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Math 8220 (Fall 2024) Homework Set #01 (Due 09/06) Solutions

Problem 1.1. Consider f(x) = 2x3 − x2 + x+ 1, g(x) = x3 + 2x2 + 3x+ 1 ∈ Z[x] ⊆ Q[x].

(1) Determine whether f(x) has a root in Q.
(2) Determine whether f(x) is irreducible in Q[x].
(3) Is f(x) is irreducible in Z[x]? If not, find a non-trivial factorization of f(x) in Z[x].
(4) Determine whether g(x) has a root in Q.
(5) Determine whether g(x) is irreducible in Q[x]. Is g(x) irreducible in Z[x]?

Solution. (1) By the Rational Root Theorem, the (possible) rational roots of f(x) must be
from

{
±1

1
, ±1

2

}
. Direct computation (of f(±1) and f(±1

2
)) shows

f(1) ̸= 0, f(−1) ̸= 0, f(1
2
) ̸= 0, f(−1

2
) = 0.

Therefore f(x) has a root −1
2
∈ Q. (In fact, −1

2
is the only rational root of f(x).)

(2) Since deg(f(x)) > 1 and f(x) has a root in Q, we see f(x) is not irreducible in Q[x].
(3) Since f(x) ∈ Z[x] is not irreducible in Q[x], it is not irreducible in Z[x]. By long

division, we get f(x) = (x+ 1
2
)(2x2 − 2x+ 2) over Q. Correspondingly, we obtain

f(x) = (2x+ 1)(x2 − x+ 1),

which is a non-trivial factorization of f(x) in Z[x].
(4) By the Rational Root Theorem, the (possible) rational roots of g(x) must be from{
1
1
, −1

1

}
. However, g(1) ̸= 0 and g(−1) ̸= 0. So g(x) has no root in Q.

(5) In light of (4) and the fact deg(g(x)) = 3, we see g(x) is irreducible in Q[x]. Moreover,
because g(x) is primitive, g(x) is irreducible also in Z[x].
Problem 1.2. Consider h(x) = x3 + 2x2 + 3x+ 1 ∈ Z5[x], where Z5 = {0, 1, 2, 3, 4}.

(1) Determine whether h(x) has a root in Z5.
(2) Determine whether h(x) is irreducible in Z5[x].
(3) Write h(x) as a product of monic irreducible polynomials in Z5[x]. Explain why each

of the factors is irreducible.

Solution. (1) By computing h(0), h(1), h(2), h(3) and h(4) directly, we see

h(3) = 0.

(2) Since deg(h(x)) ⩾ 2 and h(x) has a root in Z5, we see h(x) is not irreducible in Z5[x].
(3) Dividing h(x) by x−3 via long division, we get h(x) = (x−3)(x2+3). By exhaustion,

we see x2 + 3 has no root in Z5, which implies x2 + 3 is irreducible in Z5[x]. Thus

h(x) = (x− 3)(x2 + 3),

which is a product of monic irreducible polynomials in Z5[x], as required.

Problem 1.3. Show that each the following polynomials is irreducible in Q[x].

(1) f1(x) = 3x4 − 7x3 + 7x2 + 7.
(2) f2(x) = 2x4 − 90x3 + 63x2 − 84x+ 105.
(3) f3(x) = 2x4 − 24x3 + 48x2 − 12x+ 28.

