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There are four (4) problems in each homework set. Math 6441 students need to do all 4
problems while Math 4441 students need to do any three (3) problems out the four. If a
Math 4441 student submits all 4 problems, then one of the lowest score(s) is dropped. There
is a bonus point for Math 4441 students solving all 4 problems correctly/perfectly.

When solving homework problems, make sure that your arguments and computations are
rigorous, accurate, and complete. Present your step-by-step work in your solutions/proofs.

There are three (3) PDF files for the homework sets and exams, one with the problems
only, one with hints, and one with solutions. Links are available below.
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Math 4441/6441 (Spring 2025) Homework Set #1 (Due 01/24) Solutions

Problem 1.1. Let A = {1, 2, 3, 4}, B = {2, 3, 5, 6, 7} and C = {3, 6, 7, 8} be sets.

(1) Compute (A \B) ∩ C and A \ (B ∩ C). Are they equal?
(2) Compute (A ∩B) ∪ C and A ∩ (B ∪ C). Are they equal?

Solution. (1) First, we see

A \B = {1, 4},
B ∩ C = {3, 6, 7}.

In light in the computation above, we get

(A \B) ∩ C = {1, 4} ∩ {3, 6, 7, 8} = ∅
A \ (B ∩ C) = {1, 2, 3, 4} \ {3, 6, 7} = {1, 2, 4}.

Thus (A \B) ∩ C ̸= A \ (B ∩ C) (in this particular case).
(2) We have

A ∩B = {2, 3},
B ∪ C = {2, 3, 5, 6, 7, 8}.

In light in the computation above, we see

(A ∩B) ∪ C = {2, 3} ∪ {3, 6, 7, 8} = {2, 3, 6, 7, 8}
A ∩ (B ∪ C) = {1, 2, 3, 4} ∩ {2, 3, 5, 6, 7, 8} = {2, 3}.

Thus (A ∩B) ∪ C ̸= A ∩ (B ∪ C) (in this particular case).

Problem 1.2. Let A, B and C be sets. Prove A \ (B ∪ C) = (A \B) ∩ (A \ C).
Proof. It suffices to show x ∈ A \ (B ∪ C) ⇔ x ∈ (A \B) ∩ (A \ C). Indeed, we have

x ∈ A \ (B ∪ C) ⇐⇒ x ∈ A and x /∈ B ∪ C
⇐⇒ x ∈ A and [x /∈ B and x /∈ C]

⇐⇒ [x ∈ A and x /∈ B] and [x ∈ A and x /∈ C]

⇐⇒ x ∈ A \B and x ∈ A \ C
⇐⇒ x ∈ (A \B) ∩ (A \ C). □

Problem 1.3. For each function fi, determine whether it is injective but not surjective,
surjective but not injective, bijective, or neither injective nor surjective. Explain why.

(1) f1 : R⩾0 → R with f1(x) = x2 for all x ∈ R⩾0, where R⩾0 = {x ∈ R |x ⩾ 0} = [0,∞).
(2) f2 : R⩾0 → R⩾0 with f2(x) = x2 for all x ∈ R⩾0.
(3) f3 : R → R⩾0 with f3(x) = x4 for all x ∈ R.
(4) f4 : R → R with f4(x) = 10x

2
for all x ∈ R. (Here 10x

2
stands for 10(x

2), not (10x)2.)

Solution. (1) The function f1 is injective but not surjective. It is injective (i.e., 1-1) because
for if x1, x2 ∈ R⩾0 such that x1 ̸= x2 (meaning x1, x2 are distinct non-negative real numbers)
then x21 ̸= x22 hence f1(x1) ̸= f1(x2). The function f1 is not onto R since, for −1 ∈ R, there
is no x ∈ R⩾0 such that f1(x) = −1.

(2) The function f2 is bijective. This is because for for every y ∈ R⩾0 (hence y ⩾ 0), there
exists

√
y ∈ R⩾0 such that f1(

√
y) = (

√
y)2 = y and, moreover,

√
y is the only preimage (in

R⩾0, the domain of f2) of y under f2.
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(3) The function f3 is surjective but not injective. It is surjective because for every y ∈ R⩾0

(hence y ⩾ 0), there exists 4
√
y ∈ R such that f3( 4

√
y) = ( 4

√
y)4 = y. It is not injective since

f3(1) = 1 = f3(−1) while 1 ̸= −1.
(4) The function f4 is neither injective nor surjective. It is not injective since f4(−2) =

104 = f4(2) while −2 ̸= 2. To see why f4 is not surjective, just notice that there is no x ∈ R
such that f4(x) = −13.

Problem 1.4. Let A, B and C be sets.

(1) Find a concrete example of A, B and C such that (A ∪B) ∩ C ⊊ A ∪ (B ∩ C).
(2) Prove (A ∪B) ∩ C ⊆ A ∪ (B ∩ C).

Solution/Proof. (1) Let A = B = {1} and C = ∅, for example. Then

B ∩ C = ∅ and A ∪B = {1}.
Consequently, we see

A ∪ (B ∩ C) = {1} ∪∅ = {1} and (A ∪B) ∩ C = {1} ∩∅ = ∅,
which illustrates (A∪B)∩C ⊊ A∪ (B ∩C) (for these specific sets A, B and C). (However,
one should not conclude that the statement (A ∪B) ∩ C ⊊ A ∪ (B ∩ C) holds for

all sets A, B and C --- just consider the case when A = ∅ for example.)
(2) It suffices to show x ∈ (A ∪B) ∩ C ⇒ x ∈ A ∪ (B ∩ C). Indeed, we have

x ∈ (A ∪B) ∩ C ⇐⇒ x ∈ A ∪B and x ∈ C

⇐⇒ [x ∈ A or x ∈ B] and x ∈ C

⇐⇒ [x ∈ A and x ∈ C] or [x ∈ B and x ∈ C]
∗

=⇒ x ∈ A or [x ∈ B and x ∈ C]

⇐⇒ x ∈ A or x ∈ B ∩ C
⇐⇒ x ∈ A ∪ (B ∩ C).

