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GENERIC LOCAL DUALITY AND
PURITY EXPONENTS

MELVIN HOCHSTER AND YONGWEI YAO

Abstract. We prove a form of generic local duality that generalizes a result of
Karen E. Smith. Specifically, let R be a Noetherian ring, let P be a prime ideal
of R of height h, let A := R/P , and W be a subset of R that maps onto A \ {0}.
Suppose that RP is Cohen-Macaulay, and that ω is a finitely generated R-module
such that ωP is a canonical module for RP . Let E := Hh

P (ω). We show that for
every finitely generated R-module M there exists g ∈ W such that for all j ⩾ 0,

Hj
P (M)g ∼= HomR(Ext

h−j
R (M, ω), E)g, and that, moreover, every Hj

P (M)g has an
ascending filtration by a countable sequence of finitely generated submodules such
that the factors are finitely generated free Ag-modules. In fact, this sequence may be
taken to be {AnnHj

P (M)g
Pn}n. We use this result to study the purity exponent for

a nonzerodivisor c in a reduced excellent Noetherian ring R of prime characteristic
p, which is the least e ∈ N such that the map R → R1/pe

with 1 7→ c1/p
e

is
pure. In particular, in the case where R is a homomorphic image of an excellent
Cohen-Macaulay ring and is S2, we establish an upper semicontinuity result for the
function ec : Spec(R) → N, where ec(P ) is the purity exponent for the image of c
in RP . This result enables us to prove that excellent strongly F-regular rings are
very strongly F-regular (also called F-pure regular). Another consequence is that
the F-pure locus is open in an S2 ring that is a homomorphic image of an excellent
Cohen-Macaulay ring.

1. Introduction

We prove a form of generic local duality that generalizes a result of Karen E. Smith
[Sm18]. Our result may be described as follows. Let R be a Noetherian ring, let P be
a prime ideal of R of height h, let A := R/P , and W be a subset of R that maps onto
A \ {0} under the natural homomorphism R → R/P . Suppose that RP is Cohen-
Macaulay, and that ω is a finitely generated R-module such that ωP is a canonical
module for RP . Let E := Hh

P (ω). We show that for every finitely generated R-module
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M there exists g ∈ W such that for all j ∈ N, 1 Hj
P (M)g ∼= HomR(Ext

h−j
R (M, ω), E)g,

and H := Hj
P (M)g satisfies the following condition:

(†) The module H has an ascending filtration by a countable sequence of finitely
generated Rg-submodules such that the factors are free Ag-modules and the
union of the submodules in the sequence is the whole module. More precisely,
we show that {AnnHj

P (M)g
P n}n gives such a filtration, and the factors are

Ag-free of finite rank.

We call a module satisfying (†) free filterable relative to Pg. The formal definition
of this notion is given in Definition 2.2.

In the situation studied by Smith in [Sm18], A is a subring of R such that A is
isomorphic to R/P under the natural map R → R/P , andW = A\{0}. We compare
the results of this manuscript and those of [Sm18] further in §3. In the applications
here, there is usually no copy of R/P in R (i.e., R ↠ R/P does not split as a map
of rings). Most frequently, W is simply R \ P . A key property of R-modules M that
are free filterable relative to P is that every sequence of elements in R that maps to
a possibly improper regular sequence in A is a possibly improper regular sequence2

on M ; moreover, this property is preserved if we make a flat base change R → R′.
In fact, this property also holds under substantially weaker assumptions than in the
definition of free filterable relative to P . We want to study this property even when
P is replaced by an ideal P that is not necessarily prime.

We are therefore led to make the following definition:

Definition 1.1. If P ⊊ R is any proper ideal, we define an R-module M to be
(R \\P)-pseudoflat if, for every flat R-algebra R′, a sequence in R′ that maps to a
possibly improper regular sequence in R′/PR′ is a possibly improper regular sequence
on R′ ⊗R M .

If M is killed by P and A := R/P is regular, then M is (R \\P )-pseudoflat if and
only if M is A-flat (see Proposition 4.1(i)). In this paper we are primarily interested
in the case where M is an R-module, not necessarily finitely generated, P is a prime
ideal in R such that A := R/P is regular, and such that every element of M is killed
by a power of P . We briefly develop some facts about (R \\P)-pseudoflat modules in
§4.

1Note that in the statement above, if either R, or Rg′ for some g′ ∈ R \ P , is excellent and

has finite Krull dimension, then g ∈ W can be chosen so that the isomorphism Hj
P (M)g ∼=

HomR(Ext
h−j
R (M, ω), E)g holds for all j ∈ Z. See Theorem 2.19, part (e).

2A sequence f1, . . . , fs of elements of a ring R is called a possibly improper regular sequence on
an R-module M (which is often the ring) if for all 0 ⩽ i ⩽ s−1, the element fi+1 is a nonzerodivisor
on M/(f1, . . . , fi)M . Note that we do not require (f1, . . . , fs)M ̸=M .



GENERIC LOCAL DUALITY AND PURITY EXPONENTS 3

In §7, we use our results to study the purity exponent for a nonzerodivisor c in a
ring R that is a homomorphic image of an excellent Cohen-Macaulay ring and is S2.
The purity exponent for c is the least integer e ∈ N such that the map R → R1/pe with
1 7→ c1/p

e
is pure. In particular, we establish an upper semicontinuity result for the

function ec : Spec(R) → N, where ec(P ) is the purity exponent for the image of c in
RP . This result enables us to prove that excellent strongly F-regular rings are F-pure
regular (also called very strongly F-regular). The terminology is explained in §7.4.
This result was previously known when R is F-finite, when R is essentially of finite
type over an excellent semilocal ring, and in a handful of other cases. We refer the
reader to [Hash10], [DaMuSm20], [DaSm16], [HoY23], and [DET23] for these earlier
results. The semicontinuity result also implies that the the F-pure locus is open in a
ring that is an S2 image of an excellent Cohen-Macaulay ring.

A technical problem that arises is that an excellent Cohen-Macaulay local ring RP

may fail to have a canonical module. This difficulty can be overcome because there
is always a local étale extension of RP with the same residue class field that has a
canonical module. See §6.

There are no restrictions on the characteristic of the ring in §§1–6. The results in
§7 typically need the assumption that the ring has prime characteristic p > 0.

For background results in commutative algebra, see [BH93, Mat70, Mat87, Na62].

We would like to thank Hailong Dao, Rankeya Datta, and Thomas Polstra for their
comments on an earlier version of this manuscript.

2. Generic local duality

In this section, in Theorem 2.19, we state and prove our main results on generic
local duality. We begin with a brief recap of the basic results that we are generalizing.

Discussion 2.1 (Local duality). We give a brief treatment of the basic facts about
local duality over a Cohen-Macaulay local ring R. We refer the reader to [Gro67]
and [BH93, Ch. 3] for a detailed discussion. Throughout this discussion, (R, P, κ) is
a Cohen-Macaulay local ring of Krull dimension h, and ω is a canonical module for
R. The following statements are part of the standard theory. Let M be a finitely
generated R-module (although some statements hold without finite generation).

(1) The module ω is a small (i.e., finitely generated) Cohen-Macaulay module
over R of Krull dimension h such that Hh

P (ω) is an injective hull for κ. This
statement characterizes ω up to noncanonical isomorphism.

(2) Hence, ExtiR((M, Hh
P (ω)

)
= 0 for all i ⩾ 1, and HomR

(
κ, Hh

P (ω)
) ∼= κ.

(3) If p is any prime ideal of R, ωp is a canonical module for Rp.
(4) If x1, . . . , xk is part of a system of parameters for R, ω/(x1, . . . , xk)ω is a

canonical module for R/(x1, . . . , xk).
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(5) The homothety map R → HomR(ω, ω), determined by r 7→ (u 7→ ru), is an
isomorphism.

(6) (Local duality) For every i, there is a natural isomorphism of covariant functors
H i

P ( ) and HomR

(
(Exth−i

R ( , ω), Hh
P (ω)

)
, so that H i

P (M) is the Matlis dual

of Exth−i
R (M,ω). In consequence, for all i, the modules H i

P (M) have DCC.
(7) If M has finite length, i.e., if M is killed by a power of P , then ExthR(M, ω)

has a natural identification with the Matlis dual of M , which by (1) above
may be thought of as HomR

(
M, Hh

P (ω)
)
.

(8) For all i ∈ N, dim
(
ExtiR(M, ω)

)
⩽ h− i.

(9) If M ̸= 0 is a finitely generated Cohen-Macaulay module of dimension δ,
then ExtiR(M,ω) = 0 for all i except when i = h − δ, which is also the
height of the annihilator ofM . Moreover, Exth−δ

R (M, ω) is always nonzero. In
consequence, Exth−δ

R ( , ω) is exact on finitely generated Cohen-Macaulay R-
modules of dimension δ. In particular, HomR( , ω) is an exact contravariant
functor from finitely generated Cohen-Macaulay modules of dimension h to
finitely generated Cohen-Macaulay modules of dimension h. In addition, since
ω is Cohen-Macaulay of dimension h, ExtiR(ω, ω) = 0 for i > 0.

All are well known, but we give short proofs of (7), (8) and (9), assuming the
preceding items (1)–(6). To prove (7), we note that if M is killed by a power of P ,
then we have, using (6), thatM = H0

P (M) ∼= HomR

(
ExthR(M, ω), Hh

P (ω)
)
, and then

each of M and ExthR(M, ω) is the Matlis dual of the other □

For (8), let N := ExtiR(M, ω). We may assume 0 ⩽ i ⩽ h. Observe that N is not
supported at any prime p with height(p) < i, since Np

∼= ExtiRp
(Mp, ωp) = 0. Thus,

dim(N) ⩽ h− i. □

For (9), we also remark that for any finitely generated moduleM over a Noetherian
ring R and any ideal I of R, the modules H i

I(M) all vanish if IM = M , while if
IM ̸=M the first nonvanishing local cohomology module occurs when i = depthI M ,
and all local cohomology modules vanish if i exceeds either dim(M) or the number
of generators of an ideal with the same radical as I. It follows that when M is a
finitely generated Cohen-Macaulay module over a local ring (R,P ), H i

P (M) = 0 for
all i except when i = dim(M). By locality duality, we establish (9). □

Before concluding the discussion, we note also that these results imply that a
canonical module ω has injective dimension precisely h, that R is a canonical module
for R if and only if R is a Gorenstein local ring, and that R has a canonical module
if and only if it is a homomorphic image of a Gorenstein local ring S, in which case,
if R ∼= S/I, we may take ω = ExtcS(R, S), where c := dim(S)− dim(R) = height I.
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2.1. Modules free filterable with respect to a prime. We first define modules
that are free filterable with respect to an ideal (especially, with respect to a prime
ideal).

Definition 2.2 (Compare with (†)). Let R be a ring, P an ideal of R, and M an
R-module. We shall say that an R-moduleM is free filterable relative to P if it has an
ascending filtration by a sequence of finitely generated R-submodules {Mn}n∈N such
that all of the factors Mn+1/Mn are free over R/P and such that the union

⋃
n∈NMn

of the submodules is equal to M .

In particular, we are interested in modules that are free filterable with respect to
a prime ideal. Next, we begin the development of several auxiliary results that will
be needed in the proof of the main result, Theorem 2.19.

Notation 2.3. From this point on in this section, let R be a Noetherian ring, let
P ⊆ R be a prime ideal of R, let A := R/P , and let M denote an R-module that is
not necessarily finitely generated until Notation 2.17, where the restriction that M
be finitely generated will be imposed.

The following fact, although obvious, is very useful if there happens to be a “copy”
of A in R.

Proposition 2.4. Suppose that A ↪→ R and that P is a prime ideal of R such that
the composite map A ↪→ R ↠ R/P is an isomorphism. Then an R-module M is free
filterable relative to P if and only if it is free of finite or countably infinite rank.

Proposition 2.5. Let R, M , P , and A be as in Notation 2.3.

(a) If M is free filterable relative to P , then AssR(M) ⊆ {P}, and every finitely
generated submodule of M is killed by a power of P .

(b) If M is any finitely generated module killed by a power of P , there exists
g ∈ R \ P such that Mg is free filterable relative to PRg over Rg.

(c) If M is free filterable relative to P and N is a finitely generated submodule,
then there exists g ∈ R\P such that (M/N)g and Ng are free filterable relative
to PRg over Rg.

Proof. Part (a) follows from the fact that every finitely generated submodule N ofM
is contained in a submodule N ′ with a finite filtration by finitely many factors that
are direct sums of A, with the additional property thatM/N ′ is free filterable relative
to P . To prove part (b), take a finite prime cyclic filtration of M and localize at g
that is not in P but is in all other primes Qi such that R/Qi occurs in the filtration.
For part (c), choose N ′ as in the proof of part (a) and then, by part (b), there exists
g /∈ P such that (N ′/N)g and Ng become free filterable with respect to PRg over Rg.
It follows that (M/N)g is free filterable relative to PRg over Rg. □
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Remark 2.6. Clearly, if M has an ascending filtration by a sequence of finitely gener-
ated modules such that each factor is free filterable relative to P , then we may refine
that filtration to get one in which the factors are all A-free (simply inserting finitely
many modules between each pair of consecutive terms of the original filtration to
make all factors A-free). Another useful fact is recorded in Lemma 2.8. We need a
preliminary discussion.

Discussion 2.7 (Double filtrations and compatible submodules). Suppose that
we are given an ascending sequence filtration (these may be finite or infinite) of a
module M , say

0 =M0 ⊆M1 ⊆ · · · ⊆Mn ⊆ · · · ⊆M,

where
⋃

n∈NMn =M , and for each n ∈ N a filtration

Mn =Mn,0 ⊆Mn,1 ⊆ · · · ⊆Mn,s ⊆ · · · ⊆Mn+1

such that
⋃

sMn,s = Mn+1 and every Mn,s+1/Mn,s is finitely generated. This, equiv-
alently, gives a filtration of each factor Mn+1/Mn using the modules Mn,s/Mn. We
refer to the Mn,s as a double filtration of M . We refer to the modules Mn+1/Mn as
the factors of the double filtration and the modulesMn,s+1/Mn,s as the double factors
of the double filtration.

We say that a submodule module N ⊆M is compatible with this filtration if for all
n, the submodule (Mn+1 ∩N) +Mn (which is the same as Mn+1 ∩ (N +Mn)) equals
Mn,s(n,N) for some s(n,N) ∈ N ∪ {∞} with the understanding that Mn,∞ =Mn+1.

(1) Given a compatible submodule N of M , we have an induced filtration {Mn∩N}n
of N , with the factors

Mn+1 ∩N
Mn ∩N

.

(2) Denote Nn := Mn ∩ N . We have a double filtration of N as follows. By the
compatibility hypothesis on N , we have that (Mn+1 ∩N) +Mn =Mn,s(n,N) for some
s(n,N) ∈ N ∪ {∞}. Thus, the factors of N are

Nn+1

Nn

∼=
Mn+1 ∩N
Mn ∩N

∼=
(Mn+1 ∩N) +Mn

Mn

=
Mn+1 ∩ (N +Mn)

Mn

=
Mn,s(n,N)

Mn

.

Now we filter Nn+1/Nn using the images of the modules Nn,s := Mn,s ∩ N . It is
straightforward to see that

Nn,s+1

Nn,s

=
Mn,s+1 ∩N
Mn,s ∩N

∼=
(Mn,s+1 ∩N) +Mn,s

Mn,s

=

{
Mn,s+1/Mn,s if s < s(n,N)

0 if s ⩾ s(n,N)
.

This {Nn,s}s is the induced double filtration of N .

(3) The module M/N has the induced filtration {(Mn +N)/N}n with factors

(Mn+1 +N)/N

(Mn +N)/N
∼=
Mn+1 +N

Mn +N
∼=

Mn+1

Mn+1 ∩ (N +Mn)
∼=

Mn+1

Mn,s(n,N)

.
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The induced double filtration, by {(Mn,s +N)/N}s, has double factors

(Mn,s+1 +N)/N

(Mn,s +N)/N
∼=

Mn,s+1

Mn,s+1 ∩ (N +Mn,s)
∼=

{
0 if s < s(n,N)

Mn,s+1/Mn,s if s ⩾ s(n,N)
.

