) ψi−1 // . . . . . . // Rβ0(e) ψ0 // F e
∗M // 0.

Note that this is not even necessarily a complex. Fix an integer i > 0. Since R is Noetherian
and all the free modules appearing above have finite rank, by inverting an element s ∈ RrP
we can assume that ker((ψj)s) = im((ψj+1)s) for all j = 0, . . . , i, and that im((ψ0)s) =
F e
∗ (Ms). In other words,

Rβi+1(e)
s

(ψi+1)s// Rβi(e)
s

(ψi)s // Rβi−1(e)
s

(ψi−1)s// . . . . . . // Rβ0(e)
s

(ψ0)s // F e
∗ (Ms) // 0.

is the start of a free resolution of F e
∗ (Ms) over the ring Rs. In particular, by localizing at

any prime Q ∈ Spec(R) not containing s, the complex is still exact, and it becomes a free
resolution of F e

∗ (MQ) over RQ. However, it may not be minimal. That is, βi(e,Q,M) 6 βi
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for all i > 0. If we consider the Zariski open set D(s) = {Q ∈ Spec(R) | s /∈ Q}, we
therefore have that βi(e,Q,M) 6 βi(e, P,M) for all Q ∈ D(s). This shows dense upper semi-
continuity of the function P 7→ βi(e, P,M). We now focus on the function P 7→ χi(e, P,M).
Let P, ϕj, ψj and s ∈ R r P be as above. Let Q ∈ D(s), and denote Ωj = ker((ψj−1)Q), for
all j = 0, . . . , i. This gives short exact sequences of RQ-modules:

0 −→ Ωj −→ R
βj−1(e)
Q −→ Ωj−1 −→ 0

for all j = 1, . . . , i. Tensoring with κ(Q), we obtain long exact sequences

0 −→ TorRQ1 (κ(Q),Ωj−1) −→ Ωj/QΩj −→ κ(Q)βj−1(e) −→ Ωj−1/QΩj−1 −→ 0.

Let µRQ(−) denote the minimal number of generators of an RQ-module. For j = 1, . . . , i the
exact sequence above gives

µRQ(Ωj) = λRQ(Ωj/QΩj) = λRQ(TorRQ1 (κ(Q),Ωj−1)) + βj−1(e)− µRQ(Ωj−1).

Because TorRQ1 (κ(Q),Ωj−1) ∼= TorRQj (κ(Q), F e
∗ (MQ)), by repeatedly using the relation above

we obtain that

µRQ(Ωi) +
i−1∑
j=0

(−1)i−jβj(e) =
i∑

j=0
(−1)i−jλRQ(TorRQj (κ(Q), F e

∗ (MQ))) = χi(e,Q,M).

Since µRQ(Ωi) 6 βi(e), we get the desired conclusion

χi(e,Q,M) 6 βi(e) +
i−1∑
j=0

(−1)i−jβj(e) = χi(e, P,M). �

We recall the following global version of a result due to Dutta [Dut83].

Lemma 3.2 ([Pol18, Lemma 2.2]). Let R be an F-finite domain. There exists a finite set of
nonzero primes S(R), and a constant C, such that for every e ∈ Z>0

(1) there is a containment of R-modules R⊕peγ(R) ⊆ F e
∗R,

(2) which has a prime filtration with prime factors isomorphic to R/Q, where Q ∈ S(R),
(3) and for each Q ∈ S(R), the prime factor R/Q appears no more than Cpeγ(R) times

in the chosen prime filtration of R⊕peγ(R) ⊆ F e
∗R.

Lemma 3.2 is used by the second author in [Pol18] to establish the presence of strong
uniform length bounds for all F-finite rings, and in [DSPY19] to show the existence of
global Hilbert-Kunz multiplicity and F-signature. Moreover, a weaker version of the uniform
length bounds of [Pol18] were provided by Smirnov in [Smi16] and were central to proving
the Hilbert-Kunz multiplicity function is upper semicontinuous. The reader is encouraged
to compare the following lemma and its proof techniques with [Pol18, Corollary 3.4] and
[Smi16, Key Lemma].

Lemma 3.3. Let R be an F-finite ring, q ∈ Spec(R), i and γ be non-negative integers, with
γ > γ(R/q). There exists a constant A, that only depends on i and q, such that∣∣∣∣∣βi(e1 + e2, P, R/q)

(q1q2)γ − βi(e2, P, R/q)
qγ2

∣∣∣∣∣ 6 A

q2
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for all q1 = pe1, q2 = pe2 and P ∈ Spec(R). In particular, the sequence
{
βi(e, •, R/q)

peγ

}
e∈Z>0

converges uniformly on Spec(R).