Note the implication
∗

=⇒ in the above argument—the reverse implication fails in general
(cf. part (1) above). This completes the proof of (A∪B)∩C ⊆ A∪ (B∩C), as required. □

PROBLEMS HINTS SOLUTIONS
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Math 4441/6441 (Spring 2025) Homework Set #2 (Due 01/31) Solutions

Problem 2.1. Let X = {a, b}, Y = {1, 2} and Z = {x, y, z}.
(1) Find all functions from X to Y .
(2) Find all injective functions from X to Y , if they exist.
(3) Write down all surjective functions from Y to Z, if they exist.
(4) Write down all non-injective functions from Y to Z, if they exist.

Solution. (1) The functions from X to Y are listed as follows

f1 : a 7→ 1, b 7→ 1; f2 : a 7→ 1, b 7→ 2;

f3 : a 7→ 2, b 7→ 1; f4 : a 7→ 2, b 7→ 2.

Since |X| = 2 and |Y | = 2, there are altogether |Y ||X| = 22 = 4 functions from X to Y .
(2) In light of part (1) above, there are 2 injective functions from X to Y . They are

f2 : a 7→ 1, b 7→ 2; and f3 : a 7→ 2, b 7→ 1.

(3) There exists no surjective function from Y to Z, since |Y | = 2 < 3 = |Z|.
(4) There are three non-injective functions from Y to Z, which are listed below

g1 : 1 7→ x, 2 7→ x; g2 : 1 7→ y, 2 7→ y; g2 : 1 7→ z, 2 7→ z.

Problem 2.2. Let S3 denote the set of all bijective functions from X = {1, 2, 3} to itself.
Let φ ∈ S3 and ψ ∈ S3 be defined as follows

φ : 1 7→ 2, 2 7→ 1, 3 7→ 3 and ψ : 1 7→ 3, 2 7→ 1, 3 7→ 2.

(1) Determine φ ◦ ψ and ψ ◦ φ explicitly. Are they equal?
(2) Determine φ−1 and ψ−1 explicitly.
(3) Determine φ2 and φ3 explicitly. Is anyone of the two equal to IX?
(4) Determine ψ2 and ψ3 explicitly. Is anyone of the two equal to IX?

Solution. (1) By direct computation, we see

φ ◦ ψ : 1 7→ 3, 2 7→ 2, 3 7→ 1 and ψ ◦ φ : 1 7→ 1, 2 7→ 3, 3 7→ 2.

In particular, φ ◦ ψ ̸= ψ ◦ φ.
(2) It is straightforward to see that

φ−1 : 1 7→ 2, 2 7→ 1, 3 7→ 3 and ψ−1 : 1 7→ 2, 2 7→ 3, 3 7→ 1.

(Notice that φ−1 = φ.)
(3) It is straightforward to see

φ2 : 1 7→ 1, 2 7→ 2, 3 7→ 3 and φ3 : 1 7→ 2, 2 7→ 1, 3 7→ 3.

In particular, φ2 = IX . (Also note that φ3 = φ = φ−1.)
(4) It is straightforward to see

ψ2 : 1 7→ 2, 2 7→ 3, 3 7→ 1 and ψ3 : 1 7→ 1, 2 7→ 2, 3 7→ 3.

In particular, ψ3 = IX . (Also note that ψ2 = ψ−1.)
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Problem 2.3. Let f : X → Y and g : Y → Z be functions, in which X, Y and Z are
non-empty sets.

(1) If both f and g are surjective (i.e., onto), prove that g ◦ f is surjective.
(2) Disprove: If g ◦ f is surjective (i.e., onto), then both f and g are surjective.

Proof. (1) Assume that f and g are surjective (i.e., onto); and let z ∈ Z (be arbitrary).
Since g is surjective (by assumption), there exists y ∈ Y such that

g(y) = z.

Now, since f is surjective (by assumption), there exists x ∈ X such that

f(x) = y.

Combining the above, we see g(f(x)) = g(y) = z, which simply says

g ◦ f(x) = z.

Thus for every z ∈ Z there exists x ∈ X such that g ◦ f(x) = z. Therefore g ◦ f is onto.
(2) Let X = {1}, Y = {a, b} and Z = {2}. Define f : X → Y and g : Y → Z as follows

f : 1 7→ a; g : a 7→ 2, b 7→ 2.

Then the composite function g ◦ f : X → Z is determined as follows

g ◦ f : 1 7→ 2 as g ◦ f(1) = g(f(1)) = g(a) = 2.

It is clear that g ◦ f is surjective (in fact, bijective), but f is not surjective. □

Problem 2.4. Let f, f1, f2 : X → Y and g, g1, g2 : Y → Z be functions, in which X, Y and
Z are (non-empty) sets.

(1) Prove that if g is 1–1 (i.e., injective) and g ◦ f1 = g ◦ f2, then f1 = f2.
(2) Disprove the statement: If g1 ◦ f = g2 ◦ f then g1 = g2.

Proof/Solution. (1) Assume that g is 1–1 and g ◦ f1 = g ◦ f2. To prove f1 = f2, let x ∈ X be
an arbitrary element of X. (We must show f1(x) = f2(x).) Since g ◦ f1 = g ◦ f2, we see

g ◦ f1(x) = g ◦ f2(x),
which simply means

g(f1(x)) = g(f2(x)).

Now, because g is 1–1 by assumption, the above equation forces

f1(x) = f2(x)

In summary, we see f1(x) = f2(x) for all x ∈ X, which proves f1 = f2 as required. □
(2) We disprove the statement with a counterexample as follows: Let X = {1}, Y = {a, b}

and Z = {2, 3}. Define f : X → Y and g1, g2 : Y → Z as follows

f : 1 7→ a; g1 : a 7→ 2, b 7→ 2; g2 : a 7→ 2, b 7→ 3.

Then it is easy to see that

g1 ◦ f(1) = g1(f(1)) = g1(a) = 2 = g2(a) = g2(f(1)) = g2 ◦ f(1).
Consequently, g1 ◦ f and g2 ◦ f are the same function from X = {1} to Z = {2, 3}. In short,
g1 ◦ f = g2 ◦ f . But g1 ̸= g2 because g1(b) ̸= g2(b).

