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Note. Each homework set contains four (4) regular problems. When solving the problems,
please make sure that your arguments are rigorous and complete.

There is also a set of problems for extra credits; see the last page of this file.
In this course, a ring may not be commutative and may not have unity. By default, a

module over a ring R means a left R-module.
There are three (3) PDF files for the homework sets and exams, one with the problems

only, one with hints, and one with solutions. Links are available below.

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N



Math 8221 (Spring 2025) Homework Set #01 (Due 01/24) Solutions

Problem 1.1. Let R be a ring (not necessarily with 1), r ∈ R, M an R-module (i.e., a left
R-module), and x ∈M .

(1) Prove that AnnR(x) is a left ideal of R.
(2) Prove that AnnR(M) is an ideal (i.e., a two-sided ideal) of R.
(3) Prove the one that (always) holds: AnnR(x) ⊆ AnnR(M) or AnnR(M) ⊆ AnnR(x).
(4) Disprove AnnR(x) ⊆ AnnR(rx) with a concrete counterexample.

Proof. (1) Since 0R · x = 0M , we see 0R ∈ AnnR(x); therefore AnnR(x) ̸= ∅. Let a, b ∈
AnnR(x), so that ax = 0M = bx; and let s ∈ R. Then

(a− b)x = ax− bx = 0M − 0M = 0M and (sa)x = s(ax) = s0M = 0M ,

which implies a− b ∈ AnnR(x) and sa ∈ AnnR(x). Therefore AnnR(x) is a left ideal of R.
(2) (This is similar to (1) above.) As 0R · y = 0M for all y ∈ M , we see that

0R ∈ AnnR(M) and, hence, AnnR(M) ̸= ∅. Let a, b ∈ AnnR(M) and s ∈ R, so that
ay = 0M = by for all y ∈M . Then

(a− b)y = ay − by = 0M − 0M = 0M

(sa)y = s(ay) = s0M = 0M

and (as)y = a(sy) = 0M

for all y ∈M.

Thus a− b, sa and as are all in AnnR(M). Therefore AnnR(M) is a two-sided ideal of R.
(3) We prove AnnR(M) ⊆ AnnR(x) as follows: Let a ∈ AnnR(M). By definition, ay = 0M

for all y ∈M . In particular, ax = 0M and hence a ∈ AnnR(x).
(4) Let R =M2(Z), the ring of all 2×2 matrices over Z; and letM = R, which is naturally

a left R-module. Then for x = ( 1 1
0 0 ) ∈M and r = ( 0 0

1 0 ) ∈ R (so that rx = ( 0 0
1 1 ) ∈M), it is

routine to verify ( 0 1
0 0 ) ∈ AnnR(x) but ( 0 1

0 0 ) /∈ AnnR(rx). □

Problem 1.2. Let R be a commutative ring (not necessarily with 1), r ∈ R,M an R-module
(i.e., a left R-module), and x ∈M .

(1) Prove that AnnR(x) is an ideal of R.
(2) Prove AnnR(x) ⊆ AnnR(rx). (Compare with Problem 1.1(4) above.)

Proof. (1) This follows from Problem 1.1(1) and the fact that a left ideal of a commutative
ring is automatically a (two-sided) ideal. (One may prove this from scratch.)

(2) Let a ∈ AnnR(x), so that ax = 0M by definition. Then

a(rx) = (ar)x = (ra)x = r(ax) = r0M = 0M ,

which shows a ∈ AnnR(rx). Consequently, AnnR(x) ⊆ AnnR(rx), as required. □

Problem 1.3. Let R be a ring with 1 (i.e., 1R ∈ R), M a (left) R-module, and x ∈M .

(1) Prove the following: x = 0M ⇐⇒ AnnR(x) = R.
(2) Prove the following: M = {0M} ⇐⇒ AnnR(M) = R. (Compare with Problem 1.5.)

Proof. (1) First, we have the following (which does not rely on the assumption 1 ∈ R)

x = 0M =⇒ rx = 0M for all r ∈ R

=⇒ r ∈ AnnR(x) for all r ∈ R

=⇒ R ⊆ AnnR(x) =⇒ R = AnnR(x).
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Conversely, we have

AnnR(x) = R
1∈R
=⇒ 1R ∈ AnnR(x) =⇒ 1R · x = 0M =⇒ x = 0M .

(2) This equivalence may be proved as follows:

M = {0M} ⇐⇒ y = 0M for all y ∈M
1.3(1)⇐⇒ AnnR(y) = R for all y ∈M

⇐⇒ ry = 0M for all y ∈M and for all r ∈ R

⇐⇒ r ∈ AnnR(M) for all r ∈ R

⇐⇒ R ⊆ AnnR(M) ⇐⇒ R = AnnR(M).

This completes the proof. □

Problem 1.4. Let R be a ring, M an R-module, and x, y ∈M .

(1) Show AnnR(x) ∩ AnnR(y) ⊆ AnnR(x+ y).
(2) Prove or disprove: AnnR(x) = AnnR(−x).
(3) Prove or disprove: AnnR(x) ∩ AnnR(y) = AnnR(x+ y).

Proof. (1) Let r ∈ AnnR(x) ∩ AnnR(y), so that r ∈ AnnR(x) and r ∈ AnnR(y). Then
rx = 0M = ry, and consequently,

r(x+ y) = rx+ ry = 0M + 0M = 0M ,

which shows r ∈ AnnR(x+ y). Thus AnnR(x) ∩ AnnR(y) ⊆ AnnR(x+ y).
(2) We prove AnnR(x) = AnnR(−x) as follows: For any r ∈ R,

r ∈ AnnR(x) ⇐⇒ rx = 0M ⇐⇒ −(rx) = 0M

⇐⇒ r(−x) = 0M ⇐⇒ r ∈ AnnR(−x).
(3) We disprove “AnnR(x)∩AnnR(y) = AnnR(x+y)” with the following (counter)example:

R = Z, M = R, x = 2 ∈M, and y = −2 ∈M.

(Note that M is naturally a left module over R.) Then AnnR(x) = {0} = AnnR(y) and
AnnR(x+ y) = R since x+ y = 0. So AnnR(x) ∩ AnnR(y) = {0} ⫋ R = AnnR(x+ y). □

Problem 1.5 (Extra Credit, 1 point). Let M be a (left) module over a ring R (not nec-
essarily with 1). Prove or disprove: M = {0M} ⇐⇒ AnnR(M) = R. (Compare with
Problem 1.3.)

Solution. We disprove the claim “M = {0M} ⇐⇒ AnnR(M) = R” with the following
counterexample:

R = 2Z = {2n |n ∈ Z} and M = Z2 = {0, 1}.
Note thatM is naturally a (left) R-module. (Indeed, M is naturally a Z-module and

R is a subring of Z. For example, for 4 ∈ R and 1 ∈M, we have 4 ·1 = 1+1+
1 + 1 = 4 = 0 ∈ Z2, in which 0 is the zero element of M = Z2.)

Then, for all r = 2n ∈ R, n ∈ Z, we see r · 0 = 0 = r = r · 1. That is, r ∈ AnnR(M) for
all r ∈ R. Thus R ⊆ AnnR(M) and hence R = AnnR(M). But M ̸= {0M}.

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #02 (Due 01/31) Solutions

Problem 2.1. Let R =M2(Z), the ring of all 2× 2 matrices over Z; and let M = R, which
is naturally a (left) R-module. Also consider

x = ( 1 2
0 0 ) ∈M, N1 = {(m 0

n 0 ) |m, n ∈ Z} ⊆M and N2 = {(m n
0 0 ) |m, n ∈ Z} ⊆M.

(1) Determine/describe AnnR(x) and Rx explicitly. No need to justify.
(2) Out of N1 and N2, which one, if any, is an R-submodule of M? No need to justify.
(3) In case Ni is an R-submodule of M , find AnnR(Ni) explicitly. No need to justify.
(4) If Ni is not an R-submodule of M , explain why it is not an R-submodule of M .

Solution. (1) Routine examination (details omitted) should produce results as follows

AnnR(x) = {( 0 b
0 d ) | a, b ∈ Z} and Rx = {( a 2a

c 2c ) | a, b ∈ Z} .

(2) It is straightforward to see that (only) N1 is an R-submodule of M .
(3) For the R-submodule N1, it is routine to deduce that

AnnR(N1) = {0R} = {( 0 0
0 0 )}

(4) For example, with r = ( 0 0
1 0 ) ∈ R and y = ( 3 4

0 0 ) ∈ N2, we have

ry = ( 0 0
1 0 ) (

3 4
0 0 ) = ( 0 0

3 4 ) /∈ N2.

Thus, N2 is not an R-submodule of M . This concludes the solution.

Problem 2.2. Let R be a ring (that may not be commutative or have unity), a ∈ R, and
M an R-module. We define/denote (0 :M a) to be {x ∈M | ax = 0M}.