Proof. Let γ′ := γ(R/q). Note that, for all P ∈ Spec(R), the limit

lim
e→∞

βi(e, P,R/q)
peγ′

exists and it is finite by [Sei89]. We will first show that βi(e,•,R/q)
peγ′

converges uniformly
to this limit. Let q1 = pe1 . Consider a set of primes S(R/q) as in Lemma 3.2 for the
inclusion (R/q)qγ

′
1 ⊆ F e1

∗ (R/q), and let C be the constant given by the Lemma. For each
p ∈ S(R/q), the ring R/p is an F-finite domain with γ(R/p) 6 γ′ − 1. Applying Lemma
3.2 to each R/p, we obtain lists S(R/p) and constants Dp. Let S = ⋃

p∈S(R/q) S(R/p),
and let D = max{Dp | p ∈ S}. Note that, for all p ∈ S(R/q) and all q2 = pe2 , the
inclusion (R/p)q

γ(R/p)
2 ⊆ F e2

∗ (R/p) has a filtration by cyclic modules of the form R/a, with
a inside S. Furthermore, each ideal in such a filtration appears at most Dqγ(R/p)

2 6 Dqγ
′−1

2
times. For an integer j > 0 and a prime p′ ∈ Spec(R), let Ej,p′ be the minimal number
of generators of a j-th syzygy of R/p′ over R. Let Ej := max{Ej,p′ | p′ ∈ S}. Note that
λRP (TorRPj (κ(P ), (R/p′)P )) 6 Ej for all p′ ∈ S and all primes P ∈ Spec(R), since after
localizing a resolution of R/p′ over R at P it stays exact, but may not be minimal.

Now let P ∈ Spec(R). After localizing everything at P we still have filtrations as before,
possibly with fewer factors, since some of them may have collapsed. We remove from the
lists S(R/q) and S prime ideals p such that pRP = RP ; we still call the new lists S(R/q)
and S. If (R/q)P = 0 there is nothing to show, so let us assume that (R/q)P 6= 0. Consider
the short exact sequence

0 −→ (R/q)q
γ′
1
P −→ F e1

∗ (R/q)P −→ T (q1)P −→ 0
where T (q1)P are (R/q)P -modules of dimension at most dim(R/q) − 1. The functor F e2

∗ is
exact, and yields a short exact sequence

0 −→ (F e2
∗ (R/q)P )q

γ′
1 −→ F e1+e2

∗ (R/q)P −→ F e2
∗ T (q1)P −→ 0

Applying TorRP (κ(P ),−) and counting lengths we obtain∣∣∣λ (TorRPi (κ(P ), F e1+e2
∗ (R/q)P )

)
− pe1γ′λ

(
TorRPi (κ(P ), F e2

∗ (R/q)P )
)∣∣∣ 6

6 max
{
λ
(
TorRPi (κ(P ), F e2

∗ T (q1)P )
)
, λ
(
TorRPi+1(κ(P ), F e2

∗ T (q1)P )
)}
.

Equivalently, we obtain that∣∣∣βi(e1 + e2, P,R/q)− pe1γ′βi(e2, P, R/q)
∣∣∣ 6 max {βi(e2, P, T (q1)), βi+1(e2, P, T (q1))} .

The modules T (q1)P have filtrations 0 ⊆ T1 ⊆ . . . ⊆ Ti(q1) = T (q1)P as in Lemma 3.2, and
by exactness of F e2

∗ we then have filtrations 0 ⊆ F e2
∗ T1 ⊆ . . . ⊆ F e2

∗ Ti(q1) = F e2
∗ T (q1)P . The

relative quotients are isomorphic to F e2
∗ (R/p)P , for some p ∈ S appearing at most Cqγ

′

1 times
in the filtration. Applying TorRP• (κ(P ),−) to the resulting short exact sequences, for all j
we then have that

βj(e2, P, T (q1)) 6 C |S(R/q)| qγ
′

1 max {βj(e2, P, R/p) | p ∈ S(R/q)} .
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For p ∈ S(R/q), the inclusion (R/p)q
γ(R/p)
2
P ⊆ F e2

∗ (R/p)P has a filtration by prime ideals in
S appearing at most Dqγ

′−1
2 times. Applying TorRP• (κ(P ),−) to the resulting short exact

sequences, we obtain that for all p ∈ S(R/q) and all j > 0
βj(e2, P,R/p) 6 D |S| qγ

′−1
2 max{βj(0, P, R/p′) | p′ ∈ S} 6 D |S|Ejqγ

′−1
2 ,

where βj(0, P, R/p′) is just the j-th Betti number of the RP -module F 0
∗ ((R/p′)P ) = (R/p′)P ,

that is, λRP (TorRPj (κ(P ), (R/p′)P )). Recall that the constants C,D,Ej are completely inde-
pendent of q, q′, and the prime P . Set A := CD |S| |S ′|max{Ei, Ei+1} and divide by (q1q2)γ′ ,
to obtain ∣∣∣∣∣βi(e1 + e2, P, R/q)

(q1q2)γ′ − βi(e2, P, R/q)
qγ
′

2

∣∣∣∣∣ 6 A

q2

for all q1, q2, for all P ∈ Spec(R). This shows that βi(e,•,R/q)
peγ′

converges uniformly.
If γ = γ′ then there is nothing else to prove. If γ > γ′, then the sequence

βi(e, P,R/q)
peγ

= βi(e, P,R/q)
peγ′

· 1
pe(γ−γ′)

converges to zero. Furthermore, the convergence is still uniform, and to see this it is enough
to show that the limit function lim

e→∞
βi(e,•,R/q)

peγ
′ is bounded on Spec(R). To see that, observe

that, combining uniform convergence of the sequence βi(e,•,R/q)
peγ′

with Proposition 3.1, we
obtain that P 7→ lim

e→∞
βi(e,P,R/q)

peγ′
is upper semi-continuous. Finally, by quasi-compactness of

Spec(R), we conclude that

sup
{

lim
e→∞

βi(e, P,R/q)
peγ′

| P ∈ Spec(R)
}

= max
{

lim
e→∞

βi(e, P,R/q)
peγ′

| P ∈ Spec(R)
}
<∞.