Proof. (1) Applying Eisenstein’s Criterion with p = 7, we see f1(x) is irreducible in Q[x].
(2) Applying Eisenstein’s Criterion with p = 3 to f2(x), we see f2(x) is irreducible in Q[x].
(3) As f3(x) = 2(x4−12x3+24x2−6x+14), it suffices to show x4−12x3+24x2−6x+14 is

irreducible in Q[x]. Applying Eisenstein’s Criterion with p = 2 to x4−12x3+24x2−6x+14,
we see x4 − 12x3 + 24x2 − 6x + 14 is irreducible in Q[x]. Thus f3(x) is also irreducible in
Q[x]. (Note that f3(x) is reducible in Z[x] though.) □
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Problem 1.4. Consider the polynomial p(x) = x3 + 2x2 − 4x + 6, which is irreducible in
Q[x] by Eisenstein’s Criterion. Let u ∈ C be a (fixed) root of p(x). (Such a root exists in
C. In fact, p(x) has at least one root in R by the Intermediate Value Theorem in calculus.)
Consider Q[u] = {a0 + a1u + a2u

2 | ai ∈ Q}, which is a ring. In fact, Q[u] is a field. This
exercise illustrates how to find the inverse of a (typical) non-zero element in Q[u]. (Here u
is not an indeterminate, and Q[u] is not a polynomial ring.)

As an example, we compute the inverse of 2 + 3u and illustrate that it is indeed in Q[u].
Consider the polynomial f(x) = 3x+ 2 ∈ Q[x]. Complete the following:

(1) Find gcd(p(x), f(x)) by the Euclidean Algorithm (repeated division) for polynomials.
(Note that gcd(p(x), f(x)) should be 1 as p(x) ∤ f(x) and p(x) is irreducible in Q[x].)

(2) Use your work in (1) to express 1 as a linear combination of p(x) and f(x). That is,
find a(x), b(x) ∈ Q[x] such that 1 = a(x)p(x) + b(x)f(x).

(3) Show that b(u)f(u) = 1, so that (f(u))−1 = b(u). Finally, show (2+3u)−1 ∈ Q[u] by
writing (2 + 3u)−1 in the form of a0 + a1u+ a2u

2 with ai ∈ Q.

Solution. (1) To find gcd(p(x), f(x)), we apply the Euclidean Algorithm as follows

p(x) = (1
3
x2 + 4

9
x− 44

27
)f(x) + 250

27
,

f(x) = ( 27
250
f(x))250

27
+ 0.

The monic polynomial associated with 250
27

is 1. Thus gcd(p(x), f(x)) = 1.

(2) From the work in (1) above, we have 250
27

= p(x)− (1
3
x2 + 4

9
x− 44

27
)f(x). Therefore

1 = 27
250

· 250
27

= 27
250

[
p(x)− (1

3
x2 + 4

9
x− 44

27
)f(x)

]
= 27

250
p(x)− 27

250
(1
3
x2 + 4

9
x− 44

27
)f(x)

= 27
250
p(x) + (− 9

250
x2 − 6

125
x+ 22

125
)f(x).

(3) Evaluating 1 = 27
250
p(x) + (− 9

250
x2 − 6

125
x+ 22

125
)f(x) at x = u and observing p(u) = 0,

we see

1 = 27
250
p(u) + (− 9

250
u2 − 6

125
u+ 22

125
)f(u) = (− 9

250
u2 − 6

125
u+ 22

125
)(2 + 3u).

Thus (2 + 3u)−1 = 22
125

− 6
125
u− 9

250
u2 ∈ Q[u] , as required.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #02 (Due 09/13) Solutions

Problem 2.1. Let F ⊆ K be a field extension such that [K : F ] <∞. Let α ∈ K and p(x)
be the minimal polynomial of α over F .

(1) Prove that if deg(p(x)) > 1
2
[K : F ] then F (α) = K.

(2) Prove that if [K : F ] is a prime number and α ∈ K \ F then F (α) = K.