(4) Suppose that Q is another compatible submodule of M such that N ⊆ Q. We
claim that N is a compatible submodule of Q. The induced filtration on Q from
part (1) has submodules Qn =Mn∩Q. The induced filtration from these on N is the
same as the one induced by the original filtration onM , since (Mn∩Q)∩N =Mn∩N .
It is also true that the double filtrations on N induced by M and by Q, as described
in part (2), are the same, since the double filtration that Q induces on N consists of
the modules Qn,s ∩N = (Mn,s ∩Q) ∩N =Mn,s ∩N .

(5) Hence, if N ⊆ Q ⊆M where N and Q are both compatible with double filtration
on M , then Q/N has a filtration whose double factors are all double factors of the
filtration of M .

(6) We also observe the following: if G is any finitely generated submodule of the
doubly filtered moduleM , then there is a finitely generated compatible submodule N
ofM such that G ⊆ N . It follows thatM is the directed union of its finitely generated
compatible submodules. To find N , note that there exists n ∈ N such that G ⊆Mn+1.
Then there exists s ∈ N such that G+Mn ⊆Mn,s. We shall prove by induction on n
that we can find a finitely generated submodule N with G ⊆ N ⊆Mn+1 such that N
is a compatible with the double filtration on M . (Note that the modules Mt in the
filtration of M with t > n + 1 will play no further role in the argument.) If n = 0,
then N := M0,s can be used as the choice of N . Assume n ⩾ 1. As Mn,s/Mn and
G are both finitely generated, there exists a finitely generated R-submodule H such
that G ⊆ H ⊆ Mn,s and H +Mn = Mn,s. Clearly, Mn ∩H is finitely generated and
contained in Mn. By the induction hypothesis, we can choose a finitely generated
submodule L with Mn ∩ H ⊆ L ⊆ Mn such that L is compatible with the double
filtration on M . Let N := L + H, so that N ⊆ Mn,s ⊆ Mn+1 and N is finitely
generated. As L ⊆ Mn, we have Mn+1 ∩ (N +Mn) = Mn+1 ∩ (H +Mn) = Mn,s.
For all t ⩾ n + 1, it is clear that Mt+1 ∩ (N +Mt) = Mt = Mt,0. Also note that
Mn∩N =Mn∩ (L+H) = L+(Mn∩H) = L, since Mn∩H ⊆ L ⊆Mn by the choice
of L. Thus, for all t = 0, . . . , n− 1, we have Mt+1 ∩N =Mt+1 ∩ L and, hence,

(Mt+1 ∩N) +Mt = (Mt+1 ∩ L) +Mt =Mt,s(t,L) for some s(t, L) ∈ N ∪ {∞},

since L is a compatible submodule of M . This proves that N is compatible with the
double filtration on M .

Lemma 2.8. If M has a filtration by an ascending sequence of submodules whose
union is M and whose factors are free filterable relative to P , then M is free filterable
relative to P .
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Proof. The hypothesis says that M has a filtration by submodules Mn such that
everyMn+1/Mn is free filterable relative to P . This gives rise to a double filtration as
in Discussion 2.7 such that every Mn,s+1/Mn,s is finitely generated and free over A.
Choose a finite set of elements Sn,t ⊆ Mn,t+1 whose images in Mn,t+1/Mn,t generate
the double factorMn,t+1/Mn,t. It is easy to see that the union of the sets Sn,t, namely⋃

n⩾0, t⩾0 Sn,t, generates M . Take N0 := 0 and recursively construct a sequence of
finitely generated compatible submodulesNn ofM such that for each n, Nn+1 contains
Nn and

⋃
i⩽n, t⩽n Si,t, which is possible by part (6) of Discussion 2.7. By part (5) of

Discussion 2.7, the modules Nn+1/Nn have finite filtrations with factors that are
finitely generated and A-free, by Remark 2.6. □

Remark 2.9. In this paper, we shall be interested exclusively in the case where the
module is countably generated over R. When we do not assume countable generation,
a more suitable alternative definition, of an R-module H being free filterable relative
to P , may be that H be a directed union of finitely generated R-submodules such
that if Gi ↪→ Gj is in the system, then Gj/Gi has a filtration such that all factors are
A-free. This second definition is weaker than our original definition, but agrees with
the one we have chosen for this manuscript if H is countably generated by elements
u1, . . . , un, . . .: let G0 = 0, and, recursively, pick an element Gn of the limit system
that contains the u1, . . . , un and Gn−1. Now fill in finitely many modules between
Gn−1 and Gn so that all factors are A-free.

2.2. Graded generic freeness. In the sequel, we need a slightly strengthened ver-
sion of generic freeness in graded situations. We give a quite short proof.

Lemma 2.10 (Graded generic freeness). Let R =
⊕

i∈N[R]i be an N-graded ring that
is finitely generated over a Noetherian domain A ↪→ [R]0, and let M be a finitely
generated Z-graded R-module. Then there exists g ∈ A \ {0} such that [Mg]d is free
over Ag for all d. When A ↪→ [R]0 is module-finite, the modules [Mg]d are free of
finite rank over Ag for all d.

Proof. SinceM has a finite filtration by graded cyclic modules, we can reduce at once
to the case where M = R/I, where I is homogeneous, and we change notation and
write R for R/I. That is, we only need to do the case where the module is a finitely
generated graded A-algebra. We use induction on the number n of homogeneous
generators of R over A (the case where n = 0 is obvious). So we may write R = B[u]
where B needs strictly fewer than n ⩾ 1 generators and u is homogeneous. We have
a filtration of R by B-submodules Ct := B + Bu + · · · + But, and a typical factor
is Dt := Ct/Ct−1

∼= B/Jt, where Jt := {b ∈ B : but ∈ Ct−1}. The ideals Jt form an
ascending sequence, and so stabilize. The filtration therefore has only finitely many
distinct factors, each of which is an N-graded quotient of B, and so has strictly fewer
than n generators. Thus, we can localize at one element of A \ {0} so that every
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graded component of every factor Dt is A-free. It follows that [R]d has a countable
ascending filtration by A-modules such that every factor is A-free. □

Note that Lemma 2.10 does not follow from the assertion that one can localize
at g ∈ A \ {0} so that Mg becomes Ag-free: that only implies that the [Mg]d are
projective modules over Ag.

Remark 2.11. Let R be a Noetherian algebra over a Noetherian ring A and suppose
that I is an ideal of R such that I is contained in the Jacobson radical of R, which
holds if R is I-adically complete. Let M be a finitely generated R-module such that
M/IM is module-finite over A. Suppose that grI M is A-flat. Then M/I tM is A-flat
for all t ∈ N, andM is A-flat. The first statement follows becauseM/I tM has a finite
filtration in which the factors IjM/Ij+1M are all A-flat. For the second statement,
if B ↪→ C are finitely generated A-modules, if u ∈ Ker(B ⊗A M → C ⊗A M), then
for all t ∈ N the image of u is in Ker

(
B ⊗A (M/I tM) → C ⊗A (M/I tM)

)
, and so

u ∈
⋂

t∈N I
t(B ⊗A M) = 0, since I is in the Jacobson radical of R.

2.3. The main result on generic local duality. For a general reference on local
cohomology, see [Gro67].

Remark 2.12. We shall be using freely throughout that Ext and, in particular, Hom,
commutes with flat base change when the ring is Noetherian and the first (left) input
module is finitely generated. This will most frequently be applied in the case of
localization, but will also be needed to pass to the P -adic completion of R.

Remark 2.13. We recall that, for any three R-modules G, ω, C, we have the following
natural maps

(1) ϕ : HomR(G, ω)⊗R C → HomR(G, ω ⊗R C).
(2) ψ : G⊗R HomR(ω, C) → HomR

(
HomR(G, ω), C

)
.

Both commute with finite direct sums of choices of G. The map ϕ is induced by the
bilinear map (h, c) 7→ (u 7→ h(u)⊗ c) and the map ψ is induced by the bilinear map
(u, f) 7→ (h 7→ f(h(u))). Both ϕ and ψ provide very useful natural isomorphisms
when G = R and, hence, when G is any finitely generated projective module. More-
over, when G is finitely presented, the map ϕ is an isomorphism when C is flat and
the map ψ is an isomorphism when C is injective.3

3Take a presentation G1 → G0 → G→ 0 with G1, G0 free of finite rank. Then ϕ (resp., ψ) gives
a natural map from the row 0 → HomR(G, ω) ⊗R C → HomR(G0, ω) ⊗R C → HomR(G1, ω) ⊗R C
to the row 0 → HomR(G, ω ⊗R C) → HomR(G0, ω ⊗R C) → HomR(G1, ω ⊗R C) (resp., from
the row G1 ⊗R HomR(ω, C) → G0 ⊗R HomR(ω, C) → G ⊗R HomR(ω, C) → 0 to the row
HomR

(
HomR(G1, ω), C

)
→ HomR

(
HomR(G0, ω), C

)
→ HomR

(
HomR(G, ω), C

)
→ 0) where

exactness holds in the first (resp., second) row because C is flat (resp., injective). The two maps for
the G0, G1 terms are isomorphisms and then so is the map for the G term by the five lemma.
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Remark 2.14. We shall also be using freely throughout that the regular locus, the
Cohen-Macaulay locus, and the Gorenstein locus in an excellent ring are Zariski
open sets. We refer the reader to [EGAIV65, §§6.11–6.13, §§7.6–7.8] for a detailed
treatment of openness of loci. There is also a particularly readable discussion of some
of this material in [Mat70, Ch. 13]. Note that when R is excellent, if ω is a finitely
generated R-module and P a prime such that ωP is a canonical module for RP ,
there exists g ∈ R \ P such that Rg is Cohen-Macaulay and ωg is a global canonical
module. To see this, first note that since ωP is faithful over RP , the same holds for ω
and R after localizing at one element of R\P . Next, consider the Nagata idealization
S := R ⊕ ω (see, for example, the proof of [BH93, Thm. (3.36)], where S is denoted
R ∗M) of ω, where ω2 = 0. Note that S is finitely generated as an R-module, and
the algebra maps R ↪→ R ⊕ ω ↠ R, where the second map is the quotient map that
kills the ideal ω, induce isomorphisms of the spectra. In fact, the composite map
is the identity on Spec(R). Under this identification of spectra, P corresponds to
P ⊕ ω. Then (R ⊕ ω)P⊕ω

∼= RP ⊕ ωP = SP , and since ωP is a canonical module
for RP , we have that SP is Gorenstein, as in [BH93, Thm. (3.36)]. Since S is also
excellent, we can choose g ∈ R \ P such that Sg

∼= Rg ⊕ ωg is Gorenstein. Thus, if
Q ∈ D(g), SQ

∼= RQ ⊕ ωQ is Gorenstein, and HomSQ
(SQ/ωQ, SQ) ∼= AnnSQ

ωQ = ωQ

(since AnnRQ
ωQ = 0) is a canonical module for SQ/ωQ = RQ, as claimed.

Definition 2.15. Let W be a subset of R. We shall say that a statement about R-
modules, ideals of R, and/or maps of R-modules holds W-generically if there exists
an element g ∈ W such that the statement holds after we make a base change from
R to Rg.

Remark 2.16. Assume that P is a prime ideal of R, M is an R-module in which every
element is killed by a power of P , and g, g′ ∈ R\P satisfy g′ ≡ g mod P . ThenMg

∼=
Mg′ . That is, inverting one element with a given residue mod P inverts every element
with the same residue. To see this, note that g′ = g− (g−g′) = g[1− (g−g′)/g] ∈ Rg

and (g − g′)/g acts nilpotently on every cyclic submodule of Mg, which shows that
g′ acts bijectively on every cyclic submodule of Mg. Consequently, g

′ acts bijectively
on Mg. By symmetry, g acts bijectively on Mg′ . Thus Mg

∼= Mg′ .
4

Suppose that H( ) is a functor that commutes with localization and whose values
are modules in which every element is killed by a power of P , for example H i

P ( ),
ExtiR(L, H

i
P ( )) or ExtiR(N, ), where L and N are finitely generated module over

a Noetherian ring R such that N killed by a power of P . Suppose that Q is any
module, not necessarily a module such that every element is killed by a power of P .
Then we again have H(Qg) ∼= H(Qg′) for all g, g

′ ∈ R \ P such that g′ ≡ g mod P ,
since we may apply the paragraph above to M = H(Q). We shall frequently make
use of these observations without comment.

4Note also that g′ is invertible in the PRg-adic completion S of Rg, and so acts invertibly on
every S-module: in this case, g − g′ is in the Jacobson radical of S.
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Notation 2.17. Let R be a Noetherian ring, P a prime ideal of R, A := R/P , W ⊆ R
a subset that maps onto A \ {0A} under the natural map R → R/P , and let M
be a finitely generated R-module. Assume also that RP is Cohen-Macaulay of Krull
dimension h and that ω is a finitely generated R-module such that ωP is a canonical
module for RP . Let E := Hh

P (ω). For every prime p of R let κp denote Rp/pRp which
is naturally isomorphic with frac(R/p).

In the sequel, given an R-module M , we write ER(M) for the injective hull of M
over R, which is unique up to non-unique isomorphism.

Remark 2.18. With Notation 2.17 above, note that the map R → HomR(ω, ω) via
the homothety map r 7→ (u 7→ ru) becomes an isomorphism when we localize at
one g ∈ R \ P , since that is true once we localize at P , and the modules are finitely
generated. Moreover, since ωP is a canonical module for the Cohen-Macaulay ring RP ,
ERP

(RP/PRP ), which is canonically isomorphic with ER(R/P ), is isomorphic with
EP . The next theorem, one of the main results of this paper, asserts that E behaves
very much like ER(R/P ) on a Zariski neighborhood of P . The size of the neighborhood
is typically adjusted, depending on a specified set of finitely many finitely generated
R-modules. We want to emphasize parts (e) and (f) of Theorem 2.19.

Theorem 2.19 (Main theorem on generic local duality). Let notation be as in 2.17.

(a) For every i ⩾ 1, there exists g ∈ W , where g depends on M and i, such that
ExtiR

(
M,E

)
g
= 0. That is, for every i ⩾ 1, the module ExtiR

(
M,Hh

P (ω)
)

is W-generically 0. Hence, if 0 → M ′ → M → M ′′ → 0 is a sequence of
finitely generated R-modules that becomes exact after localization at P , then
the induced sequence

0 → HomR(M
′′, E) → HomR(M, E) → HomR(M

′, E) → 0

is W-generically exact. Therefore, the functor HomR( , E) is W-generically
exact on any given finite set of short exact sequences of finitely generated R-
modules, and, hence, on any given finite set of finite long exact sequences of
finitely generated R-modules. The choice of g ∈ W , at which we localize,
depends on which finite set of finite exact sequences one chooses.

(b) If MP is killed by a power of P then we have, W -generically, an isomorphism

HomR(M, E) ∼= ExthR(M, ω).

Consequently, W-generically, HomR(M, E) is a finitely generated R-module.
Moreover, the unique largest A-module contained in E, i.e., AnnEP ∼=

HomR(R/P, E), is W-generically isomorphic with A = R/P . That is, W-
generically, we have R/P ∼= AnnEP . Thus, after localization at R \ P , we
obtain a map κP 7→ EP such that the image of κP is the socle in EP

∼= ER(κP ).
(c) W-generically, Hh

P (R)
∼= HomR(ω,E).
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(d) Let N := HomR(M,E), where M is a finitely generated R-module. Then after
localizing at one element ofW that is independent of n ∈ N, the filtration of N
by the modules AnnNP

n, which ascends as n increases with
⋃

n∈N AnnNP
n =

N , has factors that are finitely generated free modules over A. In particular,
if a is any ideal of R, the conclusion holds for N = AnnEa ∼= HomR(R/a, E).

(e) Assuming the isomorphism in part (c), we have a natural transformation of
functors from the category of finitely generated R-modules to the category of
R-modules, namely

HomR

(
Exth−i

R ( , ω), Hh
P (ω)

)
−−−→ H i

P ( ),

such that for every finitely generated R-module M there exists g ∈ W such
that for all i ⩾ 0,

(∗) HomR

(
Exth−i

R (M,ω), Hh
P (ω)

)
g

∼=−−−→ H i
P (M)g

is an isomorphism. Note that g depends on M but not on i ∈ N. If R (or
some localization of R at an element of R\P ) is excellent and has finite Krull
dimension, then we can choose g ∈ W that depends on M but not on i ∈ Z
such that (∗) is an isomorphism for all i ∈ Z.

(f) Hence, if M is any finitely generated R-module, after localizing at one element
g ∈ W , all of the local cohomology modules H i

P (M) are free filterable relative
to P . That is, the local cohomology modules H i

P (M) are W-generically free
filterable relative to P . More precisely, after localization at one element of W ,
the R-modules AnnHi

P (M)P
n, n ∈ N, give an ascending filtration of H i

P (M)

such that all of the factors are A-free of finite rank with
⋃

n∈N AnnHi
P (M)P

n =

H i
P (M).