PROBLEMS HINTS SOLUTIONS
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Math 4441/6441 (Spring 2025) Homework Set #3 (Due 02/07) Solutions

Problem 3.1. Consider integers 24, 60, 67 and 97.

(1) List all (positive and negative) common divisors of 24 and 60. Determine gcd(24, 60).
(2) Express gcd(67, 97) as a linear combination of 67 and 97 (with integer coefficients).

Solution. (1) The common divisors of 24 and 60 are ±1,±2,±3,±4,±6,±12, the greatest
of which is 12. Thus, by definition, gcd(24, 60) = 12.

(2) By the Euclidean Algorithm, we have

97 = 1 · 67 + 30

67 = 2 · 30 + 7

30 = 4 · 7 + 2

7 = 3 · 2 + 1

2 = 2 · 1 + 0,

(∗)

which implies gcd(67, 97) = 1.
To express gcd(67, 97) = 1 in the form of 67m+97n (with m, n ∈ Z), we make use of the

equations in (∗) above to get

1 = 7− 3 · 2 = 7− 3(30− 4 · 7) = 13 · 7− 3 · 30
= 13(67− 2 · 30)− 3 · 30 = 13 · 67− 29 · 30
= 13 · 67− 29(97− 1 · 67) = 42 · 67− 29 · 97.

In summary, gcd(67, 97) = 1 = (42)67+ (−29)97 as required. (Such linear combinations

are not unique. Your solutions could be different.)

Problem 3.2. Let x = 3− i, y = 4 + 2i and z = −3−
√
3i.

(1) Compute x+ y and x− y.
(2) Compute xy and x/y.
(3) Write z in polar form z = r(cos θ + i sin θ) with 0 ⩽ r ∈ R and 0 ⩽ θ < 2π.
(4) Compute z33. Is z33 in R? Show your reasoning/computation.

Solution. (1) We compute x+ y and x− y as follows:

x+ y = (3 + 4) + (−1 + 2)i = 7 + i and x− y = (3− 4) + (−1− 2)i = −1− 3i.

(2) We compute xy and x/y as follows:

xy = (3− i)(4 + 2i) = (12 + 2) + (6− 4)i = 14 + 2i, and

x

y
=

3− i

4 + 2i
=

(3− i)(4− 2i)

(4 + 2i)(4− 2i)
=

(12− 2) + (−6− 4)i

42 + 22
=

10− 10i

20
=

1

2
− 1

2
i.

(3) First, r = |z| =
√

(−3)2 + (−
√
3)2 =

√
12 = 2

√
3. To figure out θ, we see that

cos θ =
−3

2
√
3
= −

√
3

2
and sin θ =

−
√
3

2
√
3

= −1

2
.

Consequently, θ = 7π
6
. (Note that the point (−3,−

√
3) is located in the third quadrant of

the x-y coordinate plane.) In summary, z = 2
√
3
(
cos 7π

6
+ i sin 7π

6

)
.
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(4) We claim that z33 = 233316
√
3 i /∈ R. Indeed, by De Moivre’s formula, we have

z33 =
(
2
√
3
(
cos 7π

6
+ i sin 7π

6

))33

= (2
√
3)33

(
cos 33·7π

6
+ i sin 33·7π

6

)
= (2

√
3)33

(
cos 77π

2
+ i sin 77π

2

)
= (2

√
3)33

(
cos

(
38π + π

2

)
+ i sin

(
38π + π

2

))
= 233316

√
3
(
cos π

2
+ i sin π

2

)
= 233316

√
3(0 + i) = 233316

√
3 i /∈ R.

Problem 3.3. Let D = {13i | i ∈ Z}, the set consisting of all powers of 13 (of all integer
exponents). (For example, 13−18, 130, 13451 ∈ D.) For all m, n ∈ D, let m ∗ n = mn, the
(ordinary) product of m and n. Determine whether statements (1)–(4) are true or false with
justification. Also answer (5).

(1) For all a, b ∈ D, it holds that a ∗ b ∈ D.
(2) For all a, b, c ∈ D, it holds that (a ∗ b) ∗ c = a ∗ (b ∗ c).
(3) There exists a (fixed) element e ∈ D such that e ∗ a = a = a ∗ e for all a ∈ D.
(4) For every a ∈ D, there exists a′ ∈ D such that a′ ∗ a = e = a ∗ a′.
(5) (D, ∗) is an abelian group a non-abelian group not a group (choose one)

Solution. (1) True. For all a, b ∈ D, we see a = 13i and b = 13j for some i, j ∈ Z and hence
a ∗ b = ab = 13i13j = 13i+j which is in D since i+ j ∈ Z.
(2) True. This is because multiplication (among complex numbers) is associative.
(3) True. Indeed, 1 ∈ D (since 1 = 130) and 1 satisfies

1a = a = a1 i.e., 1 ∗ a = a = a ∗ 1 for all a ∈ D.

Thus, 1 is the identity element of D under the operation ∗. (That is, e = 1.)
(4) True. Let a ∈ D, so that a = 13i with i ∈ Z. There exists a′ = 13−i ∈ D satisfying

13−i13i = 1 = 13i13−i i.e., a′ ∗ a = e = a ∗ a′.
(5) In light of (1)–(4), we see (D, ∗) is a group by definition. Under ordinary multiplication,

we have a ∗ b = ab = ba = b ∗ a for all a, b ∈ D. Thus (D, ∗) is an abelian group.

Problem 3.4. Let a, b, c ∈ Z, i.e., a, b, c are all integers.

(1) Give a concrete example of a, b, c ∈ Z such that a | c and b | c, but (ab) ∤ c.
(2) Prove that if gcd(a, b) = 1, a | c and b | c then (ab) | c.

Solution/Proof. (1) With a = b = c = 2, for example, we have a | c and b | c, but (ab) ∤ c.
(2) Assume gcd(a, b) = 1, a | c and b | c. Note that, quite generally, gcd(a, b) is a

linear combination of a and b. In our case, as gcd(a, b) = 1, there exist r, s ∈ Z such that
1 = ra+ sb. Multiplying both sides of 1 = ra+ sb by c, we get

(∗) c = rac+ sbc.