�

Theorem 3.4. Let R be an F-finite ring, and let M be a finitely generated R-module. Let
γ be an integer satisfying γ > γ(M). For any fixed i ∈ Z>0, the sequence of functions

Spec(R) // R

P // βi(e, P,M)
peγ

is uniformly bounded over Spec(R), and converges uniformly to its limits as e→∞.

Proof. We proceed by induction on γ(M). If γ(M) = 0, then Supp(M) consists of finitely
many maximal ideals m1, . . . ,mr. In addition, there exists e0, depending on M , such that
ann(F e

∗M) = m1 ∩ . . .∩mt for all e > e0. By the Chinese Remainder Theorem, we have that
F e
∗M
∼= ⊕rj=1F

e
∗ (R/mj)

λRmj
(Mmj ) for all e > e0. Thus, for e > e0, we have

βi(e, •,M)
peγ

=
r∑
j=1

λRmj
(Mmj)

βi(e, •, R/mj)
peγ

.

Uniform convergence of βi(e,•,M)
peγ

then follows from Lemma 3.3, since the first e0−1 terms do
not affect this kind of considerations. Furthermore, by Proposition 3.1, the function βi(e,•,M)

peγ

is bounded on Spec(R) for every fixed e ∈ Z>0, as a consequence of its upper semi-continuity
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and of quasi-compactness of Spec(R). It then follows that
{
βi(e,•,R/mj)

peγ

}
e∈Z>0

is uniformly

bounded on Spec(R) for each j, and thus so is
{
βi(e,•,M)

peγ

}
e∈Z>0

.
Now assume that γ(M) > 0, and suppose that ann(M) is radical first. Consider a prime

filtration of M :
0 = M0 ⊆M1 ⊆M2 ⊆ . . . ⊆Mt = M,

where Mj/Mj−1 ∼= R/Pj for some Pj ∈ Spec(R), for j = 1, . . . , t. Consider the R-module
N := ⊕t

j=1R/Pj, and let W = R r ⋃{p | p ∈ Min(M)}. Since ann(M) is radical, we have
an isomorphism MW

∼=
∏

p∈Min(M) κ(p)λRp (Mp) ∼= NW of RW -modules. Because M and N are
finitely generated over R, we can find an R-linear map ϕ : M → N that, after localizing at
W , becomes an isomorphism. In addition, if we write

0 −→ K −→M
ϕ−→ N −→ C −→ 0,

we have that by an observation of Kunz, [Kun76, Proposition 2.3], γ(K) and γ(C) are at
most γ(M) − 1. Denote by T the image of ϕ. After applying the functors F e

∗ (−) and
TorR•(κ(•),−•), and comparing lengths, we obtain that

|βi(e, •,M)− βi(e, •, T )| 6 max{βi(e, •, K), βi−1(e, •, K)}
and that

|βi(e, •, T )− βi(e, •, N)| 6 max{βi(e, •, C), βi+1(e, •, C)}.
By the triangle inequality, we get that

|βi(e, •,M)− βi(e, •, N)| 6 ni(•),
where ni(•) = max{βi(e, •, K), βi−1(e, •, K)}+max{βi(e, •, C), βi+1(e, •, C)}. By the induc-
tive hypothesis, we have that the sequences

βi(e, •, K)
peγ

,
βi−1i(e, •, K)

peγ
,
βi(e, •, C)

peγ
,
βi+1(e, •, C)

peγ

are uniformly bounded, and converge uniformly on Spec(R) as e → ∞. Therefore, the
sequence of functions ni(•)

peγ
given by the sum of the maxima as defined above satisfies the

same properties. In addition, since γ(K) and γ(C) are at most γ(M)− 1 < γ, we have that
ni(•)
peγ

converges to zero uniformly. In particular, we have that

βFi (M•, γ) = lim
e→∞

βi(e, •,M)
peγ

= lim
e→∞

βi(e, •, N)
peγ

.

Since F e
∗N
∼= ⊕tj=1F

e
∗ (R/Pj), the sequence

{
βi(e,•,N)

peγ

}
converges uniformly by Lemma 3.3.

Therefore, for all ε > 0, there exists e1 > 0 such that for all e > e1 we have

•
∣∣∣∣∣βi(e, •, N)

peγ
− βFi (M•)

∣∣∣∣∣ < ε

2.

• ni(•)
peγ

<
ε

2.

By the triangle inequality, we obtain∣∣∣∣∣βi(e, •,M)
peγ

− βFi (M•)
∣∣∣∣∣ 6

∣∣∣∣∣βi(e, •, N)
peγ

− βFi (M•)
∣∣∣∣∣+ ni(•)

peγ
< ε,
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that is, βi(e,•,M)
peγ

converges uniformly. Finally, the fact that
{
βi(e,•,M)

peγ

}
e∈Z>0

is uniformly
bounded on Spec(R) follows from Proposition 3.1, as for the case γ(M) = 0.