Proof. By Remark 2.16, it suffices to assume W = R \ P . In the course of the proof
we may repeatedly, but finitely many times, localize at one element g ∈ W . Each
time, we make a change of terminology, and continue to use R to denote the resulting
ring Rg. Likewise, we use P for its extension to Rg, and for every module under
consideration we use the same letter for the module after base change from R to Rg

(finitely generated modules under consideration are replaced by their localizations at
g: this is the same as base change from R to Rg).

There exist x := x1, . . . , xh ∈ R whose images are a system of parameters for RP ,
where they form a regular sequence on RP and ωP . After inverting an element of
W = R \ P (and using R to denote the resulting ring Rg, as agreed above), we may
assume that Rad(x) = P in R. Therefore, we have E = Hh

P (ω) = Hh
(x)(ω). For the

same reason, we may assume throughout that x1, . . . , xh is a regular sequence on R
and on ω such that Rad(x) = P in R, and that E = Hh

P (ω) = Hh
(x)(ω).

The proofs of (a), (b), and (c) depend on some results about the spectral sequences
of a double complex, which are collected for reference in (‡) below.
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Discussion (‡). The spectral sequences of a double complex. We only need
the four standard facts listed below from the theory of spectral sequences for a
double complex with bounded diagonals that relate the iterated cohomology (or
second page, E••

2 ) of the double complex with associated graded modules of the
cohomology H• of the total complex. Let k, v ∈ Z be fixed integers.

(1) The spectral sequence calculation commutes with flat base change, including
localization.

(2) If the terms Eij
2 = 0 for all (i, j) ∈ Z2 such that i+ j = k, then Hk = 0.

(3) If the terms Eij
2 = 0 for all (i, j) ∈ Z2 such that j ̸= ν (respectively, for

all (i, j) ∈ Z2 such that i ̸= ν), then Hi+ν ∼= Ei,ν
2 for all i (respectively,

Hν+j ∼= Eν,j
2 for all j).

(4) If Eij
2 = 0 for all (i, j) ∈ Z2 such that k− 1 ⩽ i+ j ⩽ k+1 except when i = ν

or j = k − ν, then5 Hk ∼= Eν, k−ν
2 .

In the proofs for (a), (b) and (c) below, using one spectral sequence we show that,
W-generically, the cohomology of the total complex in degree i + h is ExtiR(M, E).
Using the other spectral sequence we prove, in each of cases (a), (b) and (c), that
W -generically there are zeros at a certain spots of the second page, enabling us to
reach the conclusion we need from one of the facts just above.

Let C• denote the usual modified Čech complex used to calculateH•
P (R)

∼= H•
(x)(R),

namely

0 → R → · · · →
⊕

1⩽i1<i2<···<ij⩽h

Rxi1
···xij

→ · · · → Rx1···xh
→ 0,

where the central/typical term is Cj, which is flat over R. Let G• be a free resolution
of M by free R-modules of finite rank. Consider the isomorphic (see Remark 2.13)
double complexes

HomR(G•, ω ⊗R C•) ∼= HomR(G•, ω)⊗R C•.

We compute the cohomology of the total complex by using the two spectral sequences
for iterated cohomology obtained from this double complex. The typical module in
the double complex is HomR(Gi, ω ⊗R Cj) ∼= HomR(Gi, ω) ⊗ Cj. If we fix i and let
j vary, then because x is a regular sequence on any finite direct sum of copies of ω,
the cohomology vanishes except when j = h. This shows that the spectral sequence
degenerates, and that, W-generically, the cohomology of the total complex in degree
h + i is Hh+i ∼= ExtiR

(
M, Hh

P (ω)
)
= ExtiR(M, E). If we fix j and let i vary (noting

5We comment only on (4). We have for r ⩾ 2 that all of the spots on the diagonal where i+ j = k
are stable as the page index r increases: at spots where i ̸= ν, this holds because Ei,k−i

r = 0 . At the
(ν, k − ν) spot this holds because for r ⩾ 2 the graded component of the differential dr mapping to
(resp., from) Eν, k−ν

r has domain (resp., target) on the diagonal of degree k− 1 (resp., degree k+1)
at a spot that is not in the row or column of (ν, k− ν), and so is 0. Hence, there is only one possibly

nonzero factor, namely Eν,k−ν
2 , in the filtration of Hk one gets from the E••

∞ page.
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that Cj is flat), then we first get cohomology ExtiR(M, ω) ⊗ C•, while the iterated
cohomology is Hj

P

(
ExtiR(M, ω)

)
on the second page. We denote pages of this second

spectral sequence by E••
r , r ⩾ 2 throughout the rest of the proof of parts (a), (b) and

(c). In particular, explicitly, Eij
2
∼= Hj

P

(
ExtiR(M, ω)

)
. Quite generally, this spectral

sequence is 0 for all the spots with j < 0 or j > h from the second page onward. We
now prove the statements (a), (b) and (c), by proving that, in each case, certain of
the modules Hj

P

(
ExtiR(M, ω)

)
vanish generically for a relevant set of pairs (i, j).

(a) Replacing M by a suitable module of syzygies,6 we see that it suffices to prove
the case i = 1. By Discussion (‡)(2), to show that Ext1R(M, E) vanishes after lo-
calization at one element g ∈ W , it suffices to prove that there exists g ∈ W such
that Hj

P

(
ExtiR(M,ω)

)
g
= 0 when i + j = h + 1 and 0 ⩽ j ⩽ h. Thus, we want

to show that Hj
P

(
Exth+1−j

R (M,ω)
)
vanishes W-generically for 0 ⩽ j ⩽ h, which

proves that the spectral sequence stabilizes at 0 on those spots from the second page
onward. When j = 0, this holds because injdimRP

(ωP ) = dim(RP ) = h and so

Exth+1−0
R (M, ω) becomes 0 after localizing at one element of W = R \ P . Assume

1 ⩽ j ⩽ h. Let I = AnnR

(
Exth+1−j

R (M,ω)
)
. By localizing at one element of W , we

may assume that I is contained in P . Next note that height(P/I) ⩽ j − 1, because
this statement is unaffected by localization at P , and, from Discussion 2.1(8), we

see that height(PP/IP ) = dim(RP/IRP ) = dim
(
Exth+1−j

RP
(MP , ωP )

)
⩽ j − 1. Thus,

PRP/IRP has a system of parameters consisting of images of elements of R with at
most j − 1 elements. Consequently, after localizing at one element of W , we have
that P/I is the radical of an ideal (z) = (z1, . . . , zj−1), with at most j−1 generators.

But then, for modules killed by I, Hj
P ( ) ∼= Hj

P/I( ) ∼= Hj
z ( ) ∼= 0.

Thus, the E••
2 page degenerates to 0 for all (i, j) spots with i+ j = h+1. It follows

that at once from (‡)(2) that, Ext1R
(
M,E

)
g
= 0 as required and, hence, that for

fixed i ⩾ 1, ExtiR
(
M,E

)
g
= 0 for suitable g. Now it is straightforward to prove the

remaining claims on theW -generic exactness of HomR( , E) on short exact sequences
of finitely generated R-modules. This concludes the proof of (a).

(b) First note that if MP = 0, we may localize at one element of W = R \ P and
assume that M = 0, in which case the result is obvious. Otherwise, after we localize
at one element of W , we may assume that the radical of the annihilator of M is P .
Hence H0

P

(
ExtiR(M, ω)

) ∼= ExtiR(M, ω) and Hj
P

(
ExtiR(M, ω)

)
= 0 for all i ∈ N and

all j ̸= 0, since a power of P kills ExtiR(M, ω).

In light of this, we see that E••
2 degenerates: all the nonzero terms can only occur

for j = 0 and are simply the modules ExtiR(M, ω). By (‡)(3), the module ExtiR(M, ω)
is the cohomology Hi of the total complex in degree i. In particular, when i = h, we
have that, W-generically, ExthR(M, ω) ∼= Hh ∼= HomR(M, E).

6This is not necessary, but makes the argument a bit easier to follow.



GENERIC LOCAL DUALITY AND PURITY EXPONENTS 15

Next, let N := HomR(R/P, E) ∼= AnnEP . By the first statement in part (b),
proved above, we know that, W -generically, N ∼= ExthR(R/P, ω) is finitely generated.
After localization at P , we have NP

∼= κP = fracA. We may choose an element u ∈
HomR(R/P, E) that becomes a generator this module once we localize at P . Hence,
the linear map θ : A → HomR(R/P, E) such that 1 7→ u becomes an isomorphism
from κP to κP when we localize at P . Since the kernel and cokernel of θ are finitely
generated R-modules, they both vanish after localization at some g ∈ W , which then
makes θ an isomorphism. This concludes the proof of part (b).

(c) Note that, W-generically, Ext0R(ω, ω) = HomR(ω, ω) ∼= R (cf. Remark 2.18)
and ExtiR(ω, ω) = 0 for all 1 ⩽ i ⩽ h + 1 (cf. Discussion 2.1(9)). We apply (‡)(4)
to E••

2 with M = ω, k = h and ν = 0 to conclude that W-generically we have
HomR(ω, E) ∼= Hh ∼= Hh−0

P

(
Ext0(ω, ω)

) ∼= Hh
P (R), as the nonzero terms Eij

2 on the
diagonals corresponding to total degrees h−1, h and h+1 can only occur when i = 0.

(d) First note that, for all s ∈ N, we have following series of isomorphisms (in
which the second isomorphism is by the adjointness of ⊗ and Hom)

AnnHomR(M,E)P
s ∼= HomR

(
R/P s, HomR(M, E)

)
∼= HomR

(
(R/P s)⊗R M, E

) ∼= HomR(M/P sM, E).

Let Ns := HomR(M/P sM, E), for s ∈ N. It suffices to show that there exists g ∈ W
such that for all s ∈ N, (Ns+1/Ns)g is Ag-free of finite rank. Given what have been
proved, we can localize at g ∈ W so that

(i) HomR(A, E) ∼= A and Ext1R(A, E) = 0, by parts (a) and (b) above. Therefore,
HomR(A

⊕k, E) ∼= A⊕k and Ext1R(A
⊕k, E) = 0 for all k ∈ N.

(ii) For all s ∈ N, the graded component [grP M ]s = P sM/P s+1M is A-free of
finite rank, by Lemma 2.10. Consequently, for each s ∈ N, M/P sM admits a
finite filtration whose factors are free A-modules of finite rank.

(iii) In light of (i) and (ii) above, we see that Ext1R(P
sM/P s+1M, E) = 0 for all

s ∈ N. Moreover, a straightforward induction on the length of the filtration,
as well as the long exact sequence for Ext, shows that Ext1R(M/P sM, E) = 0
for all s ∈ N.

(iv) Similarly, by (i) and (ii) above, we see that HomR(P
sM/P s+1M, E) is A-free

of finite rank for all s ∈ N.

We show that, under the conditions (i)–(iv), all of the modules Ns/Ns+1 are A-free
of finite rank. For all s ∈ N, we have an exact sequence

0 → P sM/P s+1M →M/P s+1M →M/P sM → 0.

Additionally, as Ext1R(M/P sM, E) = 0 by (iii) above, we apply HomR( , E) to
obtain the following exact sequence:

0 → Ns → Ns+1 → HomR(P
sM/P s+1M,E) → 0.
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To complete the proof of (d), we observe that HomR(P
sM/P s+1M, E) is A-free of

finite rank, by (iv) above. Also note that
⋃

s∈N AnnHomR(M,E)P
s = HomR(M, E), as

every element of HomR(M, E) is annihilated by a power of P .

(e) Let G• denote a projective resolution of M by finitely generated modules and
let C• be the modified Čech complex for x. Then H i

(
Hom(G•, ω)

) ∼= ExtiR(M,ω)
and H i

P (M) ∼= H i
(x)(M) ∼= H i(M ⊗ C•). Since, W-generically, x1, . . . , xh is a regular

sequence with radical P in R, we may take C• as a flat resolution of Hh
(x)(R) and use it

to calculate the Tor. Note, however, that C• is numbered for calculating cohomology.
Therefore, for fixed M and any finite set of choices for i ∈ Z, W-generically we have

H i
P (M) ∼= H i

(x)(M) ∼= H i(M ⊗ C•)

∼= TorRh−i

(
M, Hh

P (R)
) ∼= Hh−i

(
G• ⊗R H

h
P (R)

)
∼= Hh−i

(
G• ⊗R HomR

(
ω, Hh

P (ω)
))

(by part (d))

∼= Hh−i

(
HomR

(
HomR(G•, ω), H

h
P (ω)

))
(by Remark 2.13)

α∼= HomR

(
Hh−i

(
HomR(G•, ω)

)
, Hh

P (ω)
)

(by part (a))

∼= HomR

(
Exth−i

R (M,ω), Hh
P (ω)

)
.

Here we would like to point out that, in order to see the isomorphism
α∼=, we need

HomR

(
, Hh

P (ω)
)
to preserve the exactness of several (but finitely many) short exact

sequences, which can be achieved by repeated application of part (a).

Next, we observe that the usual homotopy arguments show that the identification

HomR

(
ExtiR(M,ω), Hh

P (ω)
) ∼= TorRi

(
M, Hh

P (R)
)

is independent of the choice of projective resolution G• for M , which is needed to see
that this is a natural isomorphism of functors on the variable module M .

It remains to explain the statements in which i is allowed to take on infinitely
many values. We already know that we may allow 0 ⩽ i ⩽ h or any larger finite set
of choices for i. But since we have, W-generically, that P = Rad(x1, . . . , xh)R, the
local cohomology modules H i

P (M) vanish when i > h, as do the modules involving
Exth−i

R (M, ω) since h − i < 0. Thus, we have proved that for fixed M , the result
holds W-generically for all integers i ⩾ 0.

For i < 0, the local cohomology modules H i
P (M) vanish. To complete the proof

of (e), it remains only to prove that under the hypothesis that R or Rg, for some
g ∈ R \ P , is excellent of finite Krull dimension, say k, we have for some g′ ∈ W and
for all j > k that

HomRg′

(
ExtjRg′

(Mg′ , ωg′), Eg′
)
= 0,
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since there are only finitely many integers i such that h+1 ⩽ h−i ⩽ k. Consequently,
it suffices to show that for some choice of g′ ∈ W , we have ExtjRg′

(Mg′ , ωg′) = 0 for

all j > k. For this it is enough to show that the injective dimension of ωg′ is at most
k for some g′ ∈ W . This is true by Remark 2.14, because ωQ is a canonical module
for RQ for all primes Q in a sufficiently small Zariski neighborhood of P .

(f) This is immediate from (c) and (e). The proof is complete. □

Remark 2.20. Just as the usual form of local duality may be applied to homomorphic
images of Gorenstein rings or to homomorphic images R of Cohen-Macaulay rings R
such that R has a canonical module, it should be clear that the results of Theorem 2.19
can be applied to modules over a homomorphic image R of a ring R satisfying the
hypothesis of Theorem 2.19. One can consider the modules over R as R-modules.
Theorem 5.6 provides an illustration of this technique.

Remark 2.21. There are many finitely generated modulesM for which the conclusion
in the last sentence of part (e) of Theorem 2.19, where i is allowed to take on all
values in Z, holds on a sufficiently small Zariski neighborhood D(g) of P without
any additional hypothesis on R. This holds, for example, if Mg has finite projective
dimension over Rg for some g ∈ R \P , which is equivalent to the statement that MP

has finite projective dimension over RP .

3. Comparison with the results of Karen Smith

The results of Karen Smith [Sm18] were a great inspiration in developing the theory
of §2. Many of the results of [Sm18] are connected with cohomology of sheaves on
schemes and base change, but we focus in this section on the underlying results in
commutative algebra that are used in proving the base change results. In the process,
we discuss their connections with Theorem 2.19. We first note [Sm18, Theorem 2.1]:

Theorem 3.1 (K. E. Smith). Let A be a Noetherian domain, let R = A[[x1, . . . , xh]]
be a power series ring over A, and let M be a finitely generated R-module. Denote
by I the ideal (x1, . . . , xh) ⊊ R. Then the local cohomology modules H i

I(M) are
generically free over A and commute with base change for all i.