Since a | c and b | c, there exist m,n ∈ Z such that c = ma and c = nb. Continuing with
equation (∗) above, we get

c = rac+ sbc = ra(nb) + sb(ma) = rnab+ smab = (rn+ sm)(ab).(∗∗)
Note that rn+ sm is an integer. So the equation (∗∗) establishes (ab) | c as required. □

PROBLEMS HINTS SOLUTIONS
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Math 4441/6441 (Spring 2025) Homework Set #4 (Due 02/14) Solutions

Problem 4.1. For all x, y ∈ Z, let x∗y = |x|+y. (For example, (−1)∗(−2) = −1 = 1∗(−2).)
Determine whether (1)–(4) are true or false with justification. And then answer (5).

(1) For all a, b ∈ Z, it holds that a ∗ b ∈ Z.
(2) For all a, b, c ∈ Z, it holds that (a ∗ b) ∗ c = a ∗ (b ∗ c).
(3) There exists a (fixed) element e ∈ Z such that e ∗ a = a for all a ∈ Z.
(4) For every a ∈ Z, there exists a′ ∈ Z such that a′ ∗ a = e.
(5) (Z, ∗) is an abelian group a non-abelian group not a group (choose one)

Solution. (1) True. For all a, b ∈ Z, we have a ∗ b = |a|+ b ∈ Z.
(2) False. For example, when a = 1, b = −2 and c = 3, we have

(1 ∗ (−2)) ∗ 3 = (−1) ∗ 3 = 4 ̸= 6 = 1 ∗ 5 = 1 ∗ ((−2) ∗ 3).

(3) True. This is because 0 ∈ Z and 0 satisfies

0 ∗ a = |0|+ a = 0 + a = a for all a ∈ Z.

In other words, 0 is the identity element of Z under the operation ∗. (That is, e = 0.)
(4) False. For example, take a = 13 ∈ Z. Then for all b ∈ Z,

b ∗ 13 = |b|+ 13 ⩾ 13 implying b ∗ 13 ̸= 0 = e.

In other words, there exists no a′ ∈ Z such that a′ ∗ 13 = e.
(5) In light of (1)–(4), we see that (Z, ∗) is not a group, by definition.

Problem 4.2. Let G be a group of order 2 (meaning |G| = 2). Say G = {e, a}, in which e
and a denote the two distinct elements of G with e being the identity element of G.

(1) Fill in each of the blanks with a or e: ee = , ea = , ae = and aa = .
Justify your claims rigorously.

(2) Determine whether G is abelian. Justify your claim rigorously.

Solution/Proof. (1) We claim that ee = e , ea = a , ae = a and aa = e . We give
detailed justifications as follows:

• The equation ee = e follows from definition (i.e., ex = x for all x ∈ G).
• The equation ea = a follows from definition (i.e., ex = x for all x ∈ G).
• The equation ae = a follows from a property of group (i.e., xe = x for all x ∈ G).
• Since aa ∈ G, either aa = a or aa = e. If it should happen that aa = a, we would
have aa = ea; then by the concellation property, we would get a = e, which is not
possible. Thus aa ̸= a. So we must have aa = e. (Alternatively, there exists a−1 ∈ G
such that a−1a = e. So either a−1 = e or a−1 = a. Note that a−1 ̸= e, since
ea = a ̸= e. Thus a−1 = a, which implies aa = e.)

(2) We verify xy = yx for all x, y ∈ G by exhaustion as follows:

aa = aa, ee = ee, and ea = a = ae.

Therefore G is abelian. (This shows that all group of order 2 are abelian.) □
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Problem 4.3. Let (G, ∗) be a group, and a, b, c, d ∈ G. Fill in each of the blanks (?) with
an expression involving a, b, c, d, a−1, b−1, c−1, d−1 such that the equation holds. (Note that
ab is short for a ∗ b, and c(?)db short for c ∗ (?) ∗ d ∗ b, etcetera.)

(1) a(?)dc = abc.
(2) (?)abd = dc−1d.
(3) ba−1(?)d−1bc = abc.

Solution. We provide answers as follows:

(1) a(bd−1)dc = abc.
(2) (dc−1b−1a−1)abd = dc−1d.
(3) ba−1(ab−1ad)d−1bc = abc.

For example, to solve (3), we have

ba−1xd−1bc = abc ⇐⇒ ba−1xd−1 = a

⇐⇒ ba−1x = ad

⇐⇒ a−1x = b−1ad ⇐⇒ x = ab−1ad.

Problem 4.4. Let D = Q \ {0}, the set of all non-zero rational numbers. For all x, y ∈ D,
define x∗y = 4xy, the ordinary product of 4, x and y. (For example, (2)∗(3) = 4(2)(3) = 24.)

(1) Determine whether (D, ∗) is a group.
(2) Justify your claim in (1) carefully.

Solution/Proof. (1) We claim that (D, ∗) is a group. In fact, it is abelian.
(2) To show (D, ∗) is a group, we need to verify that (D, ∗) is closed under ∗, is associative,

has a (left) identity, and every element of D has a (left) inverse. We verify the conditions
one by one as follows:

(i) For all a, b ∈ D so that a, b ∈ Q \ {0}, it is clear that 4ab is a non-zero rational
number; this means a ∗ b ∈ D. This shows D is closed under ∗.

(ii) For all a, b, c ∈ D, we see (a ∗ b) ∗ c = (4ab) ∗ c = 4(4ab)c = 16abc while a ∗ (b ∗ c) =
a ∗ (4bc) = 4(a(4bc)) = 16abc. This shows (a ∗ b) ∗ c = a ∗ (b ∗ c).

(iii) We claim that the identity of (D, ∗) is e = 1
4
, which is in D. Indeed, for all a ∈ D,

1
4
∗ a = 4(1

4
)a = 1a = a.