If R/ ann(M) is not reduced, we can find e0 > 0 such that ann(F e
∗M) =

√
ann(M) for all

e > e0. Consider M ′ := F e0
∗ M , and note that F e

∗M
′ ∼= F e+e0

∗ M for all e > 0. In addition,

R/ ann(M ′) is reduced. We replace the sequence βi(e, •,M)
peγ

with the sequence βi(e, •,M
′)

peγ
.

Since they only differ by finitely many terms, and by a correction term of pe0γ, uniform
convergence and uniform boundedness of the former would follow those for the latter. Given
that ann(M ′) is radical, this has been proved above. �

Let i > 0 be an integer, M be a finitely generated R-module, and γ > γ(M) be an integer.
Using the notation introduced in Section 2, we let βFi (M•, γ) be the limit function of the
sequence considered in Theorem 3.4. Recall that, for P ∈ Spec(R), the i-th Frobenius Betti
number of the RP -module MP is

βFi (MP ) = lim
e→∞

βi(e, P,M)
peγ(MP ) .

The difference between βFi (MP , γ) and βFi (MP ) is a possibly different normalization in the
denominator. More specifically, let ZM,γ = {P ∈ Spec(R) | γ(MP ) = γ}. The set ZM,γ in
the case M = R and γ = γ(R) has been introduced in [DSPY19] to study relations between
local and global invariants for general F-finite rings. Clearly one has βFi (MP , γ) = βFi (MP )
whenever P ∈ ZM,γ. On the other hand, one has βFi (MP , γ) = 0 if P /∈ ZM,γ. Similar
considerations hold for the sequence of functions

Spec(R) // R

P // χi(e, P,M)
peγ(R)

and its limit as e→∞, that we denote by χFi (M•, γ) : Spec(R)→ R.

Corollary 3.5. Let R be an F-finite ring, M be a finitely generated R-module, and γ be an
integer satisfying γ > γ(M). For any fixed i ∈ Z>0, the functions

Spec(R) // R and Spec(R) // R

P // βFi (MP , γ) P // χFi (MP , γ)

are upper semi-continuous.

Proof. Since dividing by peγ does not affect semi-continuity of the functions P ∈ Spec(R) 7→
βi(e, P,M) and P ∈ Spec(R) 7→ χi(e, P,M), Proposition 3.1 gives that βi(e,•,M)

peγ
and χi(e,•,M)

peγ

are upper semi-continuous for all e > 0. Because the second sequence is built as a finite
alternating sum of elements from the first, Theorem 3.4 gives uniform convergence over
Spec(R) as e → ∞ for both sequences. It then follows that P ∈ Spec(R) 7→ βFi (MP , γ)
and P ∈ Spec(R) 7→ χFi (MP , γ) are upper semi-continuous, as they are the uniform limit of
upper semi-continuous functions. �
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4. Minimal free resolutions and existence of global limits

In this section, we introduce and justify the notion of global Frobenius Betti numbers and
Frobenius Euler characteristic. In what follows, µR(−) will denote the minimal number of
generators of an R-module.

We start with an easy consequence of Schanuel’s lemma.

Lemma 4.1. Let R be a Noetherian ring of Krull dimension d, i > 1 an integer, and let M
be a finitely generated R-module. Let

0 −→ Ω −→ Rbi−1 −→ · · · · · · −→ Rb0 −→M −→ 0
0 −→ Ω′ −→ Rb′i−1 −→ · · · · · · −→ Rb′0 −→M −→ 0

be exact sequences. Then
∣∣∣(µR(Ω) +∑i

j=1(−1)jbi−j
)
−
(
µR(Ω′) +∑i

j=1(−1)jb′i−j
)∣∣∣ 6 d.

Proof. By Schanuel’s lemma, we have that

Ω⊕R
∑

j odd b
′
i−j+

∑
j even bi−j ∼= Ω′ ⊕R

∑
j odd bi−j+

∑
j even b

′
i−j .

By the Forster-Swan Theorem [For64, Swa67], we may choose m ∈ Max Spec(R) such that
µR(Ω′) 6 µRm(Ω′m) + d. Consequently we see

µR(Ω) +
∑
j odd

b′i−j +
∑
j even

bi−j > µR(Ω⊕R
∑

j odd b
′
i−j+

∑
j even bi−j)

= µR(Ω′ ⊕R
∑

j odd bi−j+
∑

j even b
′
i−j)

> µRm((Ω′ ⊕R
∑

j odd bi−j+
∑

j even b
′
i−j)m)

= µRm(Ω′m) +
∑
j odd

bi−j +
∑
j even

b′i−j

> µR(Ω′)− d+
∑
j odd

bi−j +
∑
j even

b′i−j.