Proof. (1) Note the equation [K : F ] = [K : F (α)][F (α) : F ]. Suppose F (α) ⊊ K on the
contrary. Then [K : F (α)] ⩾ 2 and hence

deg(p(x)) = [F (α) : F ] =
[K : F ]

[K : F (α)]
⩽

1

2
[K : F ],

which is a contradiction.
(2) The equation [K : F ] = [K : F (α)][F (α) : F ] implies that [F (α) : F ] is a (positive)

divisor of [K : F ]. Now that [K : F ] is prime, we conclude that either [F (α) : F ] = 1 or
[F (α) : F ] = [K : F ]. Moreover, since α /∈ F , we see F ⊊ F (α) and hence [F (α) : F ] > 1.
Consequently, [F (α) : F ] = [K : F ], which implies F (α) = K. □

Problem 2.2. Let F ⊆ K be a field extension, ω ∈ K and p(x) ∈ F [x]. Prove that, if p(x)
is monic and irreducible in F [x] such that p(ω) = 0, then p(x) is the minimal polynomial of
ω over F .

Proof. We first note that ω is algebraic over F as p(ω) = 0 while p(x) ̸= 0. Let m(x) be the
minimal polynomial of ω over F (so m(x) is monic and is in F [x]). Now, as p(ω) = 0, we
see m(x) | p(x) by a property about minimal polynomials. Thus p(x) = m(x)n(x) for some
n(x) ∈ F [x]. Now, since p(x) is irreducible, either m(x) or n(x) is invertible. Moreover,
m(x) is not invertible because it is the minimal polynomial of ω over F . (In fact, m(x) is
irreducible.) Thus n(x) must be invertible, hence n(x) = c ∈ F . Thus

p(x) = c ·m(x).

Finally, since both p(x) and m(x) are monic, we must have c = 1. Therefore p(x) = m(x),
meaning that p(x) is the minimal polynomial of ω over F . □

Problem 2.3. Consider Q ⊆ Q(
√
2,
√
3) ⊆ R. Show Q(

√
2 +

√
3) = Q(

√
2,
√
3).

Proof. Here is a direct approach: Direct computation shows

(
√
2 +

√
3)3 = 11

√
2 + 9

√
3,

which is clearly in Q(
√
2 +

√
3). Thus

√
2 = 1

2
[(
√
2 +

√
3)3 − 9(

√
2 +

√
3)] ∈ Q(

√
2 +

√
3)

√
3 = 1

2
[11(

√
2 +

√
3)− (

√
2 +

√
3)3] ∈ Q(

√
2 +

√
3),

showing Q(
√
2,
√
3) ⊆ Q(

√
2+

√
3). Moreover, it is obvious that Q(

√
2+

√
3) ⊆ Q(

√
2,
√
3).

Thus Q(
√
2 +

√
3) = Q(

√
2,
√
3).

Here is another approach: Note that
√
3−

√
2 = (

√
2 +

√
3)−1 ∈ Q(

√
2 +

√
3). Thus

√
2 = 1

2
[(
√
2 +

√
3)− (

√
2 +

√
3)−1] ∈ Q(

√
2 +

√
3)

√
3 = 1

2
[(
√
2 +

√
3) + (

√
2 +

√
3)−1] ∈ Q(

√
2 +

√
3).

This shows Q(
√
2,
√
3) ⊆ Q(

√
2 +

√
3). Thus Q(

√
2 +

√
3) = Q(

√
2,
√
3). □
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Problem 2.4. Consider the field extension Q ⊆ Q(u) ⊆ C in which u ∈ C is a (fixed) root
of p(x) = x3 + 2x2 − 4x+ 6 and Q(u) = Q[u] = {a0 + a1u+ a2u

2 | ai ∈ Q}; see Problem 1.4.
Express (3− 2u+ u2)−1 in the form of a0 + a1u+ a2u

2 with ai ∈ Q.

Solution. (1) Dividing (3x2 − 2x+ 1)(6x2 − 5x+ 4) by p(x) via long division, we
Applying the Euclidean Algorithm to p(x) and f(x) = x2 − 2x+ 3, we get

p(x) = (x+ 4)f(x) + (x− 6),

f(x) = (x+ 4)(x− 6) + 27,

x− 6 = 1
27
(x− 6) · 27 + 0.