(iv) We claim that, for all a ∈ D, the inverse of a in (D, ∗) is 1
16a

, which is in D. Indeed,

it is straightforward to see 1
16a

is a non-zero rational number (i.e., 1
16a

∈ D) and

1
16a

∗ a = 4( 1
16a

)a = 4a
16a

= 1
4
= e.

Consequently, we see (D, ∗) is a group by definition. (In fact, it is easy to see a∗b =
b ∗ a for all a, b ∈ D; so (D, ∗) is an abelian group.) □

PROBLEMS HINTS SOLUTIONS

(G, ∗) . . . H ⩽ G . . . |G| = [G : H]·|H| . . . a|G| = e . . . φ : G → G′, φ(ab) = φ(a)φ(b) . . . N �G . . . G/N . . . G/Ker(φ) ∼= Im(φ)
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Math 4441/6441 (Spring 2025) Midterm Exam I (02/20) Review Problems

Sets: Problems 1.1, 1.2, 1.4.

Functions: Problems 1.3, 2.1, 2.2, 2.3, 2.4.

About Sn (e.g., with n = 3): Problem 2.2.

Integers, complex numbers: Problems 3.1, 3.2, 3.4.

Definition of groups: Problems 3.3, 4.1, 4.4.

Properties of groups: Problems 4.2, 4.3.

Lecture notes and textbooks: All we have covered, including properties of groups.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 4441/6441 (Spring 2025) Midterm Exam I (02/20) Solutions

Solutions

have been withdrawn

from the site

PROBLEMS HINTS SOLUTIONS

(G, ∗) . . . H ⩽ G . . . |G| = [G : H]·|H| . . . a|G| = e . . . φ : G → G′, φ(ab) = φ(a)φ(b) . . . N �G . . . G/N . . . G/Ker(φ) ∼= Im(φ)
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Math 4441/6441 (Spring 2025) Homework Set #5 (Due 02/28) Solutions

Problem 5.1. Let G be a group and let a, b be (fixed) elements of G such that ab−1 = b−1a.
Prove the following equations.

(1) ab = ba.
(2) a−1b = ba−1.

Proof. We have

ab−1 = b−1a =⇒ b(b−1a)b = b(ab−1)b

=⇒ ab = ba, which is (1)

=⇒ a−1(ab)a−1 = a−1(ba)a−1

=⇒ ba−1 = a−1b, which is (2).

Here is another way to prove the equations: From ab−1 = b−1a, we obtain

b(b−1a)b = b(ab−1)b, (b−1a)−1 = (ab−1)−1,

which yield equations (1) ab = ba, (2) a−1b = ba−1 respectively. □

Problem 5.2. Let G be a group of order 3. Say G = {e, a, b}, in which e, a and b are the
three distinct elements of G with e the identity element. (Compare with Problem 4.2.)

(1) Fill in each of the blanks with a, b or e: ab = and ba = . Explain why.
(2) Prove that G is abelian. That is, every group of order 3 is abelian.
(3) Fill in each of the blanks with a, b or e: a2 = and b2 = . Prove your claims.

Solution/Proof. (1) We claim that ab = e and ba = e .
To see why ab = e, note that ab could only possibly be a, b, or e. If ab = a, then we

would have ab = ae and hence b = e (by cancellation), which is not the case. If ab = b, then
we would have ab = eb and hence a = e (by cancellation), which is not the case. Therefore
we must have ab = e, as claimed. Since ab = e, we conclude ba = e.
(2) By exhaustion, we show xy = yx for all x, y ∈ G and hence G is abelian as follows

aa = aa, bb = bb, ee = ee, ae = a = ea, be = b = eb, and ab
(1)
= e

(1)
= ba.

(3) We claim that a2 = b and b2 = a . To see why a2 = b, note that if a2 = a, i.e.,
aa = a, then we would have aa = ae and hence a = e (by cancellation), which is not the

case. If aa = e, then we would have aa = e
(1)
= ab, which would imply a = b (by cancellation),

which is not the case. Thus a2 = b.
Similarly, if bb = b, then we would have b = e, which is not the case. If bb = e, then we

would have bb = e
(1)
= ab, which would imply a = b, which is not the case. Thus it is forced

that bb = a, as claimed. (Alternatively, we see b2 = (a−1)2 = (a2)−1 = b−1 = a.) □

Remark. The solution of Problem 5.2 not only shows that every group of order 3 is abelian,
it also describes the structure/operation of all groups of order 3 completely and explicitly.

11



Problem 5.3. Let G be a group, a, b ∈ G and m, n ∈ Z.
(1) Prove that if a5 = b5 and a7 = b7 then a = b.
(2) Prove that if am = bm, an = bn and gcd(m, n) = 1 then a = b.

Proof. (1) Observe that 5(3) + 7(−2) = 1. Consequently, we see

a = a1 = a5(3)+7(−2) = a5(3)a7(−2) = (a5)3(a7)−2

= (b5)3(b7)−2 = b5(3)b7(−2) = b5(3)+7(−2) = b1 = b,

which proves a = b as required. (See the general proof in (2) below.)
(2) Since gcd(m,n) = 1, there exist s, t ∈ Z such that ms+ nt = 1. Consequently,

a = a1 = ams+nt = amsant = (am)s(an)t

= (bm)s(bn)t = bmsbnt = bms+nt = b1 = b,

which proves a = b as required. □

Problem 5.4. Let G be a group such that (ab)4 = a4b4, (ab)5 = a5b5 and (ab)6 = a6b6 for
all a, b ∈ G. Prove that G is abelian.

Proof. Let a, b ∈ G be arbitrary elements. (It suffices to show ab = ba.)
By assumption we have (ab)6 = a6b6, which expands to abababababab = aaaaaabbbbbb. By

cancellation, we get bababababa = aaaaabbbbb, i.e., (ba)5 = a5b5. Thus (ba)5 = a5b5
♣
= (ab)5,

in which the equation ♣ is part of the assumption. In short, we have

(†) (ab)5 = (ba)5.

Similarly, (ab)5 = a5b5 expands to ababababab = aaaaabbbbb, which gives babababa =

aaaabbbb by concellation. Thus (ba)4 = a4b4
♠
= (ab)4, in which ♠ is given. In short,

(‡) (ab)4 = (ba)4 or equivalently (ba)4 = (ab)4.