Therefore
(
µR(Ω′) +∑i

j=1(−1)jb′i−j
)
−
(
µR(Ω) +∑i

j=1(−1)jbi−j
)
6 d. Using a symmetric

argument we establish the Lemma. �

Remark 4.2. In the notation of Lemma 4.1, let γ > min{1, d} be an integer. For every
e ∈ Z>0, fix a free resolution

· · · −→ Rbi(e) ϕi(e)−→ Rbi−1(e) ϕi−1(e)−→ · · · · · · −→ Rb0(e) ϕ0(e)−→ F e
∗M −→ 0

of F e
∗M . It follows from Lemma 4.1 that

χFi (M,γ) = lim
e→∞

µR(im(ϕi(e))) +∑i
j=1(−1)jbi−j(e)

peγ

is independent of the choices of resolutions for F e
∗M . When γ = γ(M), we omit γ from

the notation, and call χFi (M) the i-th (global) Frobenius Euler characteristic of M . At the
moment, we are not claiming that the limit exists.

To study global Frobenius Betti numbers, we need a version of Lemma 4.1 that compares
minimal number of generators of the modules im(ϕi(e)) in different resolutions. First, we
record the following special case of Lemma 4.1.
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Lemma 4.3. Let R be a Noetherian ring of Krull dimension d, and let M be a finitely
generated R-module. Let 0 → Ω → Rn → M → 0 and 0 → Ω′ → Rn → M → 0 be short
exact sequences. Then |µR(Ω)− µR(Ω′)| 6 d.

Definition 4.4. Let M be a finitely generated R-module, and let e > 0 be an integer.
Consider a free resolution of F e

∗M

· · · −→ Rbi(e) ϕi(e)−→ Rbi−1(e) ϕi−1(e)−→ · · · · · · −→ Rb0(e) ϕ0(e)−→ F e
∗M −→ 0.

We say that the resolution isminimal if, setting Ωi(e) := im(ϕi(e)), we have µR(Ωi(e)) = bi(e)
for all i > 0.

Lemma 4.5. Let R be a Noetherian ring of Krull dimension d, and M a finitely generated
R-module. Let

· · · −→ Rbi(e) ϕi(e)−→ Rbi−1(e) ϕi−1(e)−→ · · · · · · −→ Rb0(e) ϕ0(e)−→ F e
∗M −→ 0.

and
· · · −→ Rb′i(e) ψi(e)−→ Rb′i−1(e) ψi−1(e)−→ · · · · · · −→ Rb′0(e) ψ0(e)−→ F e

∗M −→ 0
be minimal free resolutions of F e

∗M . Then |bi(e)− b′i(e)| 6 d2i−1.

Proof. This follows immediately from a repeated application of Lemma 4.3. �

Remark 4.6. In the notation of Lemma 4.5, let γ > min{1, d} be an integer. We have that

βFi (M,γ) = lim
e→∞

µR(Ωi(e))
peγ

= lim
e→∞

µR(Ω′i(e))
peγ

,

and is therefore independent of the choice of a minimal free resolution for F e
∗M . When

γ = γ(M), we simply write βFi (M), and we call it the i-th (global) Frobenius Betti number of
M . As in Remark 4.2, we are not yet claiming that the limits exist. We are only stating that
one limit exists if and only if the other one does and, in this case, they coincide. Observe
that βF0 (M,γ(R)) = eHK(M) is the global Hilbert-Kunz multiplicity ofM , therefore we know
the limit exists in this case [DSPY19].

Remark 4.7. For a finitely generated R-module M and integers i > 0 and γ between γ(M)
and γ(R), recall the notation ZM,γ = {P ∈ Spec(R) | γ(MP ) = γ} introduced at the end
of Section 3. We have already observed that χFi (MP , γ) = χFi (MP ) if P ∈ ZM,γ, while
χFi (MP , γ) = 0 if P /∈ ZM,γ.

Proposition 4.8. Let R be an F-finite ring, M be a finitely generated R-module, i > 0
and γ be integers, with γ > γ(M). For all integers e > 0, let Pe ∈ Spec(R) be such that
χi(e, Pe,M) = max{χi(e, P,M) | P ∈ Spec(R)}. Then

lim
e→∞

χi(e, Pe,M)
peγ

= lim
e→∞

χFi (MPe , γ) = max{χFi (MP , γ) | P ∈ Spec(R)}.

Let χ be the common value of the equation above. If either ZM,γ = Spec(R) or χ 6= 0, we
also have

lim
e→∞

χi(e, Pe,M)
peγ

= max{χFi (MP ) | P ∈ ZM,γ}.
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Proof. Let Q ∈ Spec(R) be such that χFi (MQ, γ) = max{χFi (MP , γ) | P ∈ Spec(R)}, and
let ε > 0. By Theorem 3.4, the sequence χi(e, •,M)/peγ converges uniformly to its limit
χFi (M•, γ) on Spec(R). Therefore, there exists e0 such that for all e > e0∣∣∣∣∣χi(e, P,M)

peγ
− χFi (MP , γ)

∣∣∣∣∣ < ε

2
holds for all P ∈ Spec(R). Then, for all e > e0 we obtain

χFi (MQ, γ) > χFi (MPe , γ) > χi(e, Pe,M)
peγ

− ε

2 >
χi(e,Q,M)

peγ
− ε

2 > χFi (MQ, γ)− ε.