(1) True or false: (0 :M a) =M ⇐⇒ a ∈ AnnR(M). No justification is necessary.
(2) Disprove with a counterexample: (0 :M a) is (always) an R-submodule of M .
(3) Prove that, if R is commutative, then (0 :M a) is an R-submodule of M .

Solution/Proof. (1) True. Indeed, (0 :M a) =M ⇐⇒ aM = {0M} ⇐⇒ a ∈ AnnR(M).
(2) Similar to Problem 2.1(4), let R = M2(Z) = M , a = ( 0 1

0 0 ) ∈ R, x = ( 1 1
0 0 ) ∈ M , and

r = ( 0 0
1 0 ) ∈ R. It is routine to see that ax = 0M and a(rx) ̸= 0M . In other words, we have

x ∈ (0 :M a), but rx /∈ (0 :M a).

This shows that (0 :M a) is not an R-submodule of M .
(3) Clearly, (0 :M a) ⊆M . Since a0M = 0M , we see 0M ∈ (0 :M a) and hence (0 :M a) ̸= ∅.

Next, let x, y ∈ (0 :M a) and r ∈ R. Then ax = 0M = ay. As R is commutative, we have

a(x− y) = ax− ay = 0M − 0M = 0M ,

a(rx) = (ar)x = (ra)x = r(ax) = r0M = 0M .

Therefore x− y ∈ (0 :M a) and rx ∈ (0 :M a). So (0 :M a) is an R-submodule of M . □

Problem 2.3. Let R be a ring, M be an R-module, and N1, N2 be R-submodules of M .

(1) True or false: both AnnR(N1) and AnnR(N2) are (2-sided) ideals of R.
(2) Prove AnnR(N1 +N2) = AnnR(N1) ∩ AnnR(N2).
(3) Prove AnnR(N1 ∩N2) ⊇ AnnR(N1) + AnnR(N2).
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Solution/Proof. (1) True. This follows immediately from Problem 1.1(2).
(2) This may be proved as follows

r ∈ AnnR(N1 +N2) ⇐⇒ rx = 0M , ∀x ∈ N1 +N2 ⇐⇒ r(x1 + x2) = 0M , ∀xi ∈ Ni

⇐⇒ rx1 = 0M = rx2, ∀xi ∈ Ni (since xi ∈ Ni ⊆ N1 +N2)

⇐⇒ r ∈ AnnR(N1) and r ∈ AnnR(N2)

⇐⇒ r ∈ AnnR(N1) ∩ AnnR(N2)

(3) Let t ∈ AnnR(N1) + AnnR(N2), so that t = t1 + t2 with ti ∈ AnnR(Ni). Then, for all
x ∈ N1 ∩N2 (so that x ∈ N1 and x ∈ N2), we see

tx = (t1 + t2)x = t1x+ t2x = 0M + 0M = 0M .

Therefore, t ∈ AnnR(N1 ∩N2). This shows AnnR(N1 ∩N2) ⊇ AnnR(N1) + AnnR(N2). □

Problem 2.4. (1) Prove that C is a finitely generated R-module.
(2) Prove that Q is not a finitely generated Z-module.

Proof. (1) We see that C is generated by S = {1, i} as an R-module. (Indeed, for every

z ∈ C, we have z = a+ bi = a · 1 + b · i for some a, b ∈ R and hence z ∈ (S).)
(2) Suppose, on the contrary, that Q is a finitely generated module over Z. To be explicit,

say Q is generated by
{
x1 = a1

b1
, . . . , xg = ag

bg

}
with ai, bi ∈ Z, bi ̸= 0 and g ∈ N. That

is, Q = {
∑g

i=1 nixi | ni ∈ Z}, as Z has unity. Let m = lcm(b1, . . . , bg), which is a positive
integer. Consider 1

m+1
∈ Q, which should satisfy

1

m+ 1
=

g∑
i=1

kixi =

g∑
i=1

kiai
bi

for some ki ∈ Z, i = 1, . . . , g.

Now, as m
bi
∈ Z for all i = 1, . . . , g (because of the choice of m), we see

m

m+ 1
= m · 1

m+ 1
= m ·

g∑
i=1

kiai
bi

=

g∑
i=1

mkiai
bi

=

g∑
i=1

m

bi
kiai ∈ Z.

But the above is a contradiction. Therefore, Q is not a finitely generated Z-module. □

Problem 2.5 (Extra Credit, 1 point). Let R, M , N1 and N2 be as in Problem 2.3. Prove
or disprove: AnnR(N1 ∩N2) = AnnR(N1) + AnnR(N2). (Compare with Problem 2.3(3).)

Solution. We disprove the claim with the following counterexample:

R =M2(Z) =M, N1 = {(m 0
n 0 ) |m, n ∈ Z} ⩽M and N2 = {( 0 m

0 n ) |m, n ∈ Z} ⩽M.

It is routine to see AnnR(N1) = {0R} = AnnR(N2). Hence AnnR(N1) + AnnR(N2) = {0R}.
But AnnR(N1 ∩N2) = R, since N1 ∩N2 = {0M}.
(The claim can also be disproved with vector spaces: Let R = Q, M =

{(a, b) | a, b ∈ Q}, N1 = {(a, 0) | a ∈ Q} and N2 = {(0, b) | b ∈ Q}. Then AnnR(N1) +
AnnR(N2) = {0R} ⊊ R = AnnR(N1 ∩N2). Note that N1 ∩N2 = {0M}.)

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #03 (Due 02/07) Solutions

Problem 3.1. Let R be a ring and M an R-module. Let A, B, C be R-submodules of M .

(1) Prove (A+B) ∩ C ⊇ (A ∩ C) + (B ∩ C).
(2) Assume A ⊆ C hence A ∩ C = A. Prove (A+B) ∩ C = (A ∩ C) + (B ∩ C).

Proof. (1) We have the following inclusions

(A ∩ C) + (B ∩ C) ⊆ A+B and (A ∩ C) + (B ∩ C) ⊆ C + C = C,

which imply that (A ∩ C) + (B ∩ C) ⊆ (A+B) ∩ C.
(2) Let x ∈ (A + B) ∩ C. Thus x ∈ C and x = a + b for some a ∈ A and b ∈ B. Then

x+ (−a) ∈ C since x ∈ C and −a ∈ A ⊆ C. Consequently, we have

B ∋ b = x− a = x+ (−a) ∈ C, which implies b ∈ B ∩ C.
Hence x = a+ b ∈ A+ (B ∩ C) = (A ∩ C) + (B ∩ C). This completes the proof. □

Problem 3.2. Let R be a ring (not necessarily with unity),M and N be R-modules, X ⊆M
such that X generates M , and f, g ∈ HomR(M,N). Prove or disprove: If f |X = g|X then
f = g. (You may assume X ̸= ∅, as this is clear when X = ∅.)

Proof. We prove the claim f = g as follows: For all x ∈ X, we have

(f − g)(x) = f(x)− g(x) = 0N , implying x ∈ Ker(f − g).

Thus X ⊆ Ker(f − g). As X generates M , we see M ⊆ Ker(f − g) hence Ker(f − g) =M .
(Note that Ker(f − g) is an R-submodule of M.) Consequently, for all m ∈M ,

f(m)− g(m) = (f − g)(m) = 0N , i.e., f(m) = g(m).

This verifies f = g, establishing the claim. (This could also be proved in a ‘more

elementary’ fashion: For every m ∈M = (X), write m =
∑

x∈X(rxx+nxx), with

rx ∈ R and nx ∈ Z (almost all zero). Consequently, we see

f(m) = f

(∑
x∈X

(rxx+ nxx)

)
=
∑
x∈X

(
rxf(x) + nxf(x)

)
=
∑
x∈X

(
rxg(x) + nxg(x)

)
= g

(∑
x∈X

(rxx+ nxx)

)
= g(m).

As f(m) = g(m) for all m ∈M, this verifies f = g.) □

Problem 3.3. Let R be a commutative ring and let M, N be R-modules. Note that
HomR(M,N) is an R-module (such that, for all r ∈ R and h ∈ HomR(M,N), we

define r ∗ h ∈ HomR(M,N) by (r ∗ h)(m) = rh(m) for all m ∈M).

(1) Prove ot disprove: AnnR(M) ⊆ AnnR(HomR(M,N)).
(2) Prove ot disprove: AnnR(N) ⊆ AnnR(HomR(M,N)).

Proof. Denote the zero element of HomR(M,N) by 0H . As we know, this zero map is given
by 0H(x) = 0N for all x ∈M .

(1) We prove the claim. Let r ∈ AnnR(M), h ∈ HomR(M,N) and m ∈M . Then

(r ∗ h)(m) = r(h(m)) = h(rx) = h(0M) = 0N = 0H(m).