Combining (†) and (‡), we see

(ab)4(ab) = (ab)5
(†)
= (ba)5 = (ba)4(ba)

(‡)
= (ab)4(ba).

That is,
(ab)4(ab) = (ab)4(ba),

which implies
ab = ba

by cancellation (by cancelling (ab)4 from the left, to be specific).
In summary, we have verified ab = ba for all a, b ∈ G. This establishes that G is an

abelian group, as required. □

PROBLEMS HINTS SOLUTIONS

(G, ∗) . . . H ⩽ G . . . |G| = [G : H]·|H| . . . a|G| = e . . . φ : G → G′, φ(ab) = φ(a)φ(b) . . . N �G . . . G/N . . . G/Ker(φ) ∼= Im(φ)
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Math 4441/6441 (Spring 2025) Homework Set #6 (Due 03/07) Solutions

Problem 6.1. Let A = C \ {0}. Consider the group (A, · ) under the usual multiplication.
Also consider φ defined by 1 7→ 3, 2 7→ 4, 3 7→ 2, 4 7→ 1, which is in the group (S4, ◦).

(1) Determine the order of 3, considered as an element of (A, · ).
(2) Determine the order of cos(π

4
) + i sin(π

4
) as an element of (A, · ).

(3) Determine o(φ).

(4) Compute φ1234 in the format of 1 7→ ? , 2 7→ ? , 3 7→ ? , 4 7→ ? .

Solution. (1) Note that the identity of (A, · ) is 1. By direct computation, we see

31 ̸= 1, 32 = 9 ̸= 1, and more generally 3 · 3 · · · 3︸ ︷︷ ︸
n terms

= 3n ̸= 1 for all n ⩾ 1.

Consequently, o(3) = ∞ in (A, · ).
(2) By De Moivre’s formula, we see (details skipped)(

cos(π
4
) + i sin(π

4
)
)n ̸= 1 for n = 1, . . . , 7, and

(
cos(π

4
) + i sin(π

4
)
)8

= 1.

Thus o
(
cos(π

4
) + i sin(π

4
)
)
= 8 in (A, · ).

(3) The identity of (S4, ◦) is e : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4. By direct computation
(details skipped), we see

φ1 ̸= e, φ2 ̸= e, φ3 ̸= e and φ4 = e.

Therefore o(φ) = 4 in (S4, ◦).
(4) Observing 1234 = 4(308) + 2, we see

φ1234 = φ4(308)+2 = (φ4)308φ2 = φ2.

By computing φ2 directly, we see φ1234 : 1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 3.

Problem 6.2. Let G be a group such that x2 = e for all x ∈ G.

(1) True or false: x−1 = x for all x ∈ G. Justify.
(2) Prove that G is abelian.

Proof. (1) True. For all x ∈ G, the assumption x2 = e (i.e., xx = e) clearly implies x−1 = x.
(2) Let x, y ∈ G. (We must show xy = yx.) One proof goes as follows:

xy = xey = x(xy)2y = x(xy)(xy)y = (xx)yx(yy) = x2yxy2 = eyxe = yx.

Alternatively, note that xy = (xy)−1, x = x−1 and y = y−1 by part (1) above. Thus

xy=(xy)−1=y−1x−1=yx.

In summary, we see xy = yx for all x, y ∈ G, showing that G is abelian. □

13



Problem 6.3. Let G be an abelian group, a ∈ G a fixed element of G, and n a fixed
integer. Define f : G→ G by f(x) = xn for all x ∈ G.

(1) Determine whether f is a group homomorphism, with justification.
(2) Prove that f(a) = a if an−1 = e.
(3) Prove that f(a) = a only if an−1 = e (i.e., an−1 = e if f(a) = a.)

Solution/Proof. (1) Yes, f is a group homomorphism. Indeed, for all x, y ∈ G, we have

f(xy) = (xy)n
∗
= xnyn = f(x)f(y) as required.

Note that the equality
∗
= holds because G is abelian.

(2) If an−1 = e, then we see

an = an−1a = ea = a, that is, f(a) = a.

(3) If f(a) = a, then by the construction of f , we see an = a and therefore

an−1a = a = ea, which implies an−1 = e by cancellation.

Alternatively, proofs of (2) and (3) can be combined as follows

f(a) = a ⇐⇒ an = a ⇐⇒ an−1a = ea ⇐⇒ an−1 = e. □

Problem 6.4. Let G be a group and let a, g ∈ G be fixed elements. Define h : G → G by
h(x) = g−1xg for all x ∈ G.

(1) Determine whether h is a group homomorphism, with justification.
(2) Prove that h(a) = a if ag = ga.
(3) Prove that h(a) = a only if ag = ga (i.e., ag = ga if h(a) = a.)

Solution/Proof. (1) Yes, h is a group homomorphism. Indeed, for all x, y ∈ G, we have

h(x)h(y) = (g−1xg)(g−1yg) = g−1x(g−1g)yg = g−1xeyg = g−1xyg = g−1(xy)g = h(xy).

(2) If ag = ga, then (by associativity)

h(a) = g−1ag = g−1(ag) = g−1(ga) = (g−1g)a = ea = a.

(3) If h(a) = a, i.e., g−1ag = a, then (by associativity)

ga = g(g−1ag) = (g−1g)ag = ag as required.

Alternatively, proofs of (2) and (3) can be combined as follows

ag = ga ⇐⇒ g−1ag = g−1ga ⇐⇒ g−1ag = a ⇐⇒ h(a) = a. □

PROBLEMS HINTS SOLUTIONS

(G, ∗) . . . H ⩽ G . . . |G| = [G : H]·|H| . . . a|G| = e . . . φ : G → G′, φ(ab) = φ(a)φ(b) . . . N �G . . . G/N . . . G/Ker(φ) ∼= Im(φ)
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Math 4441/6441 (Spring 2025) Homework Set #7 (Due 03/14) Solutions

Problem 7.1. Let φ : G → G′ be a group homomorphism, in which G and G′ are groups.
Let a ∈ G such that o(a) < ∞. (Denote the identity elements of G and G′ by e and e′

respectively.)