We second note [Sm18, Corollary 1.3]:

Corollary 3.2 (K. E. Smith). Let A be a Noetherian reduced ring such that A ↪→ R,
where R is Noetherian, and let I = (x1, . . . , xh) be an ideal of R such that the
composite map A ↪→ R → R/I is module-finite. Let M be an R-module such that
M/IM is finitely generated over A. Then there exists g ∈ A \

⋃
p∈Min(A) p such that

Hj
I (Mg) is Ag-free for all j. Moreover, Hj

I (M ⊗A L) ∼= Hj
I (M) ⊗A L for every Ag-

module L. In particular, this holds when L is an A-algebra such that A → L factors
through Ag.
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We note the following. One may first localize so that A becomes a product of
domains, and the result reduces to the domain case. Second, one may complete R
with respect to I (which does not affect the local cohomology) and then the A-algebra
map from the formal power series ring A[[X1, . . . , Xh]] to R, defined by Xi 7→ xi, is
module-finite. Then M becomes a finitely generated module over A[[X1, . . . , Xh]],
and the problem reduces to the case where R = A[[X1, . . . , Xh]] with A a Noetherian
domain and I = (X1, . . . , Xh)R. Another key result in [Sm18] is that when R =
A[[X1, . . . , Xh]] and M is finitely generated over R as above, one has, after localizing

at one element of A\{0}, that Hj
I (M) ∼= HomR

(
Exth−j

R (M,R), Hh
I (R)

)
for all j ⩾ 0.

Discussion 3.3. Let R = A[[X1, . . . , Xh]], where A is a Noetherian domain, and
let M be a finitely generated R-module, as above. Let P = (X1, . . . , Xh)R, ω =
R, and W = A \ {0}. Note that RP is regular and, hence, ωP is an canonical
module for RP . By Theorem 2.19, we see that,W-generically, Hj

P (M) is free filterable

relative to P and Hj
P (M) ∼= HomR

(
Exth−j

R (M,ω), Hh
P (ω)

)
for all j ⩾ 0. Now, as

the composition A ⊆ R ↠ R/P is an isomorphism, Proposition 2.4 tells us that, W-
generically, Hj

P (M) is A-free for all j ⩾ 0. To see the base change results by a different

argument from the one used in [Sm18], observe that Hj
P (M) ∼= TorRh−j

(
M,Hh

P (ω)
)

is the homology at the h − j spot of the complex G• ⊗R Hh
P (R), where G• is a

free resolution of M by finitely generated free R-modules. As noted right above, W-
generically, all Hj

P (M) are A-free, which clearly applies to Hh
P (R) as well. Thus, after

localization at g ∈ A \ {0}, the complex
(
G• ⊗RH

h
P (R)

)
g
consists of free Ag-modules

and has all its cohomology free over Ag. Now the homology of
(
G• ⊗R Hh

P (R)
)
g

commutes with ⊗Ag L for any Ag-module L, which yields the base change result of
[Sm18, Corollary 1.3]. Of course, in the more general situation of this paper, as in
Theorem 2.19, one gets local cohomology with filtrations that have A-free factors W-
generically. One cannot hope for more, since the local cohomology modules, typically,
are not A-modules.

Discussion 3.4. Note that [Sm18] states many results in terms of Homcts
A (M,A), which

consists of the A-linear maps from the R-moduleM to A that vanish on I tM for some
t. Here A, R, I and M are as in Corollary 3.2, but the situation reduces to the case
where R is a power series over A. With R = A[[x1, . . . , xh]] and I = (x1, . . . , xh)R,
we have that Hh

I (R)
∼= Homcts

A (R, A), which is the same as the module E in our
Theorem 2.19 if one takes ω := R and P := I. Moreover, as noted in [Sm18,
Proposition 3.1], the functorM 7→ HomR(M,E) is naturally isomorphic to the functor
M 7→ Homcts

A (M,A) on R-modules M : in essence, this is just the usual adjointness
of tensor and Hom, restricted to maps that kill I tM for some t. It is then easy to see
that the results of Theorem 2.19, when applied to the case where R = A[[x1, . . . , xh]],
P = (x1, . . . , xh)R, W = A\{0} and ω = R, are the same as the results of [Sm18], in
light of the fact that, by Proposition 2.4, free filterable relative to P implies A-free.
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Finally, we note that the result on generic local duality in [Sm18, Theorem 5.1] is
stated there as follows:

Theorem 3.5 (K. E. Smith). Let R be a power series ring A[[x1, . . . , xh]] over a
Noetherian domain A, let I = (x1, . . . , xh)R, and let M be a finitely generated R-
module. Then, after replacing A by its localization at one element of A \ {0}, for all
i ⩾ 0, there is a functorial isomorphism

H i
I(M) ∼= Homcts

A

(
Exth−i

R (M,R), A
)
.

As noted in Discussion 3.4 just above, the R-module Homcts
A

(
Exth−i

R (M,R), A
)
is

naturally isomorphic with HomR

(
Exth−i

R (M,R), Hh
I (R)

)
. Thus, our result on generic

local duality in part (e) of Theorem 2.19, applied to R = A[[x1, . . . , xh]], agrees with
the result on generic local duality in [Sm18, Theorem 5.1].

4. (R \\P)-pseudoflat modules

In this section, we discuss (R \\P)-pseudoflat R-modules. See Definition 1.1.

Proposition 4.1. Let R be a ring, let P be a proper ideal in R, and let A := R/P.

(a) A direct limit of (R \\P)-pseudoflat R-modules is (R \\P)-pseudoflat.
(b) A flat A-module is (R \\P)-pseudoflat.
(c) Let 0 →M ′ →M →M ′′ → 0 be an exact sequence of R-modules.

(i) If M ′ and M ′′ are (R \\P)-pseudoflat then so is M .
(ii) If M and M ′′ are (R \\P)-pseudoflat then so is M ′.

(d) An R-module with a countable ascending filtration whose factors are (R \\P)-
pseudoflat is (R \\P)-pseudoflat.

(e) An arbitrary direct sum of (R \\P)-pseudoflat R-modules is (R \\P)-pseudoflat.
(f) An R-module with a countable ascending filtration whose factors are flat A-

modules is (R \\P)-pseudoflat.
(g) If an R-module is free filterable relative to P then it is (R \\P)-pseudoflat.
(h) A module with a finite right resolution by (R \\P)-pseudoflat R-modules is

(R \\P)-pseudoflat.
(i) If A is regular, an A-module M is (R \\P)-pseudoflat if and only if it is A-flat.
(j) If R → R′ is flat over R and M is (R \\P)-pseudoflat then M ⊗R R′ is

(R′ \\PR′)-pseudoflat.

Proof. Parts (a), (b), (c) and (j) follow from the definition of (R \\P)-pseudoflat and
basic facts about flat base change and the behavior of (possibly improper) regular
sequences. Parts (d) and (e) follow from (c) and (a), while part (f) follows from (b)
and (d). Part (f) implies part (g), while part (h) follows from part (c)(ii) by induction
on the length of the resolution. To prove (i), note that ifM is A-flat then it is (R \\P)-
pseudoflat by part (b). Now supposeM is an A-module and (R \\P)-pseudoflat. This
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is preserved when make a base change to any local ring of A, and so we may assume
that A is regular local. The result now follows from the assertion that if A is regular
local and every regular sequence on A is a possibly improper regular sequence on
M , then M is A-flat. The argument is given in [HH92, 6.7, p. 77], where it is not
ever used that the regular sequences x1, . . . , xk on A are proper regular sequences on
M : one still has that TorAi

(
A/(x1, . . . , xk), M

)
= 0 for i ⩾ 1 when x1, . . . , xk are

possibly improper regular sequences on M . □

We also note:

Proposition 4.2. Let P be a proper ideal in R and let A := R/P. Also, let R′ be a
flat extension of R, let y := y1, . . . , yd ∈ R′ be a sequence of elements whose images
form a possibly improper regular sequence on R′/PR′, and let yt = yt1, . . . , y

t
d. If

(∗) 0 →M ′ →M →M ′′ → 0

is an exact sequence of R-modules such that M ′′ is (R \\P)-pseudoflat, then for all
t ∈ N, the sequences

(∗t) 0 → M ′ ⊗R R
′

(yt)(M ′ ⊗R R′)
→ M ⊗R R

′

(yt)(M ⊗R R′)
→ M ′′ ⊗R R

′

(yt)(M ′′ ⊗R R′)
→ 0

and the sequence

(∗∗) 0 → Hd
(y)(M

′ ⊗R R
′) → Hd

(y)(M ⊗R R
′) → Hd

(y)(M
′′ ⊗R R

′) → 0

are exact. Hence, for any exact sequence 0 → M1 → M2 → · · · → Mn → 0, with
n finite, and given any i0 ∈ {1, 2}, if Mi is (R \\P)-pseudoflat for all i ̸= i0, then
the module Mi0 is (R \\P)-pseudoflat and the whole sequence remains exact when we
apply either ⊗R R

′/(yt) or Hd
(y)( ⊗R R

′).

Proof. Since the pseudoflatness conditions are preserved by the flat base change R →
R′ (cf. Proposition 4.1(j)), we may assume that R′ = R. The sequences (∗t) are
standard and reduce by induction to the case d = 1. The sequence (∗∗) is the direct
limit of the sequences (∗t).

The final statement concerning the exact sequence 0 →M1 →M2 → · · · →Mn →
0 follows at once by induction on n, the length of the exact sequence, with n = 3
proved just now in (∗t) and (∗∗) above. The conclusion thatMi0 is (R \\P)-pseudoflat
can be obtained by repeated applications of Proposition 4.1(c). □

Corollary 4.3. Let P be a proper ideal in R and let A := R/P. Let R′ be a flat
extension of R, and let y = y1, . . . , yd ∈ R′ be a sequence of elements whose images
in R′/PR′ form a possibly improper regular sequence. Suppose that

0 =M0 ⊆M1 ⊆ · · · ⊆Mn ⊆ · · · ⊆M
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is a finite or countably infinite filtration of M over R, so that M =
⋃

n⩾1Mn, and
denote the factors as Ni :=Mi/Mi−1, i ⩾ 1. If the modules Ni are (R \\P)-pseudoflat
for all i ⩾ 1, then M is (R \\P)-pseudoflat and, for all t, the modules

Mi ⊗R R
′

(yt)(Mi ⊗R R′)
(respectively, Hd

(y)(Mi ⊗R R
′)), i ⩾ 0,

give a corresponding filtration of
M ⊗R R

′

(yt)(M ⊗R R′)
(respectively, Hd

(y)(M ⊗R R
′)) with

factors
Ni ⊗R R

′

(yt)(Ni ⊗R R′)
(respectively, Hd

(y)(Ni ⊗R R
′)).

Before stating the next corollary, we set up the following notation, which is conve-
nient in describing elements of top local cohomology:

Notation 4.4. Let y = y1, . . . , yd ∈ R and let M be an R-module, so that we may

view Hd
(y)(M) as lim−→t

M/(yt)M as usual, where (yt) := (yt1, . . . , y
t
d)R. For u ∈M , we

use the notation [u; yt] for the natural image of u + (yt)M ∈ M/(yt)M in Hd
(y)(M).

Note that when y is a regular sequence onM , we may think ofM/(yt)M as a natural

submodule ofHd
(y)(M). As long as there is no confusion, we also use the same notation

[u; yt] to denote the corresponding element in Hd
(y)(M)Q after localization, where Q

is a prime ideal of R.

The following result plays a critical role in the proof of Key Lemma 7.13, and
consequently in the proofs of Theorems 7.10 and 7.11.

Corollary 4.5. Let R and P be as in Corollary 4.3. Let M be an R-module, and
let u ∈ M be an element such that both M and M/Ru are (R \\P)-pseudoflat. Also,
let R′ be a flat extension of R and let y := y1, . . . , yd ∈ R′ whose images form a
possibly improper regular sequence on R′/PR′. Consider u ⊗ 1R′ ∈ M ⊗R R

′ and,
using Notation 4.4 above, consider [u ⊗ 1R′ ; y] ∈ Hd

(y)(M ⊗R R
′) ∼= M ⊗R H

d
(y)(R

′).

Then AnnR′([u⊗ 1R′ ; y]) = AnnR(u)R
′ + (y)R′.

Proof. Since AnnRu commutes with the flat base change R → R′ and since the
pseudoflatness conditions are preserved by that base change (cf. Proposition 4.1(j)),
we may assume that R′ = R. Note that the module Ru is (R \\P)-pseudoflat as well
by Proposition 4.1(c). Thus, by Corollary 4.3, we have an injection Ru⊗R R/(y) ↪→
Hd

(y)(Ru) ↪→ Hd
(y)(M) that takes u ⊗ 1 to [u; y] ∈ Hd

(y)(M), where we agree that

u⊗1 ∈ Ru⊗RR/(y). Thus AnnR([u; y]) = AnnR(u⊗1), which is AnnR

(
Ru⊗RR/(y)

)
since u⊗ 1 generates Ru⊗R R/(y). But AnnR

(
Ru⊗R R/(y)

)
is immediate from the

fact that Ru⊗R R/(y) ∼= R/AnnR(u)⊗R R/(y) ∼= R/
(
AnnR(u) + (y)

)
. □
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Remark 4.6. Of course, in Corollary 4.5, we may also apply the result with y replaced
by yt = yt1, . . . , y

t
d, which is also a regular sequence, and obtain AnnR′([u⊗1R′ ; yt]) =

AnnR(u)R
′ + (yt)R′.

The next corollary combines results in this section with the main result of §2
(Theorem 2.19):

Corollary 4.7. Let R, P, E, W be as in Theorem 2.19. Let ∆ be a finite set and
consider a family of complexes {Mi1 → Mi2 → Mi3}i∈∆, where for all i ∈ ∆ and
1 ⩽ j ⩽ 3 the Mij are finitely generated R-modules. After we localize at one element
of W and change notation to call the localized ring R, for all flat R-algebras R′

and y = y1, . . . , yd ∈ R′ whose images form a possibly improper regular sequence on

R′/PR′, the functor Hd
(y)

(
Hom( ⊗RR

′, E⊗RR
′)
)
commutes with taking homology at

theMi2 spot for all i ∈ ∆. Hence, Hd
(y)

(
Hom( ⊗RR

′, E⊗RR
′)
)
commutes with taking

homology of any finite collection of finite complexes of finitely generated R-modules
after localizing at one element of W that is dependent on the set of complexes.

Proof. The information about the complexes and their homology is determined by
a finite family of short exact sequences. Thus, it suffices to prove that exactness
is preserved when we apply the functor to one short exact sequence. By parts (a)
and (d) of Theorem 2.19, after we localize at one element of W , when we apply
HomR′( ⊗R R

′, E ⊗R R
′) we get a short exact sequence of R′-modules that are all

free filterable relative to PR′ and hence are all (R′ \\PR′)-pseudoflat. The result now
follows from part (g) of Proposition 4.1 and Proposition 4.2, applied over R′. □

Discussion 4.8 (A non-Noetherian acyclicty criterion). We first observe that the
acyclicity criterion in [BuEi73] is valid without Noetherian assumptions. This is
shown in [Nor76, §6], and a much more concise treatment is available in [Ho02]. One
needs to use a notion of depth based on vanishing of Koszul homology: this agrees with
the usual notion in the Noetherian case. Given a finitely generated ideal I of an arbi-
trary ring R and an R-module M , define the Koszul depth of M on I = (r1, . . . , rn)
to be d, where d is the least value of i ∈ N such that Hn−i(r1, . . . , rn; M) ̸= 0. This
is independent of the choice of generators of I.

Theorem 4.9 (Acyclicity Criterion). Let R be an arbitrary ring, not necessarily
Noetherian. Let G• denote a finite complex of finite rank nonzero free modules over
R, say

G• : 0 → Rbn → · · · → Rb1 → Rb0 → 0.

Let N ̸= 0 be an arbitrary R-module. Let αi denote the matrix of the map Gi → Gi−1,
1 ⩽ i ⩽ n. Let r0 = 0 and for i ⩾ 1, let ri denote the determinantal rank of αi modulo
AnnRN . Then G• ⊗R N is acyclic if and only if the following two conditions hold:

(1) bi = ri + ri−1, for all 1 ⩽ i ⩽ n.
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(2) The Koszul depth of N on Iri(αi) ⩾ i, for all 1 ⩽ i ⩽ n.

Remark 4.10. Note that condition (1) is equivalent to the assumption that rn = bn,

rn−1 = bn − bn−1, rn−2 = bn − bn−1 + bn−2, . . ., rn−i =
∑i

t=0(−1)tbn−t, . . ., and
r1 = bn − bn−1 + · · ·+ (−1)n−1b1.