Thus gcd(p(x), f(x)) = 1. To write 1 as a linear combination of p(x) and f(x), we have

1 = 1
27

· 27 = 1
27
[f(x)− (x+ 4)(x− 6)]

= 1
27

[
f(x)− (x+ 4)[p(x)− (x+ 4)f(x)]

]
= 1

27

[
−(x+ 4)p(x) + (x2 + 8x+ 17)f(x)

]
= − 1

27
(x+ 4)p(x) + ( 1

27
x2 + 8

27
x+ 17

27
)f(x).

Thus

1 = − 1
27
(u+ 4)p(u) + ( 1

27
u2 + 8

27
u+ 17

27
)f(u)

= ( 1
27
u2 + 8

27
u+ 17

27
)(3− 2u+ u2).

Hence, we obtain (3− 2u+ u2)−1 = 1
27
u2 + 8

27
u+ 17

27
, as required.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #03 (Due 09/20) Solutions

Problem 3.1. Prove the following lemma: Let F ⊆ K be a field extension, ω ∈ K and
p(x) ∈ F [x] such that p(ω) = 0. If p(x) is monic and deg(p(x)) = [F (ω) : F ], then p(x) is
the minimal polynomial of ω over F .

Proof. Note that ω is algebraic over F as p(ω) = 0 while p(x) ̸= 0. Let m(x) be the minimal
polynomial of ω over F . So m(x) is monic in F [x] with deg(m(x)) = [F (ω) : F ]. Now, as
p(ω) = 0, we see m(x) | p(x) by a property of minimal polynomials. Thus p(x) = n(x)m(x)
for some n(x) ∈ F [x]. Now, since deg(p(x)) = [F (ω) : F ] = deg(m(x)), we see

deg(n(x)) = deg(p(x))− deg(m(x)) = 0.

This means that n(x) is a non-zero constant, i.e., n(x) = c ∈ F \ {0}. Thus p(x) = c ·m(x).
Finally, since both p(x) and m(x) are monic, we must have c = 1. Therefore, we conclude
p(x) = m(x), proving that p(x) is the minimal polynomial of ω over F . (Alternatively,
the assumption on p(x) implies that p(x) is a minimal polynomial of ω over F . Given the
uniqueness, we see that p(x) is the minimal polynomial of ω over F .) □

Problem 3.2. Consider the field extension Q ⊆ Q(
√

2 +
√
3) ⊆ C.

(1) Show Q ⊆ Q(
√
3) ⊆ Q(

√
2 +

√
3).

(2) Prove
√

2 +
√
3 /∈ Q(

√
3), so that Q(

√
3) ⊊ Q(

√
2 +

√
3).

(3) Determine
[
Q(

√
2 +

√
3) : Q(

√
3)
]
and

[
Q(

√
2 +

√
3) : Q

]
.

Proof/Solution. (1) Clearly, Q ⊆ Q(
√
3). Also, as

√
2 +

√
3 ∈ Q(

√
2 +

√
3), we see

√
3 = (2 +

√
3)− 2 = (

√
2 +

√
3)2 − 2 ∈ Q(

√
2 +

√
3),

which proves Q(
√
3) ⊆ Q(

√
2 +

√
3).

(2) Suppose, on the contrary,
√

2 +
√
3 ∈ Q(

√
3). Then

√
2 +

√
3 = a + b

√
3 for some

a, b ∈ Q. Hence (a+ b
√
3)2 = 2 +

√
3, which expands to

a2 + 3b2 + 2ab
√
3 = 2 +

√
3,

which gives a2 + 3b2 = 2 and 2ab = 1 since 1 and
√
3 are linearly independent over Q. Thus

b = (2a)−1, and then a2 + 3(2a)−2 = 2. Clearing the denominator, we see 4a4 + 3 = 8a2,
or simply 4a4 − 8a2 + 3 = 0. So a is a rational root of 4x4 − 8x2 + 3 ∈ Z[x]. However, the
polynomial 4x4 − 8x2 +3 has no root in Q since none of ±1

1
, ±3

1
, ±1

2
, ±3

2
, ±1

4
, ±3

4
is a root.