(1) Prove that o(φ(a)) <∞.
(2) Prove that o(φ(a)) | o(a).

Proof. Denote o(a) = k, which is a positive integer by the assumption that o(a) < ∞.
Observe that, in particular, ak = e. Since φ : G→ G′ be a group homomorphism, we see

[φ(a)]k = φ(ak) = φ(e) = e′.

(1) Knowing [φ(a)]k = e′ with k being a positive integer, we see o(φ(a)) <∞.
(2) Knowing [φ(a)]k = e′ with k ∈ Z (with o(φ(a)) < ∞ by part (1) above), we see

o(φ(a)) | k (by a theorem covered in class), which simply says o(φ(a)) | o(a) as required. □

Problem 7.2. Consider the group (S3, ◦) under composition, which consists of the following

f1 : 1 7→ 1, 2 7→ 2, 3 7→ 3; f2 : 1 7→ 1, 2 7→ 3, 3 7→ 2; f3 : 1 7→ 2, 2 7→ 1, 3 7→ 3;

f4 : 1 7→ 2, 2 7→ 3, 3 7→ 1; f5 : 1 7→ 3, 2 7→ 1, 3 7→ 2; f6 : 1 7→ 3, 2 7→ 2, 3 7→ 1.

H = {x ∈ G |x2 = f1} and K = {x3 |x ∈ S3}.
(1) Determine whether H is a subgroup of S3.
(2) Determine whether K is a subgroup of S3.

Solution. (1) Direct computation (details omitted) reveals

f 2
1 = f1, f 2

2 = f1, f 2
3 = f1, f 2

4 ̸= f1, f 2
5 ̸= f1, f 2

6 = f1.

Consequently,
H = {f1, f2, f3, f6}.

Now, observe that H is not closed under the operation of S3; for example, we have

f2 ∈ H and f3 ∈ H, but f2f3 = f5 /∈ H.

Therefore, H is not a subgroup of S3.
(2) We have (details omitted)

K = {f 3
1 , f

3
2 , f

3
3 , f

3
4 , f

3
5 , f

3
6}

= {f1, f2, f3, f6} = H.

Therefore, K is not a subgroup of S3, as shown in (1) above.

Problem 7.3. Let G be an abelian group, H = {x ∈ G |x9 = e}. Prove H ⩽ G, that is,
prove that H is a subgroup of G.

Proof. Note that, for x ∈ G, the construction of H says that x ∈ H if and only if x9 = e.
Firstly, as the identity element e ∈ G satisfies e9 = e, we see e ∈ H.
Secondly, let x, y ∈ H. (We need to show xy ∈ H.) Note that x, y ∈ H simply means

x9 = e and y9 = e. Now, in light of G being abelian, we see

(xy)9 = x9y9 = ee = e, showing xy ∈ H.

Finally, let x ∈ H, which simply means x9 = e. (We need to show x−1 ∈ H.) We see

(x−1)9 = x−9 = (x9)−1 = e−1 = e, showing x−1 ∈ H.

This proves that H is a subgroup of G, i.e., H ⩽ G. □
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Problem 7.4. Let G be an abelian group, H = {a4 | a ∈ G} and K = {a52 | a ∈ G}.
(1) Prove H ⩽ G, that is, prove that H is a subgroup of G.
(2) Prove K ⊆ H, that is, prove that K is a subset of H.

Proof. (1) Note that, for an element x ∈ G, x ∈ H if and only if x = a4 for some a ∈ G.
Firstly, as the identity element e ∈ G can be written as e = e4, we see e ∈ H.
Secondly, let x, y ∈ H. (We must show xy ∈ H.) Note that x, y ∈ H simply means

x = a4 and y = b4 for some a, b ∈ G. Now, in light of G being abelian, we see

xy = a4b4 = (ab)4 with ab ∈ G, showing xy ∈ H.

Finally, let x ∈ H; so that x = a4 for some a ∈ G. (We must show x−1 ∈ H.) We see

x−1 = (a4)−1 = a−4 = (a−1)4 with a−1 ∈ G, showing x−1 ∈ H.

This proves that H is a subgroup of G, i.e., H ⩽ G.
(2) Let z ∈ K; so that z = c52 for some c ∈ G. Then we see

z = c52 = (c13)4 with c13 ∈ G, showing z ∈ H.

In summary, every z ∈ K satisfies z ∈ H. This proves K ⊆ H, as required. □

PROBLEMS HINTS SOLUTIONS

(G, ∗) . . . H ⩽ G . . . |G| = [G : H]·|H| . . . a|G| = e . . . φ : G → G′, φ(ab) = φ(a)φ(b) . . . N �G . . . G/N . . . G/Ker(φ) ∼= Im(φ)
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Math 4441/6441 (Spring 2025) Homework Set #8 (Due 03/28) Solutions

Problem 8.1. Consider the group (S3, ◦) under composition, which consists of the following

f1 : 1 7→ 1, 2 7→ 2, 3 7→ 3; f2 : 1 7→ 1, 2 7→ 3, 3 7→ 2; f3 : 1 7→ 2, 2 7→ 1, 3 7→ 3;

f4 : 1 7→ 2, 2 7→ 3, 3 7→ 1; f5 : 1 7→ 3, 2 7→ 1, 3 7→ 2; f6 : 1 7→ 3, 2 7→ 2, 3 7→ 1.

Find as many (distinct) subgroups of S3 as possible. You will receive 1 point per correct
subgroup and −1 point per incorrect choice.

Solution. Note that the identity element of the group S3 is e = f1. We list six (6) distinct
subgroups of S3 as follows.

H1 = {f1}, H2 = {f1, f2}, H3 = {f1, f3}, H4 = {f1, f6}, H5 = {f1, f4, f5}, H6 = S3.

Alternatively, the above six (6) distinct subgroups of S3 can be described as

H1 = [f1], H2 = [f2], H3 = [f3], H4 = [f6], H5 = [f4] = [f5] and H6 = S3.