Remark 4.11. Consider a complex G• as in Theorem 4.9, and let the ri be as in
Remark 4.10. We claim that if R has Koszul depth at least one on each of the ideals
Iri(αi), where 1 ⩽ i ⩽ n, then it is automatic that the ideals Iri+1(αi) are all 0,
1 ⩽ i ⩽ n. To see this, note that after a faithfully flat extension of R, each of the
ideals Iri(αi), 1 ⩽ i ⩽ n, will contain a nonzerodivisor. Inverting the product of these
does not affect the issue, so that we may assume that each Iri(αi) is the unit ideal. We
use induction on n. The case n = 1 is obvious. Assume n ⩾ 2. The issue is local on
R, so that we may assume that R is qasilocal. After changes of basis in Gn−1, which

do not affect the issue, we may assume that αn has the block form

(
Ibn
0

)
, where the

0 block has size (bn−1 − bn) × bn. Now it is clear that Irn+1(αn) = Ibn+1(αn) = 0.
The fact that G• is a complex implies that αn−1 has the block form

(
0bn−2×bn α′

n−1

)
,

where α′
n−1 is bn−2× (bn−1− bn). That is, G• is the direct sum of a complex of length

n− 1, namely

G′
• : 0 → Rbn−1−bn

α′
n−1−−−→ Rbn−2

αn−2−−−→ · · · α2−−→ Rb1 α1−−→ Rb0 → 0

and a complex with nonzero terms only at the spots indexed by n and n− 1, namely

0 → Rbn
Ibn−→ Rbn → 0.

Then it is routine to see that Ij(αn−1) = Ij(α
′
n−1) for all j. In particular, we have

Irn−1(αn−1) = Ibn−1−bn(α
′
n−1). Now the remaining claims, i.e., Iri+1(αi) = 0 for i =

1, . . . , n− 1, follow from the induction hypothesis on G′
•.

We are now ready to state the result mentioned earlier.

Theorem 4.12. Let R be a Noetherian ring, P a prime ideal of R, and A := R/P .
Let G• be complex of finitely generated free R-modules of finite length n such that
A⊗R G• is acyclic. Let H be an R-module and assume at least one of the following

(1) H is free filterable relative to P .
(2) H is a direct limit of modules each of which has a finite filtration with A-flat

factors.
(3) H is (R \\P )-pseudoflat and P contains all primes in AssR(R) (the latter holds,

for example, if R is a domain).

Then H⊗R G• is acyclic.
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In particular, under the hypotheses of Notation 2.17, if frac(A) ⊗R G• is acyclic,
then given a finitely generated R-module M , after localizing at one element of W , we
have that Hj

P (M)⊗G• is acyclic.

Proof. Note that condition (1) implies condition (2). Assume that (2) holds, so that
H is direct limit of modules Hλ each of which has a finite filtration by flat A-modules.
Since A⊗R G• is acyclic, so is the tensor product with any flat A-module, and then
one has that the tensor product with each Hλ is acyclic by iterated use of the snake
lemma. By taking a direct limit, one sees that the tensor product with H is acyclic.

We now prove that condition (3) is sufficient for acyclicity. Assume that H is
(R \\P )-pseudoflat. We adopt the detailed description of G• given in the statement of
Theorem 4.9. Let the ri be determined from the bi as in Remark 4.10. The hypothesis
that A⊗R G• is acyclic shows that for each i, 1 ⩽ i ⩽ n, the ideal of ri minors of αi,
when passed to A, is either the unit ideal A or contains an A-regular sequence oflength
at least i. The ideals Iri(αi) over R therefore each contain an element fi ∈ R \ P ,
which is a nonzerodivisor on R. By Remark 4.11 and Remark 4.10, these numbers
ri are indeed the determinantal rank of αi on H for 1 ⩽ i ⩽ n, which allows us to
conclude that condition (1) of Theorem 4.9 holds for H⊗R G•. Moreover, it follows
that each Iri(αi) contains i elements of R that map to a possibly improper regular
sequence in A. Hence, these elements form a possibly improper regular sequence on
H, which verifies that condition (2) of Theorem 4.9 holds for H⊗RG•. The acyclicity
of H⊗R G• now follows from Theorem 4.9.

For the final statement onHj
P (M)⊗G•, first note that becauseH

j
P (M) is supported

only at P , localizing at an element g ∈ W yields the same result for Hj
P (M)⊗G• if

g is replaced by an element of R \P with the same image as g in R/P . Therefore we
can carry out the proof with W = R \P . The result follows because if frac(A)⊗RG•
is acyclic, then after replacing R by its localization at one element of W , the complex
A⊗RG• becomes acyclic, and by Theorem 2.19, Hj

P (M) is free filterable relative to P
after localizing at one element ofW . Now we may apply part (1) of this theorem. □

5. Generic behavior of injective hulls

In this section we study generic behavior for homomorphic images of rings that
satisfy Notation 2.17. Since our focus is on the homomorphic image, we change
notations as indicated just below. We start with a ring that satisfies Notation 2.17,

but we denote this ring by R̃, so that Theorem 2.19 holds for R̃ and P̃ ∈ Spec(R̃).

The focus of this section is R := R̃/a, where a is an ideal of R̃ such that a ⊆ P̃ .

Denote P := P̃ /a ∈ Spec(R). Because we want RP to have Krull dimension h, we

will use h̃ for the Krull dimension of R̃P̃ . In the first subsection we discuss what
happens without taking a quotient. The second subsection deals with the case where
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we work with R = R̃/a. The third subsection is focused on the case when RP is S2.

Note that we do not need to change the notation for A, since A = R̃/P̃ ∼=
R̃/a

P̃ /a
.

Notation 5.1. Let R̃, P̃ , A := R̃/P̃ , h̃ := height(P̃ ), and ω̃ be as in Notation 2.17.

That is, let R̃ be a Noetherian ring, P̃ a prime ideal of R̃ such that R̃P̃ is Cohen-

Macaulay of Krull dimension h̃. Assume also that ω̃ is a finitely generated R̃-module

such that ω̃P̃ is a canonical module for R̃P̃ . Let Ẽ := H h̃
P̃
(ω̃) and W̃ := R̃ \ P̃ .

For every prime p of R̃ let κp denote R̃p/pR̃p, which is naturally isomorphic with

frac(R̃/p). Also, denote P := P̃ /a, which is a prime of R. However, we do not
assume that RP is S2 in this section until subsection 5.3.

Note that, for simplicity, we are taking W̃ to be R̃ \ P̃ itself rather than a multi-

plicative system in R̃ or a subset of R̃ that naturally maps onto A \ {0}.
Consider the following conditions:

(E1) The regular locus in Spec(A) has non-empty interior, i.e., there exists g1 ∈ W̃
such that Ag1 is regular.

(E2) There exists g2 ∈ W̃ such that R̃g2 is Cohen-Macaulay and ω̃g2 is a global

canonical module for R̃g2 .

(E3) If RP is S2 then P is in the interior of the S2 locus of R; that is, if (R̃/a)P̃ is

S2 then there exists g3 ∈ W̃ such that (R̃/a)g3 is S2.

Remark 5.2. By [EGAIV67, Cor. 5.10.9], every local ring that is catenary and S2 is
equidimensional. By [EGAIV67, Prop. 6.11.8], the S2 locus is open in an excellent
ring.

Proposition 5.3. If R̃g is excellent for some g ∈ W̃ , then (E1), (E2) and (E3) all
hold.

Proof. It suffices to assume that R̃ is excellent. Then (E1) is clear, since A = R̃/P̃

is an excellent domain. For (E2), we can localize at an element of W̃ so that R̃
is Cohen-Macaulay, and so that ω̃ is a global canonical module. See Remark 2.14.
Finally, (E3) follows from Remark 5.2. □

5.1. Generic behavior of injective hulls near P̃ if R̃P̃ is Cohen-Macaulay.

We shall show how to obtain injective hulls for quotients R̃/Q̃ over R̃ for all prime

ideals Q̃ in an open neighborhood of P̃ in V (P̃ ).

Theorem 5.4. Let R̃, P̃ , h̃, A := R̃/P̃ , W̃ := R̃\ P̃ , ω̃, and Ẽ be as in Notation 5.1.

Assume that R̃ is excellent or that conditions (E1) and (E2) above hold. Then we
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can localize at one element g ∈ W̃ such that after replacing R̃, P̃ , ω̃, and Ẽ by their
localizations at g, all the following statements hold:

(a) The ring A is regular, the ring R̃ is Cohen-Macaulay, and the module ω̃ is a

canonical module for R̃, i.e., for all Q̃ ∈ Spec(R̃), ω̃Q̃ is a canonical module

for R̃Q̃.

(b) AnnẼP̃
∼= A, so that we have an injection 0 → A ↪→ Ẽ.

In all of the remaining parts, assume that we have localized at an element of W̃
so that conditions (a) and (b) hold. Moreover, in the remaining parts, we place the

following condition (♯) on Q̃ and y = y1, . . . , yd:

The ideal Q̃ ∈ Spec(R̃) is in V (P̃ ) and the sequence y in Q̃ maps

to a system of parameters for AQ̃
∼= AQ.

(♯)

Then we have the following:

(c) After localization at one element of W̃ , for all Q̃ and y satisfying (♯), the

module Hd
(y)(Ẽ)Q̃ is an injective hull for R̃Q̃/Q̃RQ̃ over R̃Q̃, i.e., H

d
(y)(Ẽ)Q̃

∼=
ER̃(R̃/Q̃).

(d) For any given finitely generated R̃-module M , after localizing at one element

of W̃ , for all Q̃ and y satisfying (♯), the natural map

ΦM : Hd
(y)

(
HomR̃(M, Ẽ)

)
Q̃
→ HomR̃

(
M,Hd

(y)(Ẽ)
)
Q̃

is an isomorphism.

(e) After localizing at one element of W̃ , for all Q̃ and y satisfying (♯), the natural

map Hd
(y)(AnnẼP̃ )Q̃ ↪→ Hd

(y)(Ẽ)Q̃ is an injection, and a socle generator for

Hd
(y)(AnnẼP̃ )Q̃

∼= Hd
(y)(A)Q̃ over AQ̃ maps to a socle generator for Hd

(y)(Ẽ)Q̃

over R̃Q̃.

Proof. Part (a) is immediate from the hypotheses and Proposition 5.3. Part (b)

follows from part (b) of Theorem 2.19 applied over R̃.

(c) Let Q̃ and y = y1, . . . , yd satisfy (♯), so that dim(RQ) = h̃+ d. Note that ω̃Q is

assumed to be a canonical module for R̃Q̃ by part (b) above, and the maximal ideal

of R̃Q̃ is the radical of P̃ + (y). Let x = x1, . . . , xh̃ be a sequence of h̃ elements of R̃

whose images form a system of parameters for R̃P̃ . Localize at one element of W̃ so

that the radical of (x) is P̃ and, hence, the radical of
(
(x) + (y)

)
RQ is QRQ. Then
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ER̃(R̃/Q̃)
∼= ER̃

Q̃
(R̃Q̃/Q̃R̃Q̃) can be realized as follows:

ER̃
Q̃
(R̃Q̃/Q̃R̃Q̃)

∼= H
dim(RQ)
Q (ω̃Q̃)

∼= H h̃+d
(x, y)(ω̃Q̃)

∼= Hd
(y)

(
H h̃

(x)(ω̃Q̃)
)

∼= Hd
(y)

(
H h̃

P̃
(ω̃)Q̃

)
= Hd

(y)(ẼQ̃)
∼= Hd

(y)(Ẽ)Q̃.

(d) Take a presentation G1 → G0 →M → 0 where G0 and G1 are finitely generated

free R̃-modules. By Corollary 4.7 applied over R̃, we may localize at one element of

W̃ such that exactness is preserved at G0 and M when we apply Hd
(y)

(
Hom( , Ẽ)

)
Q̃

for all Q̃ and y satisfying (♯).

Note that Hd
(y)( )Q̃ is isomorphic with Hd

(y)(R̃)Q̃⊗R̃ . With this identification, the

natural map ΦM is induced by the bilinear map

Hd
(y)(R̃)Q̃ × HomR̃(M, Ẽ) → HomR̃

(
M,Hd

(y)(R̃)Q̃ ⊗R̃ Ẽ
)

whose value on (h, f) is the map u 7→ h ⊗ f(u). It is straightforward to check that
ΦR is an isomorphism, and that ΦM⊕M ′ may be identified with ΦM ⊕ΦM ′ , so that ΦG

is an isomorphism for any finitely generated free R̃-module G. For the general case,

we make use of the presentation G1 → G0 → M → 0 of M over R̃. For all Q and y
satisfying (♯), we have the commutative diagram below in which the rows are exact:

0 // Hd
(y)

(
HomR(M, Ẽ)

)
Q̃

//

ΦM

��

Hd
(y)

(
HomR̃(G0, Ẽ)

)
Q̃

//

ΦG0

��

Hd
(y)

(
HomR̃(G1, Ẽ)

)
Q̃

ΦG1

��

0 // HomR̃

(
M,Hd

(y)(Ẽ)Q̃
)

// HomR̃

(
G0, H

d
(y)(Ẽ)Q̃

)
// HomR̃

(
G1, H

d
(y)(Ẽ)Q̃

)
The exactness of the top row has been obtained, while the exactness of the bottom
row follows from part (c) right above. Since we have already shown that both ΦG0

and ΦG1 are isomorphisms, it follows from the five lemma that the map ΦM is an
isomorphism.

(e) Applying Corollary 4.7 to the exact sequence R̃ → R̃/P̃ → 0 over R̃, we

see that, after localization at one element of W̃ as needed, there is an injection

Hd
(y)(AnnẼP̃ )Q̃ ↪→ Hd

(y)(Ẽ)Q̃ for all Q and y satisfying (♯), in which all the maps are

natural. Hence, a socle generator for Hd
(y)(AnnẼP̃ )Q̃

∼= Hd
(y)(A)Q̃ over AQ̃ maps to a

socle generator for Hd
(y)(Ẽ)Q̃

∼= ER̃
Q̃
(R̃Q̃/Q̃R̃Q̃) over R̃Q̃. □

5.2. Generic behavior of injective hulls for images of Cohen-Macaulay rings.

In this subsection, the focus is the quotient ring R := R̃/a, with P := P̃ /a, where
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a ⊆ P̃ . We shall show how to obtain injective hulls for R/Q over R for all prime

ideals Q := Q̃/a in open neighborhood of P , where a ⊆ Q̃.

Remark 5.5. Let R̃ be a Noetherian ring and N an R̃-module. Throughout the next
result, we freely use the natural identification HomR̃(M,NQ̃)

∼= HomR̃(M,N)Q̃ when

M is finitely generated (and so finitely presented). Note that N need not be finitely

generated. We likewise use the identification HomR̃(R̃/a, N) ∼= AnnNa, so that we
have AnnN

Q̃
a ∼= (AnnNa)Q̃.

Theorem 5.6. Let R̃, P̃ , h̃, A := R̃/P̃ , W̃ := R̃ \ P̃ , ω̃, and Ẽ be as above. Assume

that R̃ is excellent or that conditions (E1) and (E2) above hold. Let a ⊆ P̃ be an ideal

of R̃. Denote R = R̃/a, P = P̃ /a and E = AnnẼa. For any prime Q̃ ⊇ P̃ , denote

Q = Q̃/a ⊆ R. Then we can localize at one element g̃ ∈ W̃ such that, after replacing

R̃, P̃ , ω̃, R and Ẽ by their localizations, the following statements hold:

(a) The ring A is regular, the ring R̃ is Cohen-Macaulay, and the module ω̃ is a

global canonical module for R̃.

(b) A ∼= AnnẼP̃ = AnnEP̃ = AnnEP , so that we have an injection A ↪→ E ⊆ Ẽ.
Write AnnEP = Au for some u ∈ E.

In all of the remaining parts, assume that we have localized at an element of W̃ so
that conditions (a) and (b) hold. Note that localization of an R-module at an element

g̃ ∈ R̃ \ P̃ is the same as localization of that R-module at g ∈ R \ P , where g is the

natural image of g̃. In particular, the localization of an R-module at a prime Q̃ ⊇ P̃

is the same as its localization at Q := Q̃/a. Moreover, in the remaining parts, we

place the following condition (#) on Q̃ and y = y1, . . . , yd:

The ideal Q̃ ∈ Spec(R̃) is in V (P̃ ) and the sequence y in Q̃ maps

to a regular system of parameters for AQ̃
∼= AQ.