As m ∈ M is arbitrary, we see that r ∗ h = 0H . Then, as h ∈ HomR(M,N) is arbitrary, we
see r ∈ AnnR(HomR(M,N)). Finally, as r ∈ AnnR(M) is arbitrary, we prove the inclusion
AnnR(M) ⊆ AnnR(HomR(M,N)).
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(2) We prove the claim. For all r ∈ AnnR(N), h ∈ HomR(M,N) and m ∈M , we have

(r ∗ h)(m) = r(h(m)) = 0N = 0H(m),

which verifies AnnR(N) ⊆ AnnR(HomR(M,N)), as required. □

Problem 3.4. Let R be a (not necessarily commutative) ring and let N be an R-module.
We already know that (HomR(R,N), +) is an abelian group. For every r ∈ R and for every
h ∈ HomR(R,N), we define r ∗ h : R → N as (r ∗ h)(x) = h(xr) for all x ∈ R.

(1) Show that r ∗ h ∈ HomR(R,N) for all r ∈ R and for all h ∈ HomR(R,N).
(2) Prove that HomR(R,N) is an R-module (under the scalar multiplication r ∗ h).

Proof. (1) Let s ∈ R and h ∈ HomR(R,N). For all x, y, r ∈ R, we have

(s ∗ h)(x+ y) = h((x+ y)s) = h(xs+ ys) = h(xs) + h(ys) = (s ∗ h)(x) + (s ∗ h)(y),
(s ∗ h)(rx) = h((rx)s) = h(r(xs)) = r[h(xs)] = r[(s ∗ h)(x)],

which verifies that s ∗ h is an R-linear homomorphism, i.e., s ∗ h ∈ HomR(R,N).
(2) Let s, t ∈ R and f, g ∈ HomR(R,N). For all x ∈ R, we have

[s ∗ (f + g)](x) = (f + g)(xs) = f(xs) + g(xs)

= (s ∗ f)(x) + (s ∗ g)(x) = [(s ∗ f) + (s ∗ g)](x),
[(s+ t) ∗ g](x) = g(x(s+ t)) = g(xs+ xt) = g(xs) + g(xt)

= (s ∗ g)(x) + (t ∗ g)(x) = [(s ∗ g) + (t ∗ g)](x),
[(st) ∗ g](x) = g(x(st)) = g((xs)t) = (t ∗ g)(xs) = [s ∗ (t ∗ g)](x),
(1R ∗ g)(x) = g(x1R) = g(x), in the situation where 1R ∈ R.

Therefore, s ∗ (f + g) = (s ∗ f) + (s ∗ g), (s + t) ∗ g = (s ∗ g) + (t ∗ g), (st) ∗ g = s ∗ (t ∗ g)
and 1R ∗ g = g (if 1R ∈ R). This proves that HomR(R,N) is an R-module. □

Problem 3.5 (Extra Credit, 1 point). Let R and M be as in Problem 3.1. Prove or
disprove: (A+B) ∩ C = (A ∩ C) + (B ∩ C) for all R-submodules A, B, C of M .

Solution. This can be disproved by the following counterexample: Let R be any non-zero
ring (e.g., R = Z) and M = R⊕R = {(a, b) | a, b ∈ R}. Let

A = {(a, 0) | a ∈ R}, B = {(0, b) | b ∈ R} and C = {(c, c) | c ∈ R},
which are all R-submodules of M . It is easy to see

A+B =M, A ∩ C = {0M} and B ∩ C = {0M}.
Thus (A+B) ∩ C = C ̸= {0M} = (A ∩ C) + (B ∩ C). (Compare with Problem 2.5.)

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #04 (Due 02/14) Solutions

Problem 4.1. Let R be a ring with unity and let M be an R-module. For every x ∈ M ,
define hx : R →M by hx(s) = sx, ∀s ∈ R. By Problem 3.4, HomR(R,M) is an R-module.

(1) For every x ∈M , prove that hx ∈ HomR(R,M).

Define φ : M → HomR(R,M) by φ(x) = hx, ∀x ∈M . Complete the following as well:

(2) Prove or disprove: φ ∈ HomR

(
M, HomR(R,M)

)
, i.e., φ is R-linear.

(3) Prove or disprove: φ is an injective (i.e., 1-1) function.
(4) Prove or disprove: φ is a surjective (i.e., onto) function.
(5) Prove or disprove: φ is an R-linear isomorphism, so that M ∼= HomR(R,M).

Proof. (1) The claim that hx ∈ HomR(R,M) holds because, for all a, b, r ∈ R,

hx(a+ b) = (a+ b)x = ax+ bx = hx(a) + hx(b)

and hx(ra) = (ra)x = r(ax) = rhx(a).

(2) We prove the claim. Let x, y ∈M and r ∈ R be arbitrary. For all s ∈ R, we have

φ(x+ y)(s) = hx+y(s) = s(x+ y) = sx+ sy

= hx(s) + hy(s) = (hx + hy)(s) = [φ(x) + φ(y)](s)

and φ(rx)(s) = hrx(s) = s(rx) = (sr)x = hx(sr) = (r ∗ hx)(s) = [r ∗ φ(x)](s),

which verifies φ(x+y) = φ(x)+φ(y) and φ(rx) = r∗φ(x), with ∗ defined as in Problem 3.4.
Hence φ : M → HomR(R,M) is a homomorphism, i.e., φ ∈ HomR

(
M, HomR(R,M)

)
.

(3) We prove the claim. For x, y ∈M , if φ(x) = φ(y), i.e., hx = hy, then

x = 1Rx = hx(1R) = hy(1R) = 1Ry = y.

This verifies that φ is injective. (This can also be done by examining Ker(φ).)
(4) We prove the claim. Let g ∈ HomR(R,M) be arbitrary. Then we have

g(s) = g(s1R) = sg(1R) = hg(1R)(s) for all s ∈ R,

which indicates g = hg(1R) = φ
(
g(1R)

)
, with g(1R) ∈M . This shows that φ is onto.

(5) By the above, we see that φ is anR-linear isomorphism. Hence,M ∼= HomR(R,M). □

Problem 4.2. Let R be a ring and h ∈ HomR(M,N), where M and N are R-modules. Let
A, B be subsets of M . Prove that h(A) ⊆ h(B) ⇐⇒ A ⊆ B + Ker(h). Here, for any
X, Y ⊆M , define X + Y = {x+ y | x ∈ X and y ∈ Y }.

Proof. “ =⇒ ” Assume h(A) ⊆ h(B) and let a ∈ A. Then h(a) ∈ h(A) ⊆ h(B), meaning
that there exists b ∈ B such that h(b) = h(a), which forces a − b ∈ Ker(h). Consequently,
a = b+ (a− b) ∈ B +Ker(h). This verifies the claim that A ⊆ B +Ker(h).

“ ⇐= ” Assume A ⊆ B + Ker(h) and assume α ∈ h(A). Then α = h(a) for some a ∈ A,
which implies a ∈ B + Ker(h). Thus a = b + k for some b ∈ B and k ∈ Ker(h). Therefore,
α = h(a) = h(b+k) = h(b)+h(k) = h(b)+0N = h(b) ∈ h(B). This verifies h(A) ⊆ h(B). □

Problem 4.3. Let R be a commutative ring, M an R-module, and ∅ ̸= S ⊆ R such that
S is multiplicatively closed (i.e., st ∈ S for all s, t ∈ S).

(1) Denote T :=
⋃

s∈S(0 :M s). Prove that T is an R-submodule of M .
(2) Consider the quotient R-module M/T . Prove that

⋃
s∈S(0 :M/T s) = {0M/T}.
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Proof. (1) Since s0M = 0M for any s ∈ S, we see 0M ∈ (0 :M s) ⊆ T . Next, let x, y ∈ T and
r ∈ R. Then x ∈ (0 :M s) and y ∈ (0 :M t) for some s, t ∈ S. Thus

(st)(x− y) = (st)x− (st)y = t(sx)− s(ty) = t0M − s0M = 0M − 0M = 0M .

Thus x− y ∈ (0 :M st) ⊆ T , since st ∈ S. Also, from s(rx) = r(sx) = r0M = 0M , it follows
that rx ∈ (0 :M s) ⊆ T . This proves that T is an R-submodule of M .
(2) It is clear that 0M/T ∈

⋃
s∈S(0 :M/T s), hence

⋃
s∈S(0 :M/T s) ⊇ {0M/T}. To prove the

other inclusion, let ξ ∈
⋃

s∈S(0 :M/T s). This means ξ ∈ M/T and ξ ∈ (0 :M/T u) for some
u ∈ S. Since ξ ∈M/T , we may write ξ = z + T for some z ∈M . Consequently,

uz + T = u(z + T ) = uξ = 0M/T = 0M + T,

which implies uz ∈ T =
⋃

s∈S(0 :M s). So there exists v ∈ S such that uz ∈ (0 :M v). Thus
(vu)z = v(uz) = 0M , showing z ∈ (0 :M vu) ⊆

⋃
s∈S(0 :M s) = T , since vu ∈ S. Now we see

ξ = z + T = 0M + T = 0M/T .