(In fact, H1, H2, H3, H4, H5 and H6 exhaust all the subgroups of (S3, ◦).)

Problem 8.2. Consider the group (G, ◦) under composition, which consists of the following

f1 : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4; f2 : 1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 3;

f3 : 1 7→ 2, 2 7→ 1, 3 7→ 3, 4 7→ 4; f4 : 1 7→ 1, 2 7→ 2, 3 7→ 4, 4 7→ 3.

Find as many (distinct) subgroups of (G, ◦) as possible. You will receive 1 point per correct
subgroup and −1 point per incorrect choice. (Note that (G, ◦) is a subgroup of (S4, ◦).)

Solution. Note that the identity element of the group G is e = f1. We list five (5) distinct
subgroups of G as follows.

H1 = {f1}, H2 = {f1, f2}, H3 = {f1, f3}, H4 = {f1, f4}, H5 = G.

Alternatively, the above five (5) distinct subgroups of G can be described as

H1 = [f1], H2 = [f2], H3 = [f3], H4 = [f4], H5 = G.

(In fact, H1, H2, H3, H4 and H5 exhaust all the subgroups of (G, ◦).)

Problem 8.3. Let G be a group of order 30, i.e., |G| = 30, and let x, y ∈ G.

(1) If x ∈ G satisfies x24 = e and x9 ̸= e, determine all the possible value(s) of o(x).
(2) If y20 = e, y8 ̸= e and y15 ̸= e, then determine all the possible value(s) of o(y).
(3) Is it possible to ever have z ∈ G such that z45 = e and z105 ̸= e? Why or why not?

Solution. (1) As |G| = 30, we see o(x) divides 30 by Lagrange’s theorem. Also, x24 = e
implies that o(x) divides 24. Thus, o(x) must be a positive common divisor of 30 and 24,
which are 1, 2, 3 and 6 precisely. Consequently, o(x) must be one of the following: 1, 2, 3
or 6. That is, o(x) ∈ {1, 2, 3, 6}.
Moreover, x9 ̸= e implies that o(x) is not a divisor of 9. That is, o(x) /∈ {1, 3, 9}.
Combining the above information, we see o(x) ∈ {1, 2, 3, 6} \ {1, 3, 9} = {2, 6}. That is,

o(x) could only possibly be 2 or 6.
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(2) The assumption y20 = e and |G| = 30 implies that o(y) must be a positive common
divisor of 20 and 30. That is, o(y) ∈ {1, 2, 5, 10}.
Moreover, y8 ̸= e implies that o(y) is not a divisor of 8. That is, o(y) /∈ {1, 2, 4, 8}.
Similarly, y15 ̸= e implies that o(y) is not a divisor of 15. That is, o(y) /∈ {1, 3, 5, 15}.
Combining the above, we see o(y) ∈ {1, 2, 5, 10} \ ({1, 2, 4, 8} ∪ {1, 3, 5, 15}) =

{1, 2, 5, 10} \ {1, 2, 3, 4, 5, 8, 15} = {10}. That is, o(y) = 10, precisely.
(3) It is not possible to have z ∈ G with |G| = 30 such that z45 = e and z105 ̸= e.

Suppose, on the contrary, such z exists. Then o(z) must be a positive common divisor of
30 and 45 but not a divisor of 105. But this is not possible because the positive common
divisors of 30 and 45 are 1, 3, 5 and 15 precisely, all of which are divisors of 105. This
contradiction shows that there is no z ∈ G (with |G| = 30) such that z45 = e and z105 ̸= e.

Problem 8.4. Prove that every group of order 4 is abelian as follows: Let G be any group
of order 4, i.e., |G| = 4.

(1) Suppose there exists a ∈ G such that o(a) = 4. Prove that G is abelian.
(2) Suppose that no elements of G have order 4. Prove x2 = e for all x ∈ G.
(3) Suppose that no elements of G have order 4. Prove that G is abelian.

Proof. (1) Since |[a]| = o(a) = 4 = |G| (together with [a] ⩽ G), we see

G = {e, a, a2, a3} = [a], which implies G is cyclic.

Since G is cyclic, G is abelian. (It is proved in class that every cyclic group is abelian.)
(2) Let x ∈ G be an arbitrary element of G, so o(x) ̸= 4. We have o(x) | 4 by Lagrange’s

theorem. (Note that the positive divisors of 4 are precisely 1, 2 and 4.) Since o(x) ̸= 4, we
see o(x) = 1 or 2, which (necessarily and invariably) yields x2 = e. (Indeed, if o(x) = 1,
then x = e and hence x2 = e; if o(x) = 2, then x2 = e.)
(3) For every x, y ∈ G, we have x2 = y2 = (xy)2 = e and hence

xy = xey = x(xy)2y = xxyxyy = x2yxy2 = eyxe = yx,

which shows G is abelian. (This argument has been given in Problem 6.2.)
Note that (1) and (3) exhaust all the possibilities for groups of order 4; and in each case

we are able to prove that G is abelian. Thus every group of oder 4 is abelian. □

PROBLEMS HINTS SOLUTIONS

(G, ∗) . . . H ⩽ G . . . |G| = [G : H]·|H| . . . a|G| = e . . . φ : G → G′, φ(ab) = φ(a)φ(b) . . . N �G . . . G/N . . . G/Ker(φ) ∼= Im(φ)
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Math 4441/6441 (Spring 2025) Midterm Exam II (04/03) Review Problems

Materials covered earlier: Midterm I; Homework Sets 1, 2, 3, 4.

Basic properties, direct calculations: Problems 5.1, 5.2, 5.3, 6.1, 6.2, 7.4, 8.1, 8.3, 8.4,
etcetera.

Abelian groups: Problems 5.2, 5.4, 6.2, 8.4.

Orders of elements: Problems 6.1, 7.1, 8.3, 8.4.

Homomorphisms: Problems 6.3, 6.4, 7.1.

Subgroups, the subgroup criterion: Problems 5.3, 7.2, 7.3, 7.4, 8.1, 8.2.

Lagrange’s theorem: Problems 8.3, 8.4.

Lecture notes and textbooks: All we have covered.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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