(Or, solving 4x4−8x2+3 = 0 directly, we see that its roots are ±
√
1/2 and ±

√
3/2, none of

which is rational.) So we get a contradiction. Therefore
√

2 +
√
3 /∈ Q(

√
3), which implies

Q(
√
3) ⊊ Q(

√
2 +

√
3). □

(3) Let p(x) = x2 − (2 +
√
3) ∈ Q(

√
3)[x]. (Here x is the indeterminate and Q(

√
3) is the

base field for coefficients.) Clearly, p(
√
2 +

√
3) = 0. The work in (2) above shows that p(x)

has no root in Q(
√
3), which implies p(x) is irreducible in Q(

√
3)[x] as deg(p(x)) = 2. Thus

p(x) = x2− (2+
√
3) is the the minimal polynomial of

√
2 +

√
3 over Q(

√
3) by Problem 2.2.

Hence
[
Q(

√
2 +

√
3) : Q(

√
3)
]
= deg(p(x)) = 2 and[

Q(

√
2 +

√
3) : Q

]
=

[
Q(

√
2 +

√
3) : Q(

√
3)

]
·
[
Q(

√
3) : Q

]
= 2 · 2 = 4.
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Problem 3.3. Consider
√

2 +
√
3 ∈ R as in Problem 3.2. Find the minimal polynomial of√

2 +
√
3 over Q with rigorous justification.

Solution. Denote u =
√

2 +
√
3. Then

u2 = 2 +
√
3 =⇒ u2 − 2 =

√
3

=⇒ (u2 − 2)2 = (
√
3)2, which expands to u4 − 4u2 + 4 = 3

=⇒ u4 − 4u2 + 1 = 0.

Let p(x) = x4 − 4x2 + 1 ∈ Q[x], so that p(
√

2 +
√
3) = 0. Moreover, p(x) is monic with

deg(p(x)) = 4 = [Q(
√
2 +

√
3) : Q]; see Problem 3.2. Thus, by Problem 3.1, we conclude

that x4 − 4x2 + 1 is the minimal polynomial of
√

2 +
√
3 over Q.

Problem 3.4. Let α ∈ R \ {0} be a (fixed) real number such that α−1 ∈ Q[α]. To be
concrete, suppose α−1 = 5

6
α4 − α3 + 2α2 − 3α+ 4. Show that α is algebraic over Q and find

the minimal polynomial of α over Q.

Proof/Solution. From α−1 = 5
6
α4 − α3 + 2α2 − 3α + 4, we see

α

(
5

6
α4 − α3 + 2α2 − 3α + 4

)
= 1,

which simplifies to 5α5− 6α4+12α3− 18α2+24α− 6 = 0. Hence α is algebraic over Q since
α is a root of 5x5 − 6x4 + 12x3 − 18x2 + 24x− 6 ∈ Q[x] \ {0}.

Moreover, the polynomial 5x5 − 6x4 + 12x3 − 18x2 + 24x − 6 is irreducible over Q by
Eisenstein’s Criterion (with p = 2 or p = 3). Therefore, by Problem 2.2, the minimal
polynomial of α over Q is

m(x) = x5 − 6
5
x4 + 12

5
x3 − 18

5
x2 + 24

5
x− 6

5
∈ Q[x].

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #04 (Due 09/27) Solutions

Problem 4.1. Consider 3
√
2 + 3

√
4, which is algebraic over Q.

(1) Determine [Q( 3
√
2) : Q], with justification.

(2) True or false: Q( 3
√
2 + 3

√
4) = Q( 3

√
2). Please justify your claim.

Solution. (1) Let p(x) = x3− 2, which is irreducible over Q satisfying p( 3
√
2) = 0. Thus p(x)

is the minimal polynomial of 3
√
2 over Q by Problem 2.2. So [Q( 3

√
2) : Q] = deg(p(x)) = 3.