Since ε is arbitrary, this completes the proof of the first part of the Proposition. The
second claim is now clear if ZM,γ = Spec(R), since in this case χFi (MP , γ) = χFi (MP ) for
all P ∈ Spec(R). On the other hand, if χ 6= 0, by the first part there exists P ∈ Spec(R)
such that χFi (MP , γ) = χ 6= 0. It then follows from Remark 4.7 that max{χFi (MP , γ) | P ∈
Spec(R)} = max{χFi (MP , γ) | P ∈ ZM,γ}. Using that χFi (MP , γ) = χFi (MP ) for P ∈ ZM,γ,
we finally conclude that

lim
e→∞

χFi (e, Pe,M)
peγ

= max{χFi (MP , γ) | P ∈ Spec(R)}

= max{χFi (MP , γ) | P ∈ ZM,γ}
= max{χFi (MP ) | P ∈ ZM,γ}. �

The assumptions for the second claim in the Proposition are needed, as the following
example shows.

Example 4.9. Let S = Fp, and T = Fp(t), and consider the ring R = S × T . Since
χ1(e, S × 0, R) = −pe and χ1(e, 0 × T,R) = −1, using the notation of Proposition 4.8 we
have Pe = 0 × T for all e. Using γ = γ(R) = 1, it then follows that lim

e→∞
χ1(e,Pe,R)

pe
= 0.

However, one has max{χF1 (RP ) | P ∈ ZR,1} = χF1 (RS×0) = χF1 (Fp(t)) = −1. Observe that
there is no contradiction with the first part of the Proposition, since max{χF1 (RP , 1) | P ∈
Spec(R)} = χF1 (R0×T , 1) = χF1 (Fp, 1) = 0.

Theorem 4.10. Let R be an F-finite ring of prime characteristic p > 0, M be a finitely
generated R-module, and γ > γ(M) be an integer such that γ > min{1, dim(R)}. For every
e ∈ Z>0, fix any free resolution (G•(e), ϕ•(e)) of the module F e

∗M :

· · · // Rbi(e) ϕi(e) // Rbi−1(e)ϕi−1(e)
// · · · // Rb0(e) ϕ0(e)

// F e
∗M // 0.

For i ∈ Z>0, let Ωi(e) = im(ϕi(e)). Then:

(1) The limit χFi (M,γ) = lim
e→∞

µR(Ωi(e)) +∑i
j=1(−1)jbi−j(e)
peγ

exists.

(2) χFi (M,γ) = max{χFi (MP , γ) | P ∈ Spec(R)}. Moreover, if either this value is non-
zero or ZM,γ = Spec(R), then it is also equal to max{χFi (MP ) | P ∈ ZM,γ}.

(3) Assume further that, for all e ∈ Z>0, the free resolution G•(e) is chosen to be minimal.

Then the limit βFi (M,γ) = lim
e→∞

bi(e)
peγ

exists.
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Proof. For all P ∈ Spec(R) and e ∈ Z>0, localizing the resolution (G•(e), ϕ•(e)) at P gives
an exact sequence:

0 −→ Ωi(e)P −→ R
bi−1(e)
P −→ · · · · · · −→ R

b0(e)
P −→ F e

∗ (MP ) −→ 0,
which gives

µRP (Ωi(e)P ) +
i∑

j=1
(−1)jbi−j(e) = χi(e, P,M).

In particular, this shows that

max{µRP (Ωi(e)P ) | P ∈ Spec(R)}+
i∑

j=1
(−1)jbi−j(e) = max{χi(e, P,M) | P ∈ Spec(R)}.

For all e ∈ Z>0, let Pe be a prime that achieves such maximum. Then, by the Forster-Swan
Theorem [For64, Swa67], we have that µRPe (Ωi(e)Pe) 6 µR(Ωi(e)) 6 µRPe (Ωi(e)Pe)+dim(R).
Therefore, for all e > 0, we have

χi(e, Pe,M)
peγ

6
µR(Ωi(e)) +∑i

j=0(−1)jbi−j(e)
peγ

6
χi(e, Pe,M) + dim(R)

peγ
.

Part (1) and (2) now follow from Proposition 4.8, since the difference between the two terms
on the sides of the inequality goes to zero because of our assumptions on γ. Given that
χFi (M,γ) exists as a limit, for part (3) it is enough to observe that, if G• is minimal, then
we have

βFi (M,γ) = χFi (M,γ) + χFi−1(M,γ). �

Remark 4.11. As a consequence of Theorem 4.10 (2), we have that χFi (M,γ) = 0 for all
i ∈ Z>0 whenever γ > γ(M). Therefore, βFi (M,γ) = 0 for γ > γ(M) as well.

Unlike the case of χFi (M,γ), βFi (M,γ) does not coincide with the maximal value of the
local invariants achieved on Spec(R).

Example 4.12. Consider the ring R = Fp×Fp and the R-module M = Fp×0, so γ(M) = 0
and F e

∗M
∼= M for all e > 0. Since M is projective over R hence locally free, we see

max{βFi (MP , 0) | P ∈ Spec(R)} = 0 for all i > 1. On the other hand, for each e > 0, it is
easy to see a minimal free resolution of F e

∗M (cf. Definition 4.4)
· · · −→ R −→ R −→ · · · −→ R −→ F e

∗M −→ 0,
which yields βFi (M, 0) = 1 for all i > 0. More generally, if R = R1×R2 with each Ri a regular
F-finite local ring such that γ(R1) > γ(R2) and if M = R1 × 0, then max{βFi (MP , γ(R)) |
P ∈ Spec(R)} = 0 for all i > 1 while βFi (M,γ(R)) = 1 for all i > 0.