(#)

Then we have the following:

(c) After localizing at one element of W̃ , for all Q̃ and y satisfying (#), the

inclusion E = AnnẼa ↪→ Ẽ induces the following injective homomorphism

Hd
(y)(E)Q

∼= Hd
(y)(E)Q̃ = Hd

(y)(AnnẼa)Q̃
∼= AnnHd

(y)
(Ẽ)

Q̃
a ↪→ Hd

(y)(Ẽ)Q̃.

Therefore, Hd
(y)(E)Q is an injective hull for RQ/QRQ over RQ, i.e., H

d
(y)(E)Q

∼=
ERQ

(
(R/Q)Q

)
.

(d) After localizing at one element of W̃ , for all Q̃ and y satisfying (#), the
natural map

Hd
(y)(AnnE P )Q ↪→ Hd

(y)(E)Q
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is an injection, under which a socle generator for Hd
(y)(AnnE P )Q ∼= Hd

(y)(A)Q

over the regular local ring AQ maps to a socle generator for Hd
(y)(E)Q

∼=
AnnHd

(y)
(Ẽ)

Q̃
a ∼= ERQ

(
(R/Q)Q

)
over RQ. In particular, with u ∈ E = AnnẼa

as in part (b) above, the element [u; y] ∈ Hd
(y)(E)Q is a socle generator.

Proof. Parts (a) and (b) hold for the same reason as in Theorem 5.4.

(c) The induced isomorphism Hd
(y)(E)Q̃ = Hd

(y)(AnnẼa)Q̃
∼= AnnHd

(y)
(Ẽ)

Q̃
a follows

from part (d) of Theorem 5.4 with M := R̃/a and Remark 5.5. As we have noted

earlier, for R̃-modules killed by a it does not matter whether we think of them as

R̃-modules and localize at Q̃ or think of them as R-modules and localize at Q. Hence,

Hd
(y)(AnnẼa))Q

∼= AnnHd
(y)

(Ẽ)
Q̃
a. Moreover, we have Hd

(y)(Ẽ)Q̃
∼= ER̃(R̃/Q̃) by part (c)

of Theorem 5.4. Therefore,

Hd
(y)(E)Q = Hd

(y)(AnnẼa))Q
∼= AnnE

R̃
(R̃/Q̃)a

∼= ER(R/Q).

(d) Applying Corollary 4.7 to the exact sequence R̃/a → R̃/P̃ → 0 over R̃, we see

that, after localization at one element of W̃ as needed, there is a natural injection

Hd
(y)(AnnẼP̃ )Q̃ ↪→ Hd

(y)(E)Q̃ for all Q̃ and y satisfying (#). In terms of A ∼= Au =

AnnEP ⊆ E and in terms of modules over RQ, we have a natural injectionH
d
(y)(A)Q

∼=
Hd

(y)(Au)Q = Hd
(y)(AnnEP )Q ↪→ Hd

(y)(E)Q. Hence, a socle generator for Hd
(y)(Au)Q

∼=
Hd

(y)(A)Q over AQ maps to a socle generator for Hd
(y)(E)Q

∼= ERQ

(
(R/Q)Q

)
over RQ.

Corresponding to the socle generator [1; y] ∈ Hd
(y)(A)Q, the element [u; y] ∈ Hd

(y)(Au)Q

is a socle generator for Hd
(y)(Au)Q. Therefore, the element [u; y] ∈ Hd

(y)(E)Q is a socle

generator for Hd
(y)(E)Q

∼= ER(R/Q) over RQ. □

5.3. Generic behavior of injective hulls for S2 quotients of Cohen-Macaulay
rings. In this subsection, we keep all of the conventions of Notation 5.1. In addition,

we assume that RP is S2, where R = R̃/a and P = P̃ /a. We show that after localizing

at one element of W̃ , we can obtain injective hulls of residue class fields of R at primes

Q := Q̃/a ∈ V (P̃ /a) from the top nonvanishing local cohomology module of a finitely
generated R-module. We need some preliminaries.

Discussion 5.7. Let R̃ be a (not necessarily excellent or local) Cohen-Macaulay ring

with global canonical module ω̃, let a be an ideal of R̃ such that all minimal primes

of a have the same height, say k. Assume that R := R̃/a is S2. Let ω := Extk
R̃
(R, ω̃).

When R is Cohen-Macaulay, this is a canonical module for R. However, when R is
S2 and when all minimal primes of a have the same height k, this module has some
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of the same behavior as in the Cohen-Macaulay case and, in some literature, is still
referred to as a canonical module for R. In particular, without assuming that R
is Cohen-Macaulay, we have the following (some of what we prove below is in the
literature in one form or another, cf. [Ao80, Prop. 2], [HK71, Satz 5.12] or [Ao83,
Thm. 1.2] for example, but we have given a brief, self-contained treatment):

(1) For every finitely generatedR-moduleM , we have Extk
R̃
(M, ω̃) ∼= HomR(M,ω).

Moreover, Extk
R̃
(ω, ω̃) ∼= HomR(ω, ω) ∼= R, in which R ∼= HomR(ω, ω) can be

induced by the homothety map.

(2) H
dim(RQ)
Q (ωQ) ∼= ER(R/Q) ∼= ERQ

(
(R/Q)Q

)
for all prime Q of R.

(3) For all finitely generated R-module M and for all prime Q of R, we have

H
dim(RQ)
Q (MQ) ∼= HomRQ

(
HomR(M,ω)Q, ERQ

(
(R/Q)Q

))
. In particular, we

have H
dim(RQ)
Q (RQ) ∼= HomRQ

(
ωQ, ERQ

(
(R/Q)Q

))
for all prime Q of R.

To prove (1), choose a maximal regular sequence z = z1, . . . , zk in a. As z ∈ a and
z is regular on ω̃, we have ω = Extk

R̃
(R, ω̃) ∼= HomR̃

(
R, ω̃/(z1, . . . , zk)ω̃

)
. But then,

for any finitely generated R-module M , we get

Extk
R̃
(M, ω̃) ∼= HomR̃

(
M, ω̃/(z)ω̃)

) ∼= HomR̃

(
M,HomR̃(R, ω̃/(z)ω̃)

)
∼= HomR̃(M,ω) = HomR(M,ω).

In particular, Extk
R̃
(ω, ω̃) ∼= HomR(ω, ω). To show that the map θ : R → HomR(ω, ω)

induced by homothety is an isomorphism, we need to prove that the kernel and
cokernel are 0. If we localize at any prime p := p̃/a ∈ Spec(R) of height 1 or 0, we

see that Rp is Cohen-Macaulay and, hence, ωp = Ext
dim(R̃p̃)−dim(Rp)

R̃p̃

(Rp, ω̃p̃) is a true

canonical module of Rp, because R is equidimensional. This shows that θ becomes an
isomorphism whenever we localize at such a prime p. Thus, the kernel and cokernel
of the map θ are supported only at primes of height 2 or greater. Note that both
R and HomR(ω, ω) are S2. Now we can see that both Ker(θ) and Coker(θ) must be
zero. If the kernel is not 0, then localize at a minimal prime of its support, which
must be in AssR

(
Ker(θ)

)
⊆ AssR(R), to get a contradiction. Hence θ is an injective

map. Suppose that the cokernel is not 0. After the localization at a minimal prime
its support, the cokernal becomes depth 0 while both R and HomR(ω, ω) have depth
at least 2, which is a contradiction.

Now that we have (1), we can prove (2) as follows. Let Q = Q̃/a be any prime ideal

of R = R̃/a, where a ⊆ Q̃ ∈ Spec(R̃). Then k = dim(R̃Q̃)− dim(RQ). Therefore,

H
dim(RQ)
QRQ

(ωQ) ∼= HomR̃
Q̃

(
Extk

R̃
(ω, ω̃)Q̃, ER̃

Q̃
(R̃Q̃/Q̃Q̃)

)
(duality over R̃Q̃)

∼= HomR̃
Q̃

(
(R̃/a)Q̃, ER̃

Q̃
(R̃Q̃/Q̃Q̃)

)
(part (1) here)
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∼= ERQ

(
(R/Q)Q

) ∼= ER(R/Q).

To see (3), let M be an finitely generated R-module, and let Q = Q̃/a be as above.

Then, by local duality over R̃Q̃, we get

H
dim(RQ)
QRQ

(MQ) ∼= HomR̃
Q̃

(
Extk

R̃
(M, ω̃)Q̃, ER̃

Q̃
(R̃Q̃/Q̃Q̃)

)
(local duality)

∼= HomR̃
Q̃

(
HomR(M,ω)Q̃, ER̃

Q̃
(R̃Q̃/Q̃Q̃)

)
(part (1))

∼= HomRQ

(
HomR(M,ω)Q̃, ERQ

(RQ/QQ)
)
.

In particular, we obtain H
dim(RQ)
Q (RQ) ∼= HomRQ

(
ωQ, ERQ

(
(R/Q)Q

))
.

Theorem 5.8. Let R̃ be a (not necessarily excellent or local) ring, let P̃ ∈ Spec(R̃)

and let ω̃ be a finitely generated R̃-module. Assume that R̃P̃ is Cohen-Macaulay and

that ω̃P̃ is a canonical module for R̃P̃ . Fix an ideal a ⊆ P̃ and denote R := R̃/a,

P̃ /a =: P ∈ Spec(R). Assume that RP is S2. Let h̃ := dim(R̃P̃ ), h := dim(RP ), and

k := h̃ − h. Set ω := Extk
R̃
(R, ω̃), E := Hh

P (ω) and Ẽ := H h̃
P̃
(ω̃). Also, let W̃ ⊆ R̃

be a subset that maps onto A \ {0A} under the natural map R̃ → R̃/P̃ . Similarly, let
W ⊆ R be a subset that maps onto A \ {0A} under the natural map R → R/P . Then
the following holds:

(a) After replacing R̃ and R with R̃g̃ and Rg̃ for some g̃ ∈ R̃ \ P̃ , we have
Extk

R̃
(ω, ω̃) ∼= HomR(ω, ω) ∼= R, in which the isomorphism R ∼= HomR(ω, ω)

can be induced by the homothety map.

(b) W̃-generically, we have Hh
P (ω)

∼= HomR̃

(
R̃/a, H h̃

P̃
(ω̃)

) ∼= Ann
Hh̃

P̃
(ω̃)

a, i.e.,

E ∼= HomR̃

(
R̃/a, Ẽ

)
. Hence, W-generically, we have AnnHh

P (ω) P
∼= A.

(c) If 0 → M ′ → M → M ′′ → 0 is a sequence of finitely generated R-modules
that becomes exact after localization at P , then the induced sequence

0 → HomR(M
′′, E) → HomR(M, E) → HomR(M

′, E) → 0

is W-generically exact. Hence, for every finitely generated R-module M and
for every i ⩾ 1, the module ExtiR

(
M,Hh

P (ω)
)
is W-generically 0. Therefore,

the functor HomR( , E) is W-generically exact on any given finite set of short
exact sequences of finitely generated R-modules, and, hence, on any given finite
set of finite long exact sequences of finitely generated R-modules. The choice
of g depends on which finite set of finite exact sequences one chooses.

(d) Let N := HomR(M,E) or N := H i
P (M), where M is a finitely generated

R-module. Then after localizing at one element of W that is independent
of n ∈ N, the filtration of N by the modules AnnNP

n, which ascends as n
increases with

⋃
n∈N AnnNP

n = N , has factors that are finitely generated free
modules over A.
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(e) For every finitely generated R-module M , W-generically, we have Hh
P (M) ∼=

HomR

(
HomR(M,ω), Hh

P (ω)
)
. In particular, W-generically, we get Hh

P (R)
∼=

HomR

(
ω, Hh

P (ω)
)
.

Proof. The proof is an application of Theorem 2.19 to R̃, together with Discussion 5.7.

As in the proof of Theorem 2.19, it suffices to assume W̃ = R̃\ P̃ andW = R\P . We

may use g̃ to denote an element of W̃ and use g ∈ W to denote the natural image of

g̃ under the natural map R̃ → R. In the course of the proof we may repeatedly, but

finitely many times, localize at one element g̃ ∈ W̃ . Each time, we make a change of

terminology, and continue to use R̃ and R to denote the resulting ring R̃g̃ and Rg̃.

Likewise, we use P̃ and P for their extensions to R̃g̃ and Rg̃ = Rg, and for every
module under consideration we use the same letter for the module after base change

from R̃ or R to R̃g̃ or Rg (finitely generated modules under consideration are replaced

by their localizations: this is the same as base change from R̃ or R to R̃g̃ or Rg). For
an R-module M , we naturally identify Mg̃ with Mg.

(a) Naturally, we may write RP = R̃P̃/aP̃ and ωP = Extk
R̃

P̃

(RP , ω̃P̃ ). Since R̃P̃

is Cohen-Macaulay with ω̃P̃ being a canonical module, and since RP is S2, we apply

Discussion 5.7(1) to obtain Extk
R̃

P̃

(ωP̃ , ω̃P̃ )
∼= HomRP

(ωP , ωP ) ∼= RP , in which RP
∼=

HomRP
(ωP , ωP ) can be induced by the homothety map. Thus, after replacing R̃ with

its localization at one element of W̃ and, accordingly, replacing R with its localization
at the corresponding element of W , we obtain Extk

R̃
(ω, ω̃) ∼= HomR(ω, ω) ∼= R, in

which R ∼= HomR(ω, ω) can be induced by the homothety map. So, W̃-generically,

Extk
R̃
(ω, ω̃) ∼= R̃/a.

(b) By Theorem 2.19(e) applied to R̃, we see that, W̃-generically,

Hh
P (ω)

∼= HomR̃

(
Exth̃−h

R̃
(ω, ω̃), H h̃

P̃
(ω̃)

)
(by 2.19(e))

∼= HomR̃

(
R̃/a, H h̃

P̃
(ω̃)

) ∼= Ann
Hh̃

P̃
(ω̃)

a (by part (a)).

Hence, W̃-generically, we have AnnHh
P (ω) P̃ = Ann

Hh̃
P̃
(ω̃)
P̃ ∼= A according to part (b)

of Theorem 2.19. Over R, we see that, W-generically, AnnHh
P (ω) P

∼= A.

(c) Let 0 → M ′ → M → M ′′ → 0 be a sequence of finitely generated R-modules

that becomes exact after localization at P . Considered over R̃, this is a sequence of

finitely generated R̃-modules that becomes exact after localization at P̃ . By part (a)
of Theorem 2.19, the induced sequence

0 → HomR̃(M
′′, Ẽ) → HomR̃(M, Ẽ) → HomR̃(M

′, Ẽ) → 0
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is W̃-generically exact, in which Ẽ := H h̃
P̃
(ω̃). Moreover, part (b) says that E =

HomR̃

(
R̃/a, Ẽ

)
. Thus, the induced sequence

0 → HomR(M
′′, E) → HomR(M, E) → HomR(M

′, E) → 0

is W-generically exact.

Next, for any finitely generated R-module M , there exists a short exact sequence
0 → L → Rn → M → 0 of R-modules for some n ∈ N, which forces L to be finitely
generated over R as well. Then, as proved above, the induced sequence

0 → HomR(M, E) → HomR(R
n, E) → HomR(L, E) → 0

is W-generically exact, which forces Ext1R(M, E) to vanish W-generically. As for
i > 1, we observe that ExtiR

(
M,Hh

P (ω)
) ∼= Ext1R

(
Ωi−1

R (M), Hh
P (ω)

)
is W-generically

0 because Ωi−1
R (M), an (i − 1)st syzygy of M over R, finitely generated over R.

Therefore, the functor HomR( , E) is W-generically exact on any given finite set
of short exact sequences of finitely generated R-modules, and, hence, on any given
finite set of finite long exact sequences of finitely generated R-modules. The choice
of g ∈ W , at which we localize, depends on which finite set of finite exact sequences
one chooses.

(d) Let M be a finitely generated R-module. In light of part (b) above, we may

identify HomR(M,E) (respectively, H i
P (M)) with HomR̃(M,H h̃

P̃
(ω̃)) (respectively,

H i
P̃
(M)). Now the claim follows from parts (d) and (f) of Theorem 2.19.