(2) True. Indeed, as 3
√
2+ 3

√
4 ∈ Q( 3

√
2) \Q and [Q( 3

√
2) : Q] = 3 (that is prime), we must

have Q( 3
√
2 + 3

√
4) = Q( 3

√
2) by Problem 2.1(2).

Problem 4.2. Find the minimal polynomial of 3
√
2 + 3

√
4 over Q.

Solution. Denote u = 3
√
2 + 3

√
4. By direct computation, we have

1 = 1 · 1 + 0 · 3
√
2 + 0 · 3

√
4

u = 0 · 1 + 1 · 3
√
2 + 1 · 3

√
4

u2 = 4 · 1 + 2 · 3
√
2 + 1 · 3

√
4

u3 = 6 · 1 + 6 · 3
√
2 + 6 · 3

√
4

Thus, finding a0, . . . , a3 such that
∑3

i=0 aiu
i = 0 is equivalent to solving the following system

of linear equations 1 0 4 6
0 1 2 6
0 1 1 6



a0
a1
a2
a3

 =

0
0
0

 .

Solving the system directly, we find a solution of

a3 = 1, a2 = 0, a1 = −6 and a0 = −6,

which means u3 − 6u− 6 = 0.
Let p(x) = x3 − 6x − 6 ∈ Q[x]. Since deg(p(x)) = 3 = [Q( 3

√
2) : Q] = [Q( 3

√
2 + 3

√
4) : Q],

p(x) is monic and p( 3
√
2 + 3

√
4) = 0, we conclude that the minimal polynomial of 3

√
2 + 3

√
4

over Q is x3 − 6x− 6 by Problem 3.1; also see Problem 2.2 as p(x) is irreducible.

Problem 4.3. Prove the following theorem: For field extensions F ⊆ K ⊆ L, if L is
algebraic over K and K is algebraic over F , then L is algebraic over F .

Proof. Let u ∈ L be arbitrary. (It suffices to show that u is algebraic over F .)
As u is algebraic overK, there exists p(x) ∈ K[x]\{0} such that p(u) = 0. (We may just as

well choose p(x) to be the minimal polynomial of u over K.) Say p(x) = anx
n+ · · ·+a1x+a0

so that ai ∈ K. Denote K1 = F (a0, a1, . . . , an). As ai ∈ K and K is algebraic over F , all ai
are algebraic over F . Thus K1 is a finite field extension of F , that is, [K1 : F ] <∞.
Now consider K1(u). Clearly, p(x) ∈ K1[x] and, of course, it still holds that p(u) = 0.

Thus u is algebraic over K1 and hence [K1(u) : K1] <∞.
In summary, we see [K1 : F ] <∞ and [K1(u) : K1] <∞. Therefore,

[K1(u) : F ] = [K1(u) : K1][K1 : F ] <∞,

which implies that K1(u) is algebraic over F . In particular, u is algebraic over F . Thus L is
algebraic over F , which completes the proof of the theorem. □
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Problem 4.4. Let F ⊆ K be a field extension such that every irreducible polynomial in
F [x] remains irreducible in K[x]. Prove that F is algebraically closed in K (that is, prove
that F = {u ∈ K | u is algebraic over F}). (See Problem E-5 for the converse.)

Proof. Clearly, F ⊆ {u ∈ K | u is algebraic over F}. Conversely, let u ∈ K be an (arbitrary)
element that is algebraic over F . (It suffices to show u ∈ F .)

Let mF (x) be the minimal polynomial of u over F , and mK(x) be the minimal polynomial
of u over K. Then mF (x) is monic and irreducible in F [x] with mF (u) = 0. By assumption,
mF (x) remains irreducible in K[x]. (Clearly, mF (x) is still monic and satisfying mF (u) = 0.)
Thus mF (x) is the the minimal polynomial of u over K by Problem 2.2. Thus mK(x) =
mF (x) ∈ F [x].