Thus
⋃

s∈S(0 :M/T s) ⊆ {0M/T}. Therefore,
⋃

s∈S(0 :M/T s) = {0M/T}. □

Problem 4.4. Let M be an R-module, and N1, N2 be R-submodules of M . Consider the
R-homomorphism h :M →M/N1 ×M/N2 defined by h(m) = (m+N1, m+N2), ∀m ∈M .

(1) Fill in the blank: Ker(h) = N1 ? N2. Justify you claim.
(2) Prove that h is onto M/N1 ×M/N2 if N1 +N2 =M . (Also see Problem 4.5.)

(3) Assume N1 +N2 =M . Fill in the blank: M
/(
N1 ? N2

) ∼= M
N1

× M
N2

. Justify.

Proof. (1) We claim that Ker(h) = N1 ∩N2. Indeed, we have

w ∈ Ker(h) ⇐⇒ (w +N1, w +N2) = h(w) = (0 +N1, 0 +N2)

⇐⇒ w +N1 = 0 +N1 and w +N2 = 0 +N2

⇐⇒ w − 0 ∈ N1 and w − 0 ∈ N2

⇐⇒ w ∈ N1 and w ∈ N2 ⇐⇒ w ∈ N1 ∩N2.

(2) Let (x + N1, y + N2) ∈ M/N1 ×M/N2, with x, y ∈ M . As M = N1 + N2, we see
x = a+ b and y = c+ d for some a, c ∈ N1 and b, d ∈ N2. Let z = b+ c ∈M . We have

z +N1 = x+N1 and z +N2 = y +N2,

since z− x = (b+ c)− (a+ b) = c− a ∈ N1 and z− y = (b+ c)− (c+ d) = b− d ∈ N2. Thus

h(z) = (z +N1, z +N2) = (x+N1, y +N2).

This shows that h is onto M/N1 ×M/N2, as required.
(3) By the fundamental theorem of homomorphisms, M

/
(N1∩N2) ∼= M/N1×M/N2. □

Problem 4.5 (Extra Credit, 1 point). Let R, M, N1, N2 and h : M → M/N1 × M/N2

be as in Problem 4.4 above. Prove or disprove the converse of Problem 4.4(2): the
homomorphism h is onto M/N1 ×M/N2 only if N1 +N2 =M .

Proof. We prove the claim: Let x ∈ M be arbitrary. As h is onto, there exists v ∈ M such
that (x+N1, 0 +N2) = h(v), which means (x+N1, 0 +N2) = (v +N1, v +N2). Thus

x+N1 = v +N1 and 0 +N2 = v +N2, which imply x− v ∈ N1 and v ∈ N2.

Then x = (x− v) + v ∈ N1 +N2. This shows M ⊆ N1 +N2. Hence M = N1 +N2. □

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Midterm Exam I (02/20) Review Problems

Modules, basic notions: Problems 1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2.

Submodules, properties: Problems 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.5.

Homomorphisms: Problems 3.2, 3.3, 3.4, 4.1, 4.2, 4.4.

Quotient modules: Problems 4.3, 4.4, 4.5.

Lecture notes and textbooks: All we have covered in class.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 8221 (Spring 2025) Midterm Exam I (02/20) Review Topics

Module. Let R be a ring and (M,+) an abelian group. We say M is an R-module if there
is a scalar multiplication rx ∈M , defined for all r ∈ R and x ∈M , such that

r(x+ y) = rx+ ry, (r + s)x = rx+ sx, (rs)x = r(sx), and 1Rx = x (if 1R ∈ R)

for all r, s ∈ R and all x, y ∈M . If M is an R-module, then

0Rx = 0M = r0M and (−r)x = −(rx) = r(−x) for all r ∈ R, x ∈M.

Notations. Let R be a ring, M an R-module, ∅ ̸= A ⊆ R and ∅ ̸= X ⊆M .

• AnnR(X) := {r ∈ R | rx = 0M for all x ∈ X}.
• (0 :M A) := {x ∈M | ax = 0M for all a ∈ A}.

Submodule. Let R be a ring, M an R-module and N ⊆M . Then N is an R-submodule of
M , denoted N ⩽M , if and only if 0M ∈ N , x− y ∈ N and rx ∈ N for all x, y ∈ N , r ∈ R.

• The R-submodule generated byX ⊆M is
{ ∑

finite

(rxx+nxx) |x ∈ X, rx ∈ R, nx ∈ Z
}
.

• For any family {Ni}i∈Λ of R-submodules of M ,
∑

i∈ΛNi =
{ ∑

finite

yi | yi ∈ Ni, i ∈ Λ
}
.

Homomorphism. Let M, N be R-modules (with R a ring). A function h : M → N is said
to be an R-homomorphism (or an R-linear map) iff h(x+y) = h(x)+h(y) and h(rx) = rh(x)
for all x, y ∈M and all r ∈ R. For any R-linear map h : M → N , we have

• h(0M) = 0N , h(−x) = −h(x) and AnnR(x) ⊆ AnnR(h(x)) for all x ∈M .
• Ker(h) := {x ∈M |h(x) = 0N} ⩽M and Im(h) := {h(x) |x ∈M} ⩽ N .
• Denote by HomR(M,N) the set of all R-homomorphisms from M to N .
• For φ, ψ ∈ HomR(M,N) and r ∈ R, define φ+ ψ : M → N and r ∗ φ : M → N by

(φ+ ψ)(x) := φ(x) + ψ(x) and (r ∗ φ)(x) := rφ(x) for all x ∈M.

• If R is commutative, then HomR(M,N) is an R-module under the above operations.

Quotient module. Let R be a ring, N ⩽ M be R-modules. Then the quotient R-module
of M modulo N is the quotient (abelian) group M/N := {x+N |x ∈M} together with

r(x+N) = rx+N, ∀r ∈ R, ∀x ∈M.

Note that, for x, y ∈M , x+N = y +N ⇐⇒ x− y ∈ N .

Isomorphism theorems. Let R be a ring, M, N be R-modules, and h ∈ HomR(M,N).
Let H and K ⩽ L be R-submodules of M . Then

M
Ker(h)

∼= Im(h), H
(H∩K)

∼= H+K
K

and M/K
L/K

∼= M
L
.

Direct product, external direct sum. Let {Mi}i∈Λ be a family of R-modules. The
Cartesian product, denote

∏
i∈ΛMi, is an R-module under component-wise operations.

• The direct product of {Mi}i∈Λ is exactly the above R-module structure on
∏

i∈ΛMi.
• The external direct sum, denoted

⊕
i∈ΛMi, consists of the elements of

∏
i∈ΛMi whose

components are almost all zero. Hence
⊕

i∈ΛMi is an R-submodule of
∏

i∈ΛMi.
• In case Λ = {1, . . . , n}, we have

∏n
i=1Mi = {(x1, . . . , xn) |xi ∈Mi} =

⊕n
i=1Mi.

Note: The above list is not intended to be complete.
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Math 8221 (Spring 2025) Midterm Exam I (02/20) Solutions

Solutions

have been withdrawn

from the site

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #05 (Due 02/28) Solutions

Problem 5.1. Determine whether Q, which is a Z-module, is free over Z. Justify.

Solution. We claim that Q is not a free Z-module. By way of contradiction, suppose Q is
free over Z with a basis B. Then |B| = ∞, because Q is not finitely generated as a Z-module
by Problem 2.4(2). Choose any two distinct elements b1, b2 ∈ B. Write bi =

mi

ni
with mi ∈ Z

and 0 ̸= ni ∈ Z for i = 1, 2. In fact, we must have mi ̸= 0 since bi ̸= 0 for i = 1, 2. (If

0 ∈ B, then B must be linearly dependent over Z.) Therefore, we get

(n1m2)b1 + (−n2m1)b2 = 0 with n1m2 and − n2m1 ∈ Z \ {0}.

This is a contradiction (to the assumption that B is a basis).

Problem 5.2. Let F , M and N be R-modules, where R is a ring with unity, and let
g ∈ HomR(M,N). Further assume that F is free over R and g is onto N (i.e., g(M) = N).
Prove that, for every f ∈ HomR(F,N), there exists h ∈ HomR(F,M) such that f = g ◦ h.

Proof. Since F is a free R-module, it admits a basis, say B. Let f ∈ HomR(M,N). For
every x ∈ B, we have f(x) ∈ N = g(M) and thus f(x) = g(mx) for some mx ∈ M .
(Such mx ∈ M is not uniquely determined by x in general, but we can choose

one such mx for each x ∈ B.) Stated differently, we have that

for every x ∈ B, there exists mx ∈M such that g(mx) = f(x).

Define a function θ : B → M by θ(x) = mx for all x ∈ B. By the universal property of free
modules, there exists h ∈ HomR(F,M) such that h|B = θ. Thus, for all x ∈ B,

(g ◦ h)(x) = g
(
h(x)

)
= g
(
θ(x)

)
= g(mx) = f(x).