(e) As R̃P̃ is Cohen-Macaulay and RP is S2, we apply Discussion 5.7(1), to R̃P̃

and RP , and obtain Extk
R̃

P̃

(MP̃ , ω̃P̃ )
∼= HomRP

(MP , ωP ) over R̃P̃ . As all the modules

are finitely generated, we see that Extk
R̃
(M, ω̃) ∼= HomR(M,ω) W̃-generically. By

Theorem 2.19(e) applied to R̃, we see that, W̃-generically,

Hh
P (M) ∼= HomR̃

(
Extk

R̃
(M, ω̃), H h̃

P̃
(ω̃)

)
(by 2.19(e))

∼= HomR̃

(
HomR(M,ω), H h̃

P̃
(ω̃)

)
(by above)

∼= HomR

(
HomR(M,ω), Hh

P (ω)
)

(by part (b)).

Over R, this says that Hh
P (M) ∼= HomR

(
HomR(M,ω), Hh

P (ω)
)
, W-generically. Now

the claim for Hh
P (R) is clear, and the proof is complete. □

Theorem 5.9. Suppose that R̃ is excellent or that conditions (E1), (E2) and (E3)

all hold. Let P̃ be prime in R̃ with a ⊆ P̃ . Assume also that R̃P̃ is Cohen-Macaulay,

and that R̃ has a finitely generated module ω̃ such that ω̃P̃ is a canonical module for

R̃P̃ . Let R := R̃/a, let P := P̃ /a, and assume as well that RP is S2. Let P̃ have

height h̃ in R̃ and let P have height h in R, which imply that aP̃ has height k := h̃−h
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in R̃P̃ . Let ω := Extk
R̃
(R, ω̃). Then we can localize at one element of R̃ \ P̃ in such

a way that all of the following statements hold:

(a) The ring A is regular, the ring R̃ is Cohen-Macaulay, and the module ω̃ is a

global canonical module for R̃.
(b) R is S2, locally equidimensional, and all minimal primes of a are contained in

P̃ and have height k.

(c) Hh
P (ω)

∼= HomR̃

(
R̃/a, H h̃

P̃
(ω̃)

)
and, hence AnnHh

P (ω) P
∼= HomR̃

(
R̃/P̃ ,H h̃

P̃
(ω̃)

)
.

Moreover, AnnHh
P (ω) P

∼= A. Write AnnHh
P (ω) P = Au, for some u ∈ Hh

P (ω),

so that the image of u in Hh
P (ω)P is a socle generator for Hh

P (ω)P
∼= ERP

(κP )
over RP .

(d) For all primes Q̃ ∈ V (P̃ ), and for all y := y1, . . . , yd ∈ Q̃ that maps to a

system of parameters for AQ̃, we have H
d
(y)

(
Hh

P (ω)
)
Q
∼= ERQ

(κQ) ∼= Hd+h
Q (ω)Q

over RQ.

(e) Further assume that the sequence y := y1, . . . , yd ∈ Q̃ maps to a regular
system of parameters for AQ̃. Then, with u as in part (c) above, the element

[u; y] ∈ Hd
(y)

(
Hh

P (ω)
)
Q
(see Notation 4.4) is a socle generator for the module

Hd
(y)

(
Hh

P (ω)
)
Q
∼= ERQ

(κQ) over RQ.

Proof. In light of Proposition 5.3 and Remark 5.2, we may localize at one element of

W̃ and assume that A = R̃/P̃ is regular, that R̃ is Cohen-Macaulay, that ω̃ is a global

canonical module for R̃, and that R := R̃/a is S2 and, hence, locally equidimensional.

Moreover, we can localize at one element of W̃ so that all minimal primes of a in

R̃ are contained in P̃ , and so we may assume that all minimal primes of a have the

same height, which is necessarily k, which will be the height of a in R̃. This verifies
parts (a) and (b).

The isomorphisms in part (c) concerning Hh
P (ω) and AnnHh

P (ω) P are verified in

part (b) of Theorem 5.8. Moreover, the isomorphism Hh
P (ω)P

∼= ERP
(κP ) is shown in

Discussion 5.7(2). The rest of part (c), concerning u, is clear.

In part (d), note that part (c) says that Hh
P (ω)

∼= AnnẼ a, where Ẽ := H h̃
P̃
(ω̃).

Hence, the isomorphism Hd
(y)

(
Hh

P (ω)
)
Q
∼= ERQ

(κQ) follows immediately from part (c)

of Theorem 5.6. On the other hand, the isomorphism H
dim(RQ)
Q (ωQ) ∼= ERQ

(κQ) has
been verified in Discussion 5.7(2), with dim(RQ) = d+ h.

Finally, part (e) follows from part (d) of Theorem 5.6, in light of the isomorphism
Hh

P (ω)
∼= AnnẼ a as noted above. □
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6. Canonical modules via étale extensions

There are no restrictions on characteristic in this section. We need the following
result, whose history in the literature we describe below.

Theorem 6.1. Let (R, m, K) be an excellent Cohen-Macaulay local ring. Then the
Henselization Rh of R has a canonical module.

Discussion 6.2. Hinich proved [Hin93] that an approximation ring (also called a ring
with approximation property) has a dualizing complex. In the Cohen-Macaulay case,
the existence of a dualizing complex is equivalent to the existence of a canonical
module. Rotthaus gave a more elementary proof for the Cohen-Macaulay local case
in [Rott96]. She phrases the result in terms of rings with the complete approximation
property, but since the treatment in [Swan98], following the ideas of Popescu, [Po85,
Po86], resolved any doubts about the general case of Néron-Popescu desingularization,
we know that every excellent Henselian ring is an approximation ring (in fact, a local
ring is an approximation ring if and only if it is excellent and Henselian). It is
explained in [Rott95] how this implies that every excellent Henselian ring has the
complete approximation property as well. We also note that the Henselization of an
excellent local ring is excellent [EGAIV67, Cor. 18.7.6].

We use Theorem 6.1 to prove the following result. First recall that a local map
of local rings is called a pointed étale extension if it is a localization at a prime of a
(finitely presented) étale extension and the induced map of residue class fields is an
isomorphsim. In the result below, z is an indeterminate over R and if f ∈ R[z], f ′

denotes the derivative of f with respect to z.

Theorem 6.3. Let R be an excellent Noetherian ring, with no restriction on the
characteristic of R, and let P be a prime ideal of R such that RP is Cohen-Macaulay.
Let z be an indeterminate over R. Then after replacing R by its localization at one
element in R \ P , there exists a flat extension R̆ of the form

(
R[z]/fR[z]

)
g
, where

f is a monic polynomial in R[z], g ∈ R[z], and there exists an element r ∈ R such
that f(r) ∈ P with the properties listed below. In describing these properties, for

every prime Q of R such that Q ⊇ P , we use symbol Q̆ to denote the prime ideal((
QR[z] + (z − r)R[z]

)
/fR[z]

)
g
in

(
R[z]/fR[z]

)
g
.

(1) R is Cohen-Macaulay.
(2) f ′(r) is a unit of R.

(3) g(r) is a unit of R. Hence, g /∈ Q̆ for any choice of Q ∈ V (P ).

(4) Q̆ is a prime ideal of R̆ lying over Q in R.

(5) R̆ is Cohen-Macaulay and has a global canonical module ω.

(6) For all Q ∈ V (P ), RQ → R̆Q̆ is a pointed étale extension.
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(7) R̆/P̆ ∼= R/P , and so under the natural map Spec(R̆) → Spec(R) induced by

contraction, V (P̆ ) maps homeomorphically to V (P ).

Moreover, if we replace g by any multiple g1 in RP [z] such that g1(r) /∈ PRP (or
equivalently, g1 ∈ RP [z] \

(
PRP [z] + (z − r)RP [z]

)
), then after replacing R by its

localization at one element of R \P , g1 has coefficients in R, g1(r) ∈ R is a unit, and
all of the above properties (1) – (7) hold for the extension R →

(
R[z]/fR[z]

)
g1
.

Proof. By Theorem 6.1, we may choose a canonical module ω1 for the Henselization
(RP )

h of RP , and represent it as the cokernel of a matrix M1. The ring (RP )
h is a

direct limit of pointed étale extensions of RP . Hence, M1 will descend to a matrix
M2 over a suitable pointed étale extension of RP , and the cokernel of M2, call it ω2,
will have the property that (RP )

h⊗ω2
∼= ω1. It follows that ω2 is a canonical module

for this pointed étale extension of RP .

By the structure theorem for pointed étale extensions of a local ring, the local étale
extension has the the from

(
RP [z]/(f)

)
P
, where f = f(z) is a monic polynomial in

P ⊆ RP [z], and P is a prime ideal of RP [z] of the form (P + (z − r))RP [z], where
r ∈ RP represents a simple root ρ of the image off mod P in κP . The condition that
ρ be a simple root is equivalent to assuming t hat f ′(r) /∈ PRP .

Hence, we may assume that ω2 is a module over an extension ring RP of the form(
RP [z]/fRP [z]

)
P
. However, instead of localizing at all elements not in P, we may

descend to an algebra of the form
(
R[z]/fR[z]

)
g
∼= R[z]g/fR[z]g: for a suitable choice

of g ∈ R[z]\
(
PR[z]+ (z− r)R[z]

)
, ω2 will descend to a module ω over

(
R[z]/fR[z]

)
g

such that ωP is a canonical module for
((
R[z]/fR[z]

)
g

)
P̆
=

(
RP [z]/fRP [z]

)
P
. The

condition that g /∈ PR[z]+ (z− r)R[z] is equivalent to the assumption that g(r) /∈ P .

By replacing R with its localization at an element of R \ P , we may additionally
assume that f(z) is monic over R , that g(z) ∈ R[z], that r ∈ R, that f ′(r) is a
unit of R (since it is not in P ) and that g(r) is a unit of R. We are now in the
situation described in the statement of the theorem, and we may make a preliminary
choice of R̆ to be

(
R[z]/fR[z]

)
g
. Note that the natural image of P, mod f , is the

localization of P̆ at itself. However, ω will not yet necessarily be a global canonical
module over R̆. However, by Proposition 5.3, we can localize further at multiple of g
not in PR[z] + (z − r)R[z] such that this is true, and we may localize further at one
element of R not in P so that for the new choice of g we have that g(r) is a unit in
R. It is now straightforward to verify that the conditions (1) – (7) all hold, and that,
after replacing R by its localization at one element not in P , they continue to hold if
we localize further at polynomial in RP [z] that is not in PRP [z] + (z − r)RP [z]: we
may localize at one element of R not in P so that the new polynomial g1 is in R[z]
and so that g1(r) is a unit. □
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7. The purity exponent

7.1. Purity. In this subsection, there are no assumptions on the characteristic of
the ring and there are no finiteness assumptions on modules, unless such assumptions
are explicitly stated. A map of R-modules N → M is called pure if for every R-
module V , the induced map V ⊗ N → V ⊗M is injective. In particular, N → M
is injective. This is a weakening of the condition that N be a direct summand of
M over R. In fact, if 0 → N → M → C → 0 is exact and C is finitely presented,
then N → M is pure if and only if it the map is split as a map of R-modules; that
is, M is the internal direct sum of the image of N and a submodule N ′ so that the
composite map N → M ↠ M/N ′ is an isomorphism. A direct limit of pure maps is
pure. Purity is preserved by arbitrary base change and, in particular by localization
at any multiplicative system of R. Moreover, N → M is pure if and only if for all
maximal (respectively, all prime) ideals P of R, NP → MP is pure over RP . For
further information about purity, we refer the reader to [HoR74, §6], [HoR76, §5.(a)],
and [HH95, Lemma 2.1].

7.2. Purity exponents: definition and basic facts. Throughout the remainder
of this section, R is a Noetherian ring of prime characteristic p > 0, and c is an element
in R. In the sequel, F e

R or simply F e will denote the e th iterate of the Frobenius
endomoprhism on R, and eR will denote R viewed as an R-algebra via the structural

homomorphism R
F e

−→ R. An alternative notation for eR is F e
∗ (R). We write ec for

the element corresponding to c in eR. If W ⊆ R, we shall also write eW for the set
{ew : w ∈ W}. In particular, if P is a prime ideal of R, eP is the corresponding prime
ideal of eR, and eP is the radical of the extended ideal (P )eR = e

(
P [pe]

)
.

We use the notation θRe,c (or θe,c if the ring R is understood from context) for the

R-linear map R → eR such that 1 7→ ec.7 The purity exponent ec of c is defined to
be the least positive integer e such that the map θRe,c : R → eR is pure over R, if
such an exponent exists. If no such exponent exists, then ec is defined to be ∞. Note
that R is F-pure if and only if e1 = 1, and also if and only if θe,1 is pure for some
(equivalently, all) e ⩾ 1. If c′ is a divisor of c we have that ec′ ⩽ ec, since if c = c′c′′,
θe,c is the composition (ec′′ · ) ◦ θe,c′ . Hence, the finiteness of ec for any c ̸= 0 implies
that c is not a zerodivisor and that the ring is F-pure, and therefore reduced. Since
these conditions are forced by the finiteness of ec, we do not assume them in general,
which may be useful when we consider what happens as we localize at R a varying
prime ideal.

Note also that once θe,c is pure, this also holds for θe′,c for all e
′ ⩾ e. It suffices to

see this for e′ = e + 1. But the map θe,c induces a 1R-pure map (consequently, an

7When R is reduced, we may identify ec ∈ eR with c1/p
e ∈ R1/pe

; hence, we may write θe,c as

θe,c : R→ R1/pe

such that 1 7→ c1/p
e

.
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R-pure map) 1θe,c :
1R → e+1R such that 111R 7→ e+1c, and we may compose with the

R-pure map θ1,1 to obtain that θe+1,c =
1θe,c ◦ θ1,1 is pure. This gives us the following:

Remark 7.1. For every n ⩾ 0, let An(R), usually shortened to An, denote the set
{r ∈ R : θn,r is not pure}. Then An+1 ⊆ An for all n. The purity exponent for c
is finite if and only if c /∈

⋂∞
n=1 An, in which case the purity exponent is the least

integer e such that c /∈ Ae. We shall show shortly in Theorem 7.7 that when (R,m, κ)
is local, An is an ideal.

Definition 7.2. Let c ∈ R. For p ∈ Spec(R), we use ec(p) to denote ec/1 in the ring
Rp. This defines a function ec : Spec(R) → N+ ∪ {∞} where p 7→ ec(p).

Hence, we have the following:

Proposition 7.3. Let R be a Noetherian ring of prime characteristic p, and c ∈ R.

(a) ec(P ) ⩽ ec(Q) ⩽ ec for all prime ideals P ⊆ Q in R.
(b) ec = supp∈Spec(R) ec(p) = supp∈Max(R) ec(p).

When ec is finite, it gives a “tight closure style” test exponent for membership in
ideals:

Proposition 7.4. Let R be a Noetherian ring of prime characteristic p > 0 and let
c ∈ R be such that ec < ∞. Let f ∈ R and let I ⊆ R be an ideal. Then f ∈ I if and
only if cfpec ∈ I [p

ec ].

Proof. Since θec,c : R → ecR, determined by 1 7→ ecc, is pure, the map remains injective
if we apply R/I⊗R to obtain a map θ′ : R/I⊗RR → R/I⊗R

ecR. Now cfpec ∈ I [p
ec ]

if and only if the class of f in R/I is contained in ker(θ′) = 0 if and only if f ∈ I. □

Remark 7.5. The statement in Proposition 7.4 is particularly useful when R is very
strongly F-regular (see subsection 7.4, because in that case e(c) < ∞ for all c ∈ R◦,
where R◦ = R \

⋃
p∈Min(R) p is the complement of the union of all minimal primes

of R. Moreover, one of our main results, Theorem 7.11, shows that every excellent
strongly F-regular is very strongly F-regular.

Notation 7.6. Let M be an R-module. We write ER(M) for the injective hull over R
of the R-module M , which is unique up to non-unique isomorphism. When (R,m, κ)
is local, we may use the notation ER or even E to denote ER(κ). For e ∈ N, we write
q := pe and F e

R(M) := eR⊗RM and view F e
R(M) as an R-module via r ·

∑
i
eri⊗mi =∑

i
e(rri)⊗mi for all r ∈ R and

∑
i
eri ⊗mi ∈ eR ⊗R M = F e

R(M). Also, for x ∈ M ,
denote xqM := 1 ⊗ x ∈ eR ⊗R M = F e

R(M). When the module M is clear in the
context, we may write xqM as xq.