On the other hand, since u ∈ K, the minimal polynomial of u over K is

mK(x) = x− u ∈ K[x].

Now, putting it all together, we see x − u = mK(x) = mF (x) ∈ F [x], which implies u ∈ F .
This establishes that F is algebraically closed in K, as required. □

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (SemesterYear) Midterm Exam I (10/02) Review Problems

Irreducible polynomials, roots: Problems 1.1, 1.2, 1.3.

Computing products, quotients: Problems 1.4, 2.4.

Field extensions & extension degrees: Problems 2.1, 2.3, 4.1, 4.2, 4.3, 4.4.

Minimal polynomials & extension degrees: Problems 2.2, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2.

Abstract problems on field extensions: Problems 2.1, 2.2, 3.1, 4.3, 4.4.

Lecture notes and textbooks: All we have covered in class.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 8220 (Fall 2024) Midterm Exam I (10/02) Review Topics

Irreducible elements. Let R be a commutative ring with 1 and 0 ̸= r ∈ R \ U(R). We
say r is irreducible if, for a, b ∈ R, r = ab necessarily implies a ∈ U(R) or b ∈ U(R).

Irreducible polynomials over fields. Let K be a field and f(x) ∈ K[x]. Then f(x) is
irreducible iff f(x) /∈ K and f(x) is not a product of polynomials in K[x] of lower degrees.

Polynomials in Z[x] and Q[x]. Let f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x].

• We say f(x) is primitive iff gcd(an, . . . , a1, a0) = 1.
• The product of primitive polynomials is primitive.
• f(x) reducible in Q[x] =⇒ f(x) reducible in Z[x]. If f(x) is primitive, then ⇐⇒ .
• All rational roots of f(x) are contained in { r

s
: r, s ∈ Z, r | a0, s | an}.

• If there exists a prime p ∈ Z such that p ∤ an, p | ai for all i ⩽ n− 1 and p2 ∤ a0, then
f(x) is irreducible in Q[x]. (This is Eisenstein’s Criterion.)

Field extensions. Let F ⊆ K ⊆ L be field extensions. Let u ∈ K.

• The extension degree of K over F , [K : F ], is the vector space dimension of K/F .
• We say u is algebraic over F if there exists f(x) ∈ F [x] \ {0} such that f(u) = 0.
• We say that K is algebraic over F if all elements of K are algebraic over F .
• If [K : F ] <∞, then K is algebraic over F .

• The algebraic closure of F in K is defined as F
K
= {a ∈ K | a is algebraic over F},

which is known to be a field. If F
K
= F , we say F is algebraically closed in K.

• We have [L : F ] = [L : K][K : F ].
• If L is algebraic over K and K is algebraic over F , then L is algebraic over F .

Minimal polynomials. Let F ⊆ K be a field extension and u ∈ K algebraic over F . The
minimal polynomial of u over F is the monicm(x) ∈ F [x] of least degree such thatm(u) = 0.

• For f(x) ∈ F (x), f(u) = 0 ⇐⇒ m(x) | f(x). Also, m(x) is irreducible in F [x].
• We have F (u) = F [u] ∼= F [x]/(m(x)), and [F (u) : F ] = deg(m(x)).
• If deg(m(x)) = n, then F (u) = F [u] = {a0 + a1u+ · · ·+ an−1u

n−1 | ai ∈ F}.

Constructing roots. Let F be a field and p(x) ∈ F [x] be irreducible with deg(p(x)) = n.

Consider K = F [x]/(p(x)), which is a field. Denote f(x) = f(x) + (p(x)) ∈ F [x]/(p(x)).

• The map h : F → K defined by h(r) = r is an injective ring homomorphism.
• Identify F as a subfield of K via h, we see x is a root of p(y) ∈ F [y].
• In fact, p(y) (up to the leading coefficient) is the minimal polynomial of x over F .
• We have [K : F ] = n and K = {a0 + a1x+ · · ·+ an−1x

n−1 | ai ∈ F}.