Or let R = R1×R2 with each Ri F-finite and regular local such that γ(R1) 6= γ(R2). Then
max{βFi (RP , γ(R)) | P ∈ Spec(R)} = 0 for all i > 1 while βFi (R, γ(R)) = 1 for all i > 0.

We ask the following question.

Question 4.13. Under what condition does the following equality hold:
βFi (M,γ) = max{βFi (MP , γ) | P ∈ Spec(R)}?

The following example provides evidence that studying Question 4.13 may lead to some
interesting consequences.
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Example 4.14. Let Q be an F-finite regular ring, and let f be an non-unit element of Q.
Let R = Q/(f), and assume that ZR,γ(R) = Spec(R). By [DSHNB17, Example 3.2], for all
P ∈ Spec(R), we have

βFi (RP ) =
{

eHK(RP ) i = 0
eHK(RP )− s(RP ) i > 0

where s(RP ) is the F-signature of the local ring RP . Therefore

χFi (RP ) =
{

eHK(RP ) i even
− s(RP ) i odd

By Theorem 4.10 we have that
χF1 (R) = max{χF1 (RP ) | P ∈ Spec(R)} = −min{s(RP ) | P ∈ Spec(R)},

and
χF0 (R) = max{χF0 (RP ) |∈ Spec(R)} = max{eHK(RP ) | P ∈ Spec(R)}.

Since βF1 (R) = χF1 (R) + χF0 (R), it follows that βF1 (R) = max{βF1 (RP ) | P ∈ Spec(R)} =
max{eHK(RP )− s(RP ) | P ∈ Spec(R)} if and only if
(∗) {P ∈ Spec(R) | eHK(RP ) is maximal} ∩ {P ∈ Spec(R) | s(RP ) is minimal} 6= ∅.
If we can find F-finite local hypersurface rings Ri with γ(R1) = γ(R2) such that eHK(R1) >
eHK(R2) and s(R1) > s(R2), then R = R1 × R2 is a counterexample to (∗). We are also
interested in whether (∗) holds when Spec(R) is connected (e.g., R is a domain).

We now prove an associativity-type formula for global Frobenius Betti numbers and Frobe-
nius Euler characteristics. Given a finitely generated R-moduleM , we let Assh(M,γ) denote
the set of associated primes P of M such that γ(R/P ) = γ. We first establish the behavior
of the invariants χFi (−, γ) under short exact sequences.

Proposition 4.15. Let R be an F-finite ring, and 0 → A → B → C → 0 be a short
exact sequence of finitely generated R-modules, and γ > γ(B) be an integer such that γ >
min{1, dim(R)}. For i ∈ Z>0, we have

(1) χFi (B, γ) = χFi (A⊕ C, γ).
(2) χFi (B, γ) 6 χFi (A, γ) + χFi (C, γ).

(3) χFi (B, γ) = χFi

 ⊕
P∈Assh(B,γ)

λ(BP )⊕
i=1

R/P, γ

.
Proof. We prove (1). It follows from [Sei89, Proposition 1 (b)] that, for all P ∈ Spec(R),
we have equalities χFi (BP , γ) = χFi (AP , γ) + χFi (CP , γ) = χFi ((A ⊕ C)P , γ). Using Theo-
rem 4.10 (2), we conclude that

χFi (B, γ) = max{χFi (BP , γ) | P ∈ Spec(R)}
= max{χFi ((A⊕ C)P , γ) | P ∈ Spec(R)} = χFi (A⊕ C, γ).

For (2), let P ∈ Spec(R) be such that χFi (M,γ) = χFi (MP , γ), which exists by Theo-
rem 4.10 (2). Using the result of Seibert mentioned above, we get

χFi (B, γ) = χFi (BP , γ) = χFi (AP , γ) + χFi (CP , γ) 6 χFi (A, γ) + χFi (C, γ).
Part (3) follows from a repeated application of (1), using a prime filtration of B. �
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As a consequence of Proposition 4.15, we extend a version of associativity formula from
the global Hilbert-Kunz multiplicity [DSPY19, Corollary 3.10] to all global Frobenius Betti
numbers.

Corollary 4.16. Let R be an F-finite ring, and 0 → A → B → C → 0 be a short
exact sequence of finitely generated R-modules, and γ > γ(B) be an integer such that
γ > min{1, dim(R)}. For i ∈ Z>0, we have

(1) βFi (B, γ) = βFi (A⊕ C, γ).
(2) βFi (B, γ) 6 βFi (A, γ) + βFi (C, γ).

(3) βFi (B, γ) = βFi

 ⊕
P∈Assh(B,γ)

λ(BP )⊕
i=1

R/P, γ

.
Proof. The proof follows at once from Proposition 4.15 and the relation βFi (−, γ) = χFi (−, γ)+
χFi−1(−, γ). �

We now establish connections between the new global invariants and the singularities of
the ring, extending results that were previously applicable only to the local setting.