Theorem 7.7. Let notation be as in 7.6, with (R,m, κ) local, and let v be a socle
generator of E = ER(κ). Then for all e, Ae is the annihilator in R of vq ∈ F e

R(E).
Or, equivalently, ec ⩽ e if and only if θe,c is pure if and only if 0 ̸= cvq ∈ F e

R(E).
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Proof. By [HH95, Lemma 2.1(e)], the map θe,c : R → eR, with 1 7→ ec, is pure if and
only the induced map θe,c⊗R IE is injective, which holds if and only if the element 1⊗v
in R⊗RE does not map to 0, i.e., 0 ̸= ec⊗ v ∈ eR⊗RE. In terms of Notation 7.6, we
see that θe,c is pure if and only if 0 ̸= cvq ∈ F e

R(E). The rest of the claims, concerning
Ae or ec, are clear now. □

7.3. Flat regular extensions. We have the following:

Theorem 7.8. Let h : R → S be a flat ring homomorphism and let c ∈ R.

(a) If h : R → S is faithfully flat (e.g., (R,m) → (S, n) is local), then ec ⩽ eh(c).
(b) If (S/h−1(Q)S)Q is regular for all Q ∈ Max(S) (e.g., (R,m) → (S, n) is local

with regular closed fiber), then eh(c) ⩽ ec.

Proof. In (a), if S → eS with 1 7→ eh(c) is pure over S, and so over R. Since R → S
is faithfully flat, we have that h : R → S is pure over R, and so R → eS with 1 7→ ec
is pure. Since this map factors R → eR → eS, where the first map is θe,c, it follows
that θe,c is pure over R.

(b) For any n ∈ Max(S), let m = h−1(n) be its contraction to R. If eh(c)(n) ⩽ ec(m)
for all n ∈ Max(S), then eh(c) = supn∈Max(S) eh(c)(n) ⩽ ec. Thus, this reduces to the
local case h : (R,m, K) → (S, n, L) with regular closed fiber.

In this case, let y = y1, . . . , yd denote elements of S whose images in S/mS are a
regular system of parameters. By [HH94a, Lemma 7.10] this implies the following:

(1) The elements y form a regular sequence on S.
(2) With yt := yt1, . . . , y

t
d, all of the modules S/(yt) are faithfully flat over R.

(3) The direct limit Hd
(y)(S) of the S/(y

t) is flat over R.

(4) The injective hull ES of L over S is Hd
y (S) ⊗R ER, where ER denotes the

injective hull of K over R.
(5) With notation as in 4.4, if u is a socle generator in ER and v := [1; y] ∈

Hd
(y)(S), then v ⊗ u is a socle generator in Hd

y (S)⊗R ER
∼= ES.

Now we may identify F n
S

(
Hd

(y)(S)⊗R ER

)
with

Hd
(ypn )(S)⊗R F

n
R(ER) ∼= Hd

(y)(S)⊗R F
n
R(ER)

and (v⊗u)pn with vp
n⊗upn , where vpn = [1; yp

n
]. As y is regular on S⊗RER and since

S/(yp
n
) is flat over R, the annihilator of vp

n ⊗ up
n
in S is (yp

n
)S +

(
AnnR(u

pn)
)
S =

(yp
n
)S + An(R)S. Therefore, An(S) = (yp

n
)S + An(R)S. By the faithful flatness of

S/(yp
n
) over R, R/An(R) injects into S/(y

pn)⊗R

(
R/An(R)

)
. This implies that the

contraction of An(S) to R is An(R). Hence, if c /∈ An(R), then h(c) /∈ An(S), as
required. □
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7.4. Strongly F-regular and very strongly F-regular rings. Let R◦ denote the
complement of the union of all minimal primes of R, i.e., R◦ = R \

⋃
p∈Min(R) p. If

ec is finite for all c ∈ R◦ then R is called very strongly F-regular in the terminology
of [Hash10] and F-pure regular in the terminology of [DaSm16]. We will use the
terminology “very strongly F-regular.” If this condition holds for all local rings of
R at maximal ideals (equivalently, prime ideals) then R is called strongly F-regular.
This terminology is proposed in [Ho07], and it is also used in [Hash10]. We also
note that R is strongly F-regular in this sense if and only if one of the following two
equivalent conditions holds:

(1) For every R-module M and every R-submodule N ⊆M (with no assumption
about finite generation), N is tightly closed in M .

(2) For every maximal ideal m in R, the submodule 0 is tightly closed in the
injective hull ER(R/m).

For further background on the theory of strongly F-regular rings, we refer the reader
to [Ab01, AL03, HH89, HH94b, LS99, Sm00, HL02, SchSm10, Tu12, PT18, Yao06].

Our main goal in the sequel is to prove that strongly F-regular excellent rings are
very strongly F-regular. This is an obvious question, raised, for example, in [DaSm16].
It is clear that a strongly F-regular ring is very strongly F-regular if R is local. It is
also known that if R is F-finite or essentially of finite type over an excellent semilocal
ring then strongly F-regular rings are very strongly F-regular (and under somewhat
weaker hypotheses: see [DET23]). We refer to [HoY23, §2] for a thorough discussion of
previously known results, many of which may be found in [Ho07], [Hash10], [DaSm16],
[DET23] as well as in [HoY23].

Discussion 7.9. Calculation of Ae from a canonical module. Let (R, p, κ) be
Cohen-Macaulay with canonical module ωR, z = z1, . . . , zs be a system of parameters
for R, and v be a socle generator in the local cohomology E := Hs

(z)(ω) corresponding

to a socle element that is the image of u in ωR/(z)ωR, where u ∈ ωR. Then

Ae = lim−→
t

(
(zqt1 , . . . , z

qt
s )F

e
R(ωR) :R z

qt−quq
)
,

where z =
∏s

j=1 zj is the product of the zj, and where uq is in F e
R(ωR). Note that, by

Theorem 7.7, Ae is 0 :R v
q = AnnR(v

q), where vq ∈ F e
R

(
Hs

(z)(ω)
) ∼= Hs

(z)

(
F e
R(ω)

)
.

7.5. Semicontinuity. Our object is to prove the following result.

Theorem 7.10. Let R be a homomorphic image of an excellent Cohen-Macaulay
Noetherian ring of prime characteristic p > 0 such that R is S2 and let c ∈ R. Then,
for any given e ∈ N+ ∪ {∞}, the set {p ∈ Spec(R) : ec(p) ⩽ e} is Zariski open. In
other words, the function ec : Spec(R) → N+ ∪ {∞} is upper semicontinuous.

Before proving Theorem 7.10, we record an important consequence:
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Theorem 7.11. If an excellent Noetherian ring R of prime characteristic p > 0 is
strongly F-regular, then it is very strongly F-regular.

Proof. Let c ∈ R◦. Since the ring is strongly F-regular, for every P ∈ Spec(R), the
purity exponent ec(P ) is finite for c/1 ∈ RP . By Theorem 7.10, this defines a Zariski
open neighborhood UP := {Q ∈ Spec(R) : ec(Q) ⩽ ec(P )} of P . The open sets UP ,
P ∈ Spec(R), cover Spec(R) and have a finite subcover, UPi

, 1 ⩽ i ⩽ m. Let e be
the maximum of the integers ec(Pi), 1 ⩽ i ⩽ m. Then (θe,c)P is pure over RP for all
P ∈ Spec(R), and so θe,c is pure over R. See subsections 7.1 and 7.2. □

To prove Theorem 7.10, we will need several preliminary results, including the
following result on openness, based on an idea of Nagata. See [Mat87, Theorem 24.2]
and [StProj, Lemma 5.16.5] for a generalization to Noetherian topological spaces.
Note that there is no assumption about the characteristic of R.

Theorem 7.12. Let R be any ring, and U ⊆ Spec(R). Consider the conditions:

(i) For P, Q ∈ Spec(R), if P ⊆ Q and Q ∈ U , then P ∈ U .
(ii) For every P ∈ U , U ∩ V (P ) contains a non-empty open subset of V (P ).

Then

(a) If U is open then U satisfies (i) and (ii).
(b) Assume that R is Noetherian. If U satisfies (i) and (ii) then U is open.

To prove Theorem 7.10, it suffices to assume that e ∈ N+ and to show that the set
Uc,e := {p ∈ Spec(R) : ec(p) ⩽ e} is open in Spec(R). Proposition 7.3(a) says that,
for P, Q ∈ Spec(R), if P ⊆ Q and Q ∈ Uc,e, then P ∈ Uc,e. To apply Theorem 7.12, it
remains to show that, for every P ∈ Uc,e, Uc,e∩V (P ) contains a non-empty open subset
of V (P ). Theorem 7.10 now follows at once from the Key Lemma (i.e., Lemma 7.13)

that immediately follows. In proving the Key Lemma, we will need to replace R̃ by

an étale extension, as in §6. We will also need to view R as R̃/a, as in Theorem 5.9.
It may be helpful to the reader to review the notation from §§5,6.

Lemma 7.13 (Key Lemma). Let R be a homomorphic image of an excellent ring R̃

of prime characteristic p > 0, say R = R̃/a, let c ∈ R, let e be a positive integer. Let

P̃ ∈ Spec(R̃) be such that a ⊆ P̃ and R̃P̃ is Cohen-Macaulay. Let P := P̃ /a, and
assume that RP is S2. Suppose that ec(P ) ⩽ e. Then there exists g ∈ R \P such that
ec(Q) ⩽ e for all Q ∈ D(g) ∩ V (P ).

Proof. We may localize R̃ repeatedly (but only finitely many times) at elements g ∈
R̃ \ P̃ , and we shall do this finitely many times in the course of the proof. Each time,

we change notation and continue to use R̃, P̃ , R, etc. In conquence, we my assume,
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for example, that R̃ is Cohen-Macaulay, that R is S2, and that A := R/P is regular.

We want to reduce to the case where R̃P̃ has a canonical module (and that we may

assume that it has the form ω̃P̃ , where ω is a global canonical module for R̃). To this

end, we use Theorem 6.3 to replace R̃ by a suitable étale extension
˘̃
R. In doing this,

we may need to localize at another element of R̃ \ P̃ . Then ˘̃
R has a global canonical

module ˘̃ω (we use this notation, but to be clear, at this point we do not have a module

ω̃ over R̃ that somehow gives rise to ˘̃ω). Let R̆ :=
˘̃
R⊗R̃R, which is still S2, since this

is an étale extension of R. The purity exponent e of c in RP is the same as the purity
exponent of the image of c in R̆P̆ , with notation as in Theorem 6.3, since pointed
étale extensions are geometrically regular and we may apply Theorem 7.8. Suppose
that we know the theorem for R̆, so that ec(Q̆) ⩽ e for all Q̆ in an open neighborhood

of P̆ in V (P̆ ). Since RQ → R̆Q̆ is pointed étale and hence faithfully flat, we have

ec(Q) ⩽ ec(Q̆) by Theorem 7.8(a). It follows from Theorem 6.3(7) that ec(Q) ⩽ e as
well for all Q in an open neighborhood of P in V (P ). Hence, it suffices to verify the

Key Lemma after the pointed étale extension from R̃ to
˘̃
R.

Therefore, in the remainder of the proof we may assume that R̃ has a canonical

module ω̃. For any prime Q̃ of R̃ in V (a), we write Q = Q̃/a and κQ̃ := R̃Q̃/Q̃RQ̃
∼=

RQ/QRQ =: κQ. After localization at one element of W̃ := R̃ \ P̃ , we may assume
that all of the conclusions of Theorem 5.9 hold, and we shall use the notation of
that theorem. Recall that for rings and modules annihilated by a, localization at an

element of W̃ yields the same result as localization at the image of that element in

W := R \ P . After such a localization, we still denote the rings as R̃ and R.

Let ω = Extk
R̃
(R, ω̃), where k = dim(R̃P̃ )−dim(RP ), be defined as in Theorem 5.9,

and let E := Hh
P (ω), where h = dim(RP ), so that EP is an injective hull for κP over

RP . As in Theorem 5.9, after localization at an element in W , we have AnnE P ∼= A.
Write AnnE P = Au, for some u ∈ E. The image of u in EP generates the socle.
Note that in this theorem and its proof, q = pe is fixed, and the hypothesis that
ec(P ) ⩽ e tells us that cuq ̸= 0 in FRP

(EP ) ∼= F e
R(E)P . Up to radical, the ideal PRP

can be generated by h many elements in RP . Thus, after localization at an element
in W , we assume that P is the radical of an ideal generated by h many elements in
R. Consequently, we may identify the following naturally isomorphic R-modules:

F e
R(E)

∼= F e
R

(
Hh

P (ω)
) ∼= Hh

P [q]

(
F e
R(ω)

) ∼= Hh
P

(
F e
R(ω)

)
.

Thus, we know that 0 ̸= cuq ∈ Hh
P

(
F e
R(ω)

)
P
. Let M := Hh

P

(
F e
R(ω)

)
. Here, we

think of F e
R(ω) as simply a fixed, finitely generated R-module. By Theorem 2.19(f)

and Proposition 2.5(c), after localization at one element of W , we have that M and
M/R(cuq) are free filterable relative to P , so that we may apply Corollary 4.5 to
R′(1R′ ⊗R (cuq)

)
⊆ R′ ⊗R M , with any choice of R′ that is flat over R.
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Now fix an arbitrary Q̃ ∈ V (P̃ ) and let y := y1, . . . , yd ∈ R̃map to a regular system
of parameters in the regular local ring AQ̃. By Theorem 5.9, we have ERQ

(κQ) ∼=
Hd

(y)

(
Hh

P (ω)
)
Q

over RQ and, with notation as in 4.4, we may take v := [u; y] as a

socle generator of Hd
(y)

(
Hh

P (ω)
)
Q
.

We may identify F e
RQ

(
ERQ

(κQ)
) ∼= F e

RQ

(
Hd

(y)

(
Hh

P (ω)
)
Q

)
∼= Hd

(yq)

(
F e
R(E)

)
Q

and

write vq = [u; y]q = [uq; yq] ∈ Hd
(yq)

(
F e
R(E)

)
Q

∼= F e
RQ

(
ERQ

(κQ)
)
. Then cvq =

[cuq; yq] ∈ Hd
(yq)

(
F e
R(E)

)
Q
, where cuq ∈ F e

R(E) = M . We apply Corollary 4.5 with

R′ = RQ, and with yq replacing y as in Remark 4.6, to show that the annihilator of

[cuq; yq] in RQ is
(
AnnR(cu

q)
)
RQ + (yq)RQ. Since cuq ∈ F e

R(E) does not become 0
after localization at P , we see that AnnR(cu

q) ⊆ P . Hence, we conclude that

AnnRQ
(cvq) = AnnRQ

([cuq; yq]) =
(
AnnR(cu

q)
)
RQ + (yq)RQ

⊆ PRQ + (yq)RQ =
(
P + (yq)

)
RQ ⊆ QRQ.

This means that 0 ̸= cvq ∈ Hd
(yq)

(
F e
R(E)

)
Q

∼= F e
RQ

(
ERQ

(κQ)
)
. By Theorem 7.7

applied to RQ, we see that the purity exponent for the image of c in RQ is at most
e. In summary, there exists g ∈ R \ P such that, for all Q ∈ D(g) ∩ V (P ), we have
ec(Q) ⩽ e. □

Remark 7.14. The reason for assuming that R is S2 in the Key Lemma 7.13 is that
in this case, for every P ∈ Spec(R) there exists a finitely generated R-module ω such
that the injective hull of the residue field for RQ can be realized as the top local
cohomology module of ωQ over RQ, for all prime ideals Q in an open neighborhood
of P in V (P ). Then, when we apply the Frobenius functor F e, we still have the
top local cohomology of a finitely generated module. The proof works in a similar
fashion whenever for every P ∈ Spec(R) there exists a finitely generated R-module
Ψ such that the injective hull of κQ can be realized as the localization at Q of a
top local cohomology with support in Q of Ψ, for all prime ideals Q in an open
neighborhood of P in V (P ). The module Ψ then plays the role of ω in the argument.
The proof also depends on the fact that, after replacing R with its localization at

one element of R \ P , the top local cohomology H
dim(RP )
P

(
F e
R(ω)

)
is generically free

filterable relative to P . We do not know how to prove the needed facts about being
generically free filterable relative to P unless we can realize the injective hulls that
arise as localizations of cohomology modules.

Finally, we note the following consequence of Theorem 7.10:

Corollary 7.15. Let R be a Noetherian ring of prime characteristic p > 0 such that
R is S2 and is a homomorphic image of Cohen-Macaulay excellent ring. Then the
F-pure locus is open in R.
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Proof. Take c = 1R ∈ R and apply Theorem 7.10. The F-pure locus is the set of
primes P such that the purity exponent of 1RP

in RP is at most 1. □
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