This shows that f |B = (g ◦ h)|B. By Problem 3.2, we establish that f = g ◦ h. □

Problem 5.3. Let M and N be R-modules, where R is a ring, and let h ∈ HomR(M,N).
Let X ⊆M and K ⊆ N . Prove or disprove each of the following:

(1) If K is an R-submodule of N , then h−1(K) is an R-submodule of M .
(2) If M is generated by X over R, then Im(h) is generated by h(X) over R.

Proof. (1) We prove the statement. Let K ⩽ N be an arbitrary R-submodule of N . Clearly,
h−1(K) ⊆ M . Since h(0M) = 0N ∈ K, we see that 0M ∈ h−1(K) and hence h−1(K) ̸= ∅.
Next, let a, b ∈ h−1(K) and let r ∈ R. This implies h(a) ∈ K and h(b) ∈ K. Hence

h(a− b) = h(a)− h(b) ∈ K and h(ra) = rh(a) ∈ K,

which imply a− b ∈ h−1(K) and ra ∈ h−1(K). This proves that h−1(K) ⩽M .
(2) We prove the statement. Let H be the R-submodule generated by h(X). As X ⊆M ,

we see h(X) ⊆ h(M) ⩽ N . Thus H ⩽ h(M). In order to show h(M) ⩽ H, let K be any
R-submodule of N such that h(X) ⊆ K. Then X ⊆ h−1

(
h(X)

)
⊆ h−1(K) ⩽ M . Since X

generates M , this forces h−1(K) =M , which then implies that h(M) = h
(
h−1(K)

)
⊆ K. In

other words, everyR-submoduleK (ofN) that contains h(X) must contain h(M). Therefore,
the R-submodule generated by h(X) must contain h(M), i.e., H ⩾ h(M). This completes the
proof that H = h(M), meaning that Im(h) is generated by h(X) over R. (This could also

be proved in a ‘more elementary’ fashion: For every n ∈ Im(h), there exists
12



m ∈M such that n = h(m). Moreover, as M = (X), write m =
∑

x∈X(rxx+nxx),
with rx ∈ R and nx ∈ Z (almost all zero). Consequently,

h(m) = h

(∑
x∈X

(rxx+ nxx)

)
=
∑
x∈X

(
rxh(x) + nxh(x)

)
∈
(
h(X)

)
.

This verifies that Im(h) is generated by h(X).) □

Problem 5.4. Let R be a ring with unity and M an R-module. Let n ∈ N, and consider
the R-module Rn = R × · · · × R = R ⊕ · · · ⊕ R = {(r1, . . . , rn) | ri ∈ R}. Show that the
following statements are equivalent:

(1) There exist x1, . . . , xn ∈M such that they generate M (i.e., M =
∑n

i=1Rxi).
(2) There exists φ ∈ HomR(R

n,M) such that Im(φ) =M (i.e., φ is onto M).

Proof. Note that Rn is free over R, with a standard basis B = {e1, . . . , en}.
(1) =⇒ (2): Assume that there exist x1, . . . , xn ∈ M such that they generate M over

R. By a theorem proved in class (a.k.a. the universal property of free modules),

∃φ ∈ HomR(R
n,M) such that φ(ei) = xi for all i = 1, . . . , n.

Thus {x1, . . . , xn} ⊆ Im(φ). Note that Im(φ) is an R-submodule of M . Therefore,
the hypothesis that {x1, . . . , xn} generates M implies M ⩽ Im(φ). This proves M =
Im(φ). (Or, since Rn is generated by B, we apply Problem 5.3(2) to conclude

that Im(φ) is generated by φ(B), which then forces Im(φ) =M.)

(2) =⇒ (1): Assume that there exists φ ∈ HomR(R
n,M) such that Im(φ) = M . De-

note xi = φ(ei) for all i = 1, . . . , n. Note that Rn is generated by {e1, . . . , en}. Hence,
by Problem 5.3(2), we see that Im(φ) is generated by φ(B). In other words, M is gen-
erated by x1, . . . , xn. (For a ‘more elementary’ fashion, let m ∈ M. As φ is

onto, there exists (r1, . . . , rn) ∈ Rn such that φ(r1, . . . , rn) = m. Consequently,

m = φ(r1, . . . , rn) = φ
(∑n

i=1
riei

)
=
∑n

i=1
riφ(ei) =

∑n

i=1
rixi ∈

∑n

i=1
Rxi.

This shows that M ⊆
∑n

i=1Rxi. Therefore, M =
∑n

i=1Rxi.) □

Problem 5.5 (Extra Credit, 1 point). Let R, F , M , N and g ∈ Hom(M,N) be as in
Problem 5.2 but without the hypothesis that F is free over R. Disprove the following
statement: For every f ∈ HomR(F,N), there exists h ∈ HomR(F,M) such that f = g ◦ h.
Solution. We disprove the claim with a counterexample as follows: Let

R = Z, M = R, N = Z2 and F = Z2.

Define g : M → N by g(n) = n for all n ∈ Z. It is clear that g ∈ HomR(M,N) and that
g is onto N . Let f : F → N be the identity map (i.e., f = IdZ2), which is in HomR(F,N).
However, f ̸= g◦h for all h ∈ HomR(F,M), because f ̸= 0 while HomR(F,M) consists of the
zero map only. (For all h ∈ HomZ(Z2,Z) and all n ∈ Z2, we have 2h(n) = h(2n) =
h(0) = 0, which forces h(n) = 0.) (Note that F = Z2 is not free over Z.)

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #06 (Due 03/07) Solutions

Problem 6.1. Let R be a ring. Let M be an R-module such that M =M1 ⊞M2 (meaning
that Mi ⩽M , M =M1 +M2 and M1 ∩M2 = {0M}). Also, let N = N1 ⊕N2, where N1, N2

are R-modules. Denote N ′
1 = {(n1, 0N2) | n1 ∈ N1} and N ′

2 = {(0N1 , n2) | n2 ∈ N2}.
(1) Prove that M ∼= M1 ⊕M2 (which simply says that M1 ⊞M2

∼= M1 ⊕M2).
(2) True or false: (a) N1 ⩽ N . (b) N2 ⩽ N . (c) N ′

1 ⩽ N . (d) N ′
2 ⩽ N .

(3) Prove the one that is true: N1 ⊕N2 = N1 ⊞N2 or N1 ⊕N2 = N ′
1 ⊞N ′

2.
(4) True or false: (a) N1

∼= N ′
1. (b) N2

∼= N ′
2.

Proof/solution. (1) Define h : M1 ⊕M2 → M by h(m1,m2) = m1 + m2 for all mi ∈ Mi.
This function is well-defined and it is routine to check that h ∈ HomR(M1 ⊕M2,M). It is
also routine to verify that h is an isomorphism, but we include its verification as follows:
If (m1,m2) ∈ Ker(h) then m1 + m2 = 0M which implies m1 = −m2 ∈ M1 ∩M2 = {0M}
and hence m1 = m2 = 0M . This shows that Ker(h) = {(0M , 0M)} and hence h is injective.
Next, let m ∈ M . Then m ∈ M1 +M2 so m = x1 + x2 for some xi ∈ Mi, which implies
m = h(x1, x2) where (m1,m2) ∈M1 ⊕M2. Hence h is an isomorphism and M1 ⊕M2

∼= M .
(2) Here (a) and (b) are false, while (c) and (d) are true.
(3) We prove N1 ⊕N2 = N ′

1 ⊞N ′
2 as follows: For every (n1, n2) ∈ N1 ⊕N2 with ni ∈ Ni,

we have (n1, n2) = (n1, 0N2)+(0N1 , n2) ∈ N ′
1+N

′
2, which shows that N1⊕N2 ⊆ N ′

1+N
′
2 and

hence N1 ⊕ N2 = N ′
1 + N ′

2. Also, it is clear that N ′
1 ∩ N2 = {(0N1 , 0N2)} = {0N1⊕N2}. This

completes the proof that N1⊕N2 = N ′
1⊞N

′
2. (The other statement, N1⊕N2 = N1⊞N2,

is false, because N1 and N2 are not R-submodules of N1 ⊕N2.)

(4) Both (a) and (b) are true. It is straightforward to construct isomorphisms Ni
∼= N ′

i .
(The point of this exercise is to see that, although ‘internal direct sum’

and ‘external direct sum’ are different from a technical point of view, they

can be identified with each other up to isomorphism.) □

Problem 6.2. Let M and N be R-modules (where R is a ring). Assume that there exist
g ∈ HomR(M,N) and h ∈ HomR(N,M) such that g ◦ h = IdN , the identity map on N .

(1) Prove (from scratch) that M = Ker(g)⊞ Im(h).
(2) Prove or disprove: N = Ker(h)⊞ Im(g).
(3) True or false: Im(h) ∼= N .
(4) True or false: M ∼= Ker(g)⊕N .