The first result concerns Frobenius Betti numbers, and extends [AL08, Corollary 3.2].

Theorem 4.17. Let R be an F-finite ring such that ZR,γ(R) = Spec(R). Then βFi (R) = 0
for some (equivalently, for all) i > 0 if and only if R is regular.

Proof. Assume that βFi (R) = 0 for some i > 0. If Ωi(e) is the i-th syzygy module of any
minimal free resolution of F e

∗R, we always have βi(e, P,R) 6 µRP (Ωi(e)P ) 6 µR(Ωi(e)).
Since βFi (R) = lim

e→∞
µR(Ωi(e))
peγ(R) = 0, we have βFi (RP ) = 0 for all P ∈ Spec(R). By [AL08], we

conclude that RP is regular for all primes P , hence, R is regular. Conversely, if R is regular,
for all P ∈ Spec(R) we have that βFi (RP ) = 0 for all i > 0, and eHK(RP ) = βF0 (RP ) = 1. In
particular, χFi (RP ) = (−1)i for all P ∈ Spec(R). By Theorem 4.10, we have χFi (R) = (−1)i
for all i, and it follows that βFi (R) = χFi (R) + χFi−1(R) = 0. �

We recall that an F-finite ring R is said to be strongly F-regular if, for every c ∈ R that
does not belong to any minimal prime, the map R → F e

∗R sending 1 to F e
∗ c splits (as an

R-module map) for e� 0.
The second author and Smirnov proved a result analogous to [AL08, Corollary 3.2] for

Frobenius Euler characteristics [PS19, Theorem B], under the additional assumption that
the local ring is strongly F-regular. We extend this result to the global setting.

Theorem 4.18. Let R be an F-finite and strongly F-regular ring such that ZR,γ(R) =
Spec(R). Then χFi (R) = (−1)i for some (equivalently, for all) i > 0 if and only if R is
regular.

Proof. Assume that χFi (R) = (−1)i for some i > 0. By Proposition 4.8 we have that
χFi (RP ) 6 (−1)i for each P ∈ Spec(R) and therefore R is regular by [PS19, Lemma 3.17 and
Theorem B]. Conversely if R is regular then χFi (R) = (−1)i for all i > 0 as we have seen in
the proof of Theorem 4.17. �

We end this section by showing that, for positively graded algebras over a local ring
(R0,m0), the global Frobenius Betti numbers coincide with the ones in the localization at
the irrelevant maximal ideal m = m0 +R>0.
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Proposition 4.19. Let (R0,m0, k) be an F-finite local ring and let R be a positively graded
algebra of finite type over R0. Let R>0 be the ideal of R generated by elements of positive
degree, m = m0 +R>0, and M be a finitely generated graded R-module. Let γ > γ(M) be an
integer such that γ > min{1, dim(R)}. For all i ∈ Z>0, we have

βFi (M,γ) = βFi (Mm, γ) and χFi (M,γ) = χFi (Mm, γ).

Proof. It is sufficient to show the equality βFi (M,γ) = βFi (Mm, γ). Observe that F e
∗M is a

Q-graded R-module. Given any finitely generated graded R-module N , the minimal number
of generators of N is the length of N/mN , by the graded version of Nakayama’s Lemma.
Applying this observation to the Q-graded syzygies of F e

∗M for e ∈ Z>0, one can construct
a graded exact sequence

(1) 0 // Ωi(e) //
bi−1(e)⊕
j=1

R[ni−1,j]
ϕi−1(e)

// · · · · · · //
b0(e)⊕
j=1

R[n0,j]
ϕ0(e)

// F e
∗M // 0,

where each syzygy Ωj(e) = im(ϕj(e)) is graded, and bj(e) = µR(Ωj(e)) = λR(Ωj(e)/mΩj(e))
for all j. In the resolution, R[n`,j] denotes the cyclic Q-graded free module with generator
in degree −n`,j ∈ Q. In particular, this is a minimal free resolution of F e

∗M , and it follows
from Theorem 4.10 (3) that βFi (M,γ) = lim

e→∞
bi(e)
peγ

. On the other hand, since all the maps
and all the modules in (1) are graded minimal, after localizing at m we obtain a minimal
free resolution of F e

∗ (Mm):

0 // Ωi(e)m // R
bi−1(e)
m

// · · · // R
b0(e)
m

// F e
∗ (Mm) // 0.

In particular, since λRm(TorRi (k, F e
∗ (Mm))) = λR(Ωi(e)/mΩi(e)) = bi(e), we have

βFi (Mm, γ) = lim
e→∞

λRm(Tori(k, F e
∗ (Mm)))

peγ
= lim

e→∞

bi(e)
peγ

= βFi (M,γ). �

Corollary 4.20. Let R and m be as in Proposition 4.19. For all finitely generated R-modules
M , we have eHK(M) = eHK(Mm) .

Proof. By Proposition 4.19, we have eHK(M) = βF0 (M,γ(R)) = βF0 (Mm, γ(R)). Since γ(R) =
γ(Rm), we get eHK(M) = βF0 (Mm, γ(Rm)) = eHK(Mm). �
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