Proof/solution. (1) It is clear that Ker(g) ⩽ M and Im(h) ⩽ M . For every x ∈ M , since

g ◦ h = IdN , we see that g
(
x − h

(
g(x)

))
= 0N hence x − h

(
g(x)

)
∈ Ker(g), which yields

x =
(
x − h

(
g(x)

))
+ h

(
g(x)

)
∈ Ker(g) + Im(h). This shows M ⊆ Ker(g) + Im(h) and

hence M = Ker(g) + Im(h). To show that Ker(g) ∩ Im(h) = {0M}, let m ∈ Ker(g) ∩ Im(h),
so that g(m) = 0N and m = h(n) for some n ∈ N , which implies that m = h(n) =

h
(
g
(
h(n)

))
= h

(
g(m)

)
= h(0N) = 0M . Consequently, Ker(g) ∩ Im(h) ⊆ {0M} and hence

Ker(g) ∩ Im(h) = {0M}. Therefore, M = Ker(g)⊞ Im(h).
(2) We prove the statement as follows: From the assumption that g ◦ h = IdN , which is

bijective, we see that h is injective and g is surjective, i.e., Ker(h) = {0N} and Im(g) = N .
Now it is clear that N = Ker(h)⊞ Im(g).

(3) This is true. Since h : N →M is injective, it is clear that N ∼= Im(h).
(4) This is true. We have M = Ker(g)⊞ Im(h) ∼= Ker(g)⊕ Im(h) ∼= Ker(g)⊕N . □
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Problem 6.3. Let S be a ring and let R be a subring of S. (If 1R ∈ R, then further assume
that 1S ∈ S and 1R = 1S.) Let M be an S-module, so that there is a scalar multiplication
denoted by sx for all s ∈ S and x ∈M . (Again, a module means a left module.)

(1) Prove that M is an R-module under the existing (and obvious) scalar multiplication.
(2) Prove or disprove: Every S-submodule of M is an R-submodule of M .
(3) Prove or disprove: Every R-submodule of M is an S-submodule of M .

Proof. (1) (To some degree, this is trivial.) Since M is an S-module, we have

ax ∈M, (ab)x = a(bx), (a+ b)x = ax+ bx and a(x+ y) = ax+ ay

for all a, b ∈ S, hence for all a, b ∈ R, and for all x, y ∈ M . In the case where 1R ∈ R, we
have 1R = 1S and hence 1Rx = 1Sx = x for all x ∈M . Thus M is an R-module.
(2) We prove the statement: Let N be any S-submodule of M . (So N ̸= ∅ and, for

all x, y ∈ N and s ∈ S, we have x − y ∈ N and sx ∈ N.) Thus N ̸= ∅ and, for all
x, y ∈ N and r ∈ R, we have x− y ∈ N and rx ∈ N . Thus N is an R-submodule of M .
(3) We disprove the statement as follows: Let R = Z, S = Q = M . Let N = Z. Then N

is an R-submodule of M but N is not an S-submodule of M . □

Problem 6.4. Let R, S and M be as in Problem 6.3, so that M is also an R-module.

(1) Prove: If M is Noetherian over R then it is Noetherian over S.
(2) Disprove: If M is Noetherian over S then it is Noetherian over R.
(3) Prove or disprove: If M is Artinian over R then it is Artinian over S.
(4) Prove or disprove: If M is Artinian over S then it is Artinian over R.

Proof. (1) We prove the statement as follows: Let N1 ⩽ N2 ⩽ · · · ⩽ Ni ⩽ Ni+1 ⩽ · · · be any
ascending chain of S-submodules of M . This is also an ascending chain of R-submodules of
M in light of Problem 6.3(2). Since M is Noetherian as an R-module, there exists k ∈ N
such that Nk = Nk+i for all i ⩾ 0. This proves that M is a Noetherian S-module.
(2) We disprove the statement: Let R = Q, S = R = M . Then M is Noetherian as an

S-module (as S is a field and M = S); but M is not Noetherian as an R-module (since
M = R is an infinite dimensional vector space over R = Q.
(3) This can be prove in a very similar fashion as (1). (By Problem 6.3(2),

every descending chain of S-submodules of M is also a descending chain of

R-submodules of M, which then must stabilize because M is Artinian as an

R-module. This proves that M is an Artinian S-module.)
(4) This can be disproved by the same example (R = Q, S = R =M) as in (2) above. □

Problem 6.5 (Extra Credit, 1 point). Let R be a ring and let M be an R-module. Let H,
K1 and K2 be R-submodules of M and further assume that H⊞K1 =M = H⊞K2. Prove
or disprove each of the following: (1) K1 = K2. (2) K1

∼= K2 as R-modules.

Solution. (1) The claim can be disproved as follows: Let R = Q, M = {(a, b) | a, b ∈ Q},
H = {(a, a) | a ∈ Q}, K1 = {(a, 0) | a ∈ Q} and K2 = {(0, a) | a ∈ Q}. It is easy to see that
H ⊞K1 =M = H ⊞K2 but K1 ̸= K2.

(2) We prove the claim as follows: By an isomorphism theorem, we have

M/H = (H +Ki)/H ∼= Ki/(H ∩Ki) = Ki/{0} ∼= Ki, for each i = 1, 2.

In short, we have K1
∼= M/H ∼= K2, which implies K1

∼= K2. □

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #07 (Due 03/14) Solutions

Problem 7.1. Let R be a ring, let M , N be R-modules, and let h ∈ HomR(M,N). Also,
let A and B be R-submodules of M such that A ⩽ B (that is, A ⩽ B ⩽ M). Prove the
statement: If h(A) = h(B) and A ∩Ker(h) = B ∩Ker(h) then A = B.

Proof. It suffices to show B ⊆ A. Let b ∈ B, so that h(b) ∈ h(B) = h(A). Thus there
exists a ∈ A such that h(b) = h(a). Consequently, h(b− a) = 0N and hence b− a ∈ Ker(h).
Moreover, as b − a ∈ B, we have b − a ∈ Ker(h) ∩ B = Ker(h) ∩ A ⊆ A. Therefore,
b = (b−a)+a ∈ A+A = A. This completes the proof that B ⊆ A and, hence B = A. (Or,
by Problem 4.2, we see that B ⊆ A+Ker(h). Then, by Problem 3.1(2), we have

B =
(
A+Ker(h)

)
∩B 3.1(2)

= A+
(
Ker(h) ∩B

)
= A+

(
Ker(h) ∩ A

)
⊆ A.) □

Problem 7.2. Let R be a ring, let M be an R-module. Prove that, for any R-submodules
N1 and N2 of M , the following statements are equivalent:

(1) N1 +N2 is a Noetherian (respectively, Artinian) R-module.
(2) Both N1 and N2 are Noetherian (respectively, Artinian) R-modules.

Proof. (1) ⇒ (2): If N1 +N2 is Noetherian/Artinian over R, then all its R-submodules are
Noetherian/Artinian, therefore both N1 and N2 are Noetherian/Artinian R-modules.
(2) ⇒ (1): Assume that both N1 and N2 are Noetherian/Artinian over R. Note that

N1+N2

N1

∼= N2

N1∩N2
, which is Noetherian/Artinian since N2 is Noetherian/Artinian. Now that

both N1 and N1+N2

N1
are Noetherian/Artinian, the module N1 + N2 is Noetherian/Artinian.

(Alternatively, consider h ∈ HomR(N1⊕N2, N1+N2) defined by h(n1, n2) = n1+n2

for all ni ∈ Ni. It is routine to see that h is surjective. Now, as N1 ⊕N2

is Noetherian/Artinian, N1 +N2 is Noetherian/Artinian.) □

Problem 7.3. Let R be a ring and {0M} ≨ K ≨ M be R-modules. Assume that there
exist simple R-submodules N1 and N2 of M such that M = N1 +N2. (An R-module S is

called simple if S ̸= {0S} and the only R-submodules of S are {0S} and S.)

(1) Prove M = N1 ⊞N2.
(2) Prove that there exists i ∈ {1, 2} such that M = Ni ⊞K.
(3) Prove that K is a simple R-module.

Proof. (1) Suppose N1 ∩N2 ̸= {0M}, so that {0M} ⊊ N1 ∩N2 ⊆ Ni for i = 1, 2. Because of
the simplicity of Ni, we must have N1 = N1 ∩N2 = N2. This implies

M = N1 +N2 = N1.

In particular, M is simple. But this contradicts the assumption {0M} ⊊ K ⊊ M . This
proves N1 ∩N2 = {0M}. Now, as M = N1 +N2, we see M = N1 ⊞N2.
(2) First, we show Ni ∩ K = {0M} for some i ∈ {1, 2}. Indeed, if Ni ∩ K ̸= {0M} for

all i ∈ {1, 2}, then Ni ∩ K = Ni and hence Ni ⊆ K for all i ∈ {1, 2}, which implies
M = N1 +N2 ⊆ K, which is a contradiction. Say N1 ∩K = {0M}.
It remains to prove N1 + K = M . Choose any 0M ̸= k ∈ K. As k ∈ M , we may write

k = n1 + n2 with ni ∈ Ni. If n2 = 0M , then N1 ∋ n1 = k ∈ K, which contradicts the fact
that N1 ∩ K = {0M}. Therefore, 0M ̸= n2. Since N2 ∋ n2 = k − n1 ∈ N1 + K, we see
0M ̸= n2 ∈ N2∩ (N1+K), showing {0M} ≠ N2∩ (N1+K) ⊆ N2. Thus N2∩ (N1+K) = N2,
which implies N2 ⊆ N1 + K. Now that N1 ⊆ N1 + K and N2 ⊆ N1 + K, we conclude
N1 +N2 ⊆ N1 +K. Consequently, M = N1 +N2 ⊆ N1 +K ⊆M , proving N1 +K =M .
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(3) Say M = N1 ⊞K, as in (2) above. Consequently,

K ∼= K
{0} = K

N1∩K
∼= N1+K

N1

∼= N1+N2

N1

∼= N2

N1∩N2
= N2

{0}
∼= N2.

(Or, alternatively, use Problem 6.5(2) to deduce that K ∼= N2.) Now, since N2

is simple and K ∼= N2, we conclude that K is simple. □

Problem 7.4. Let R be a commutative Noetherian ring with 1R ∈ R and let M be a
non-zero R-module. Prove that there exists x ∈ M \ {0M} such that AnnR(x) is a prime
ideal of R. (For an ideal P ≨ R, with R commutative with 1R, we say that P is

a prime ideal if, for all a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P.)

Proof. Let us define Ω =
{
AnnR(m)

∣∣m ∈M \{0M}
}
, which is not empty sinceM ̸= {0M}.

Since R is Noetherian and since every element of Ω is an ideal of R (cf. Problem 1.2(1)),
there exists P ∈ Ω such that P is maximal in Ω. As P ∈ Ω, we may write P = AnnR(x) for
some x ∈M \ {0M}.

It suffices to show that P = AnnR(x) is a prime ideal of R. It is clear that P ≨ R
(cf. Problem 1.3). To prove that P is prime, let a, b ∈ R such that ab ∈ P and a /∈ P . (It
suffices to show b ∈ P.) The assumption that ab ∈ AnnR(x) ̸∋ a simply says

(ab)x = 0M ̸= ax and hence AnnR(ax) ∈ Ω.

Also note that AnnR(x) ⊆ AnnR(ax) (cf. Problem 1.2(2)). Now, given that AnnR(x) is
maximal in Ω, we must have

AnnR(x) = AnnR(ax).

Finally, since b(ax) = (ba)x = (ab)x = 0M , we see b ∈ AnnR(ax) = AnnR(x) = P . This
verifies that AnnR(x) is a prime ideal of R, completing the proof. □

Problem 7.5 (Extra Credit, 1 point). LetM and F be R-modules (with R a ring with unity)
such that F is free over R. Let h ∈ HomR(M,F ) such that h is onto F (i.e., h(M) = F ).
Prove or disprove: M ∼= Ker(h)⊕ F .

Proof. We prove the claim as follows: By Problem 5.2, there exists g ∈ HomR(F,M) such
that h ◦ g = IdF . Then, by Problem 6.2, we see M = Ker(h)⊞ Im(g) ∼= Ker(h)⊕ F . □

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Homework Set #08 (Due 03/28) Solutions

Problem 8.1. Let R be a ring and M a non-zero Artinian R-module. Prove that there
exists L ⩽M such that L is simple.

Proof. Consider the set Ω consisting of all non-zero R-submodules of M , that is

Ω =
{
N | N is an R-submodule of M and N ̸= {0M}

}
.

Note that M ∈ Ω, hence Ω ̸= ∅. Because M is Artinian, there exists L ∈ Ω such that
L is minimal in Ω. In particular, L is a non-zero R-module. To show that L is an simple
R-module, let B be any R-submodule of L. If B ̸= {0M}, then B ∈ Ω while B ⩽ L, which
forces B = L since L is minimal in Ω. So L is simple. □

Problem 8.2. Let R be a ring, M be an R-module, and 2 ⩽ n ∈ N. Also, let N and
Ni, where i = 1, . . . , n, be R-submodules of M such that N =

∑n
i=1Ni. Prove that the

following statements are equivalent to each other:

(1) N = ⊞n
i=1Ni (i.e., N =

∑n
i=1Ni and

(∑
i ̸=j Ni

)
∩Nj = {0N} for all j = 1, . . . , n).

(2)
(∑j−1

i=1 Ni

)
∩Nj = {0N} for all j = 2, . . . , n.

(3) Every element x ∈ N can be uniquely expressed as x =
∑n

i=1 xi with xi ∈ Ni.
(4) The element 0N ∈ N can be uniquely expressed as 0N =

∑n
i=1 xi with xi ∈ Ni.

Proof. (1) =⇒ (2): This is because {0N} ⊆
(∑j−1

i=1 Ni

)
∩Nj ⊆

(∑
i ̸=j Ni

)
∩Nj = {0N}.

(2) =⇒ (3): Let x ∈ N and suppose that x =
∑n

i=1 xi =
∑n

i=1 x
′
i, where xi, x

′
i ∈ Ni.

This implies that
∑n

i=1(xi − x′i) = 0N , with xi − x′i ∈ Ni. Then, we have

Nn ∋ xn − x′n = −
n−1∑
i=1

(xi − x′i) ∈
n−1∑
i=1

Ni,

which implies that xn − x′n ∈
(∑n−1

i=1 Ni

)
∩ Nn = {0N}. Hence xn − x′n = 0N and xn = x′n.

Then, we have
∑n−1

i=1 (xi − x′i) = 0N , which implies

Nn−1 ∋ xn−1 − x′n−1 = −
n−2∑
i=1

(xi − x′i) ∈
n−2∑
i=1

Ni.

Hence xn−1 − x′n−1 ∈
(∑n−2

i=1 Ni

)
∩ Nn−1 = {0N}, which implies xn−1 − x′n−1 = 0N and

xn−1 = x′n−1. So, inductively, we see xi = x′i for all i = n, n− 1, . . . , 2, 1.
(3) =⇒ (4): This is trivial.
(4) =⇒ (1): As N =

∑n
i=1Ni is given, it remains to show

(∑
i ̸=j Ni

)
∩ Nj = {0N} for

all j = 1, . . . , n. Let j ∈ {1, . . . , n} and let y ∈
(∑

i ̸=j Ni

)
∩ Nj. Then Nj ∋ y =

∑
i ̸=j yi

with yi ∈ Ni, which forces

y1 + · · ·+ yj−1 − y + yj+1 · · · yn = 0 = 0N1 + · · ·+ 0Nj−1
+ 0Nj

+ 0Nj+1
+ · · ·+ 0Nn .

By uniqueness, we conclude −y = 0Nj
so y = 0Nj

= 0N . Thus
(∑

i ̸=j Ni

)
∩Nj ⊆ {0N} and

hence
(∑

i ̸=j Ni

)
∩Nj = {0N}. This completes the proof. □

Problem 8.3. Let R be a ring, N be an R-module, and 2 ⩽ n ∈ N. Let Ni, where
i = 1, . . . , n, be R-submodules of N . Also, let Ki ⩽Mi, where i = 1, . . . , n, be R-modules.

(1) Prove that if N = ⊞n
i=1Ni then N ∼= ⊕n

i=1Ni.
(2) True or false: ⊕n

i=1Ki ⩽ ⊕n
i=1Mi.

(3) Prove or disprove: (⊕n
i=1Mi) / (⊕n

i=1Ki) ∼= ⊕n
i=1 (Mi/Ki).
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Proof. (1) Assume that N = ⊞n
i=1Ni. Define h : ⊕n

i=1Ni → N by h(x1, . . . , xn) =
∑n

i=1 xi
for all (x1, . . . , xn) ∈ N1 ⊕ · · · ⊕Nn. It is routine to verify that h ∈ HomR(⊕n

i=1Ni, N) and
that h is an isomorphism. Therefore, N ∼= ⊕n

i=1Ni. (See Problem 6.1(1).)

(2) True.
(3) We prove the claim as follows. Define a function φ : ⊕n

i=1Mi → ⊕n
i=1 (Mi/Ki) by

φ(m1, . . . , mn) = (m1 + K1, . . . , mn + Kn) for all (m1, . . . , mn) ∈ M1 ⊕ · · · ⊕Mn. It is
routine to verify that φ ∈ HomR (⊕n

i=1Mi,⊕n
i=1 (Mi/Ki)). Moreover, it is routine to see that

Ker(φ) = ⊕n
i=1Ki and Im(φ) = ⊕n

i=1 (Mi/Ki) (details skipped). By the fundamental
theorem of homomorphisms, we see that (⊕n

i=1Mi) / (⊕n
i=1Ki) ∼= ⊕n

i=1 (Mi/Ki). □

Problem 8.4. Consider the free Z-module Z2 = {( r
s ) | r, s ∈ Z}. (We write the elements of

Z2 as column vectors.) Let A = ( a11 a12 a13
a21 a22 a23 ) and xi = ( a1i

a2i ) ∈ Z2 be the i-th column of A.

Let yi ∈ Z2 be the i-th column of A
(

1 2 1
2 3 1
3 4 0

)
. Suppose ( 2 5

3 8 )
−1A

(
1 2 1
2 3 1
3 4 0

)
=
(
d1 0 0
0 d2 0

)
.

(1) Compute ( 2 5
3 8 )

−1 and
(

1 2 1
2 3 1
3 4 0

)−1

explicitly. It suffices to write down your answers.

(2) Express each xi as a linear combination of y1, y2, y3 explicitly. No need to justify.
(3) True or false:

∑3
i=1 Zxi =

∑3
i=1 Zyi. No justification is necessary.

(4) Prove that z1 = ( 2
3 ) and z2 = ( 5

8 ) form a basis of Z2.
(5) Express each yi as a linear combination of z1 and z2. No need to justify.

Solution/Proof. (1) We have that ( 2 5
3 8 )

−1 =
(

8 −5
−3 2

)
and

(
1 2 1
2 3 1
3 4 0

)−1

=
( −4 4 −1

3 −3 1
−1 2 −1

)
.

(2) We have x1 = −4y1 + 3y2 − y3, x2 = 4y1 − 3y2 + 2y3 and x1 = −y1 + y2 − y3.

(3) True. (As (y1, y2, y3) = (x1, x2, x3)
(

1 2 1
2 3 1
3 4 0

)
, we see (x1, x2, x3) = (y1, y2, y3)

( −4 4 −1
3 −3 1
−1 2 −1

)
.

So each yi is a linear combination of x1, x2, x3; and each xi is a linear combination of y1, y2, y3.)
(4) We first show that z1 and z2 are linearly independent as follows: For all c1, c2 ∈ Z,
c1z1 + c2z = ( 0

0 ) =⇒ ( 2 5
3 8 ) (

c1
c2 ) = ( 0

0 ) =⇒ ( 2 5
3 8 )

−1 ( 2 5
3 8 ) (

c1
c2 ) = ( 0

0 ) =⇒ ( c1
c2 ) = ( 0

0 ) .

Next, we show that z1 and z2 generate Z2: For every (m
n ) ∈ Z2, we see

(m
n ) = ( 2 5

3 8 )
(

8 −5
−3 2

)
(m
n ) = (z1, z2)

(
8m−5n
−3m+2n

)
= (8m− 5n)z1 + (−3m+ 2n)z2.

As z1 and z2 are linearly independent generators of Z2, they form a basis of Z2.
(5) We have y1 = d1z1, y2 = d2z2 and y3 = 0z1 + 0z2, as (y1, y2, y3) = (z1, z2)

(
d1 0 0
0 d2 0

)
.

Problem 8.5 (Extra Credit, 1 point). Let R be a ring. Prove or disprove: If M is a
non-zero Noetherian R-module then there exists K ⩽M such that M/K is simple.

Proof. Consider the set Ω1 consisting of all R-submodules of M except M , that is

Ω1 = {N | N is an R-submodule of M and N ̸=M}.
Note that {0M} ∈ Ω1, hence Ω1 ̸= ∅. Because M is Noetherian, there exists K ∈ Ω1 such
that K is maximal in Ω1. Since K ≨M , we see that M/K is a non-zero R-module.

To show that M/K is simple, let A be any R-submodule of M/K such that A ≨ M/K.
(It suffices to show A = {0M/K}.) Then A = L/K for some R-submodule L of M
such that K ⩽ L. Since L/K ≨ M/K, we see L ≨ M and hence L ∈ Ω1. In light of the
fact that K ⩽ L ∈ Ω1 and the fact that K is maximal in Ω1, we see that K = L. Thus
A = K/K = {0M/K}. This finishes the proof that M/K is simple, as required. □

PROBLEMS HINTS SOLUTIONS

M ⊕N . . . . . . h ∈ HomR(M,N) =⇒ M/Ker(h) ∼= Im(h) . . . . . . R⊕X ↠ M . . . . . . M ∼= R
(d1)

⊕ · · · ⊕ R
(dr)

⊕Rm . . . . . . M ⊗R N
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Math 8221 (Spring 2025) Midterm Exam II (04/03) Review Problems

Materials covered earlier: Homework Sets 1, 2, 3, 4; Exam I.

General problems about modules: Problems 5.1, 5.3, 5.4, 6.3, 7.3, 8.1, 8.2, 8.4.

Free modules: Problems 5.2, 5.5, 7.3.

Direct sums (internal or external): Problems 6.1, 6.2, 6.5.

Noetherian modules, Artinian modules: Problems 6.4, 7.1, 7.2, 7.4, 7.5.

Simple modules: Problems 7.2, 8.3, 8.5.

Modules over a PID: Problem 8.4.

Lecture notes and textbooks: All we have covered.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 8221 (Spring 2025) Midterm Exam II (04/03) Review Topics

Internal direct sum. Let R be a ring, M an R-module, N an R-submodule of M , and
{Ni}i∈∆ is family of R-submodules ofM . We say that N is an internal direct sum of {Ni}i∈∆,
denoted N = ⊞i∈∆Ni, if N =

∑
i∈∆Ni and Nj ∩ (

∑
i∈∆\{j}Ni) = {0M} for all j ∈ ∆.

• N = ⊞i∈∆Ni if and only if N =
∑

i∈∆Ni and every element x ∈ N is uniquely
expressed as x =

∑
i∈∆ ni with xi ∈ Ni and xi = 0M for almost all i ∈ ∆.

• If N = ⊞i∈∆Ni, then N ∼= ⊕i∈∆Ni.

Free module. Let R be a ring with unity and F an R-module. We say that F is a free
(over R) if there exists B ⊆ F such that B generates F and B is linear independent over R,
in which case we say that B is a basis of F .

• F is a free R-module with a basis B ⇐⇒ every x ∈ F can be uniquely written as
x =

∑
b∈B rbb with rb ∈ R and rb = 0R for almost all b ∈ B.

• F is a free R-module ⇐⇒ F ∼= R⊕B for some set B.
• F is a free R-module with a basis B ⇐⇒ F = ⊞b∈BRb and Ann(b) = {0R}, ∀ b ∈ B.
• F is a free R-module with a basis B ⇐⇒ for any R-module M and any map
θ : B →M , there is a unique R-linear map h ∈ HomR(F,M) such that h|B = θ.

• If R is commutative and F is free, then all bases of F have the same cardinality,
which is called the rank of F .

Noetherian module. We say that anR-moduleM is Noetherian (overR) if every ascending
chain of R-submodules of M eventually stabilizes. The following are equivalent:

• M is Noetherian as an R-module.
• All R-submodules of M are finitely generated.
• Every non-empty set of R-submodules of M has a maximal member/object.
• N and M/N are Noetherian over R for every R-submodule N of M .
• N and M/N are Noetherian over R for some R-submodule N of M .

We say R is a (left) Noetherian ring if R is Noetherian as a (left) R-module.

• [Hilbert basis theorem] If R is Noetherian, so is R[x] and so is R[x1, . . . , xn].

Artinian module. We say that an R-module M is Artinian (over R) if every descending
chain of R-submodules of M eventually stabilizes. The following are equivalent:

• M is Artinian as an R-module.
• Every non-empty set of R-submodules of M has a minimal member/object.
• N and M/N are Artinian over R for every (or for some) R-submodule N of M .

We say R is a (left) Artinian ring if R is Artinian as a (left) R-module.

Simple module. Let R be a ring and let M , N be R-modules. We say that M is a simple
R-module if M ̸= {0M} and the only R-submodules of M are {0M} and M .

• Assume that M is simple. Then every φ ∈ HomR(M,N) is either injective or the
zero map. Similarly, every ψ ∈ HomR(N,M) is either the zero map or surjective.

Modules over a PID. Let R be a PID and let F be a free R-module of finite rank n.

• Every R-submodule of F is free (over R) of rank ⩽ n.

Note: The above list is not intended to be complete.
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Math 8221 (Spring 2025) Extra Credit Set Solutions

You must solve a problem completely and correctly in order to get the extra credit. You
may attempt a problem for as many times as you wish by 04/25.

The points you get here will be added to the total score from the homework assignments.

Problem E-1 (3 points). Let R be a commutative ring with unity and S = R[x]. For all
ideals I and J of R, prove I ∩ J =

(
xIS + (1− x)JS

)
∩R.

Problem E-2 (3 points). Let R be a commuative ring with unity and I, J ideals of R.
Prove or disprove: If R/I ∼= R/J as R-modules then I = J .

Problem E-3 (3 points). Is there a field that is free over Z? Explain.

PROBLEMS HINTS SOLUTIONS
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