Algebraic closure. Let F ⊆ C be a field extension.

• We say C is algebraically closed if one (or all) of the following holds
– There is no proper field extension of C that is algebraic.
– All irreducible polynomials in C[x] have degree 1.
– Every f(x) ∈ C[x] \ C is a product of linear factors.
– Every f(x) ∈ C[x] \ C has (at least) one root in C.

• C is a algebraic closure of F iff C is algebraic over F and C is algebraically closed.
• Every field has an algebraic closure, and it is unique up to isomorphism.

Note: The above list is not intended to be complete.
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Math 8220 (Fall 2024) Midterm Exam I (10/02) Solutions

Solutions

have been withdrawn

from the site

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #05 (Due 10/11) Solutions

Problem 5.1. Let F ⊆ Kλ ⊆ L be field extensions such that each Kλ is normal over F ,
where λ ∈ Λ ̸= ∅. Denote K = ∩λ∈ΛKλ. Prove that K is a normal extension of F .

Proof. Since Kλ is algebraic over F , for each λ ∈ Λ ̸= ∅, we see that K is algebraic over F .
Let p(x) be any irreducible polynomial in F [x] such that p(x) has a root in K; say

deg(p(x)) = n. Fix any λ ∈ Λ. Since Kλ is normal over F and p(x) has a root in Kλ,
p(x) can be factored completely over Kλ (according to a result covered in class); say

p(x) = a(x− r1)(x− r2) · · · (x− rn) with a ∈ F \ {0} and ri ∈ Kλ ⊆ L.

The roots of p(x) are uniquely determined in L (up to re-ordering). Thus, the roots
r1, r2, . . . , rn ∈ Kλ are independent of λ ∈ Λ (since they are all the roots of p(x) in L).
Consequently, we see {r1, r2, . . . , rn} ⊆ Kλ for all λ ∈ Λ. This allows us to establish
{r1, r2, . . . , rn} ⊆

⋂
λ∈ΛKλ = K. Therefore

p(x) = a(x− r1)(x− r2) · · · (x− rn) with ri ∈ K for all i = 1, . . . , n.

In summary, if a polynomial p(x) ∈ F [x] that is irreducible over F has a root in K then
p(x) factors completely over K. This proves that K is a normal extension of F .
Here is another approach (sketch): Fix any algebraic closure C of L. Suppose that

K is not normal over F . Then there exists an embedding φ : K → C such that φ|F = idF

and φ(K) ⊈ K; so φ(K) ⊈ Kλ for some λ ∈ Λ. Let ψ : Kλ → C be any extension of φ,
which exists (details omitted). Then ψ|F = idF and φ(Kλ) ⊈ Kλ, which is a contradiction.
(Note that C is not necessarily an algebraic closure of Kλ. But this is not an issue.) □

Problem 5.2. Let F be any field and f(x) ∈ F [x] with deg(f(x)) = n > 0. Let K be a
splitting field of f(x) over F . Prove [K : F ] ⩽ n!.

Proof. We prove the statement by induction on deg(f(x)). In case deg(f(x)) = 1, it is clear
that f(x) has precisely one root that is in F . Thus K = F hence [K : F ] = 1 = 1!.

Assume that the statement holds for n = k−1 ⩾ 1. (This means that the statement holds
for the splitting fields of any polynomial of degree k − 1 over any field.) Let f(x) ∈ F [x]
with deg(f(x)) = k. (We must show [K : F ] ⩽ k! in order to complete the induction.)
Since K is a splitting field of f(x) over F , we have

f(x) = a(x− u1)(x− u2) · · · (x− uk) with a ∈ F \ {0} and ui ∈ K

and K = F (u1, u2, . . . , uk) by definition.
Denote F1 = F (u1). Since f(u1) = 0 and deg(f(x)) = k, we see

(∗) [F1 : F ] ⩽ k.

Also, as f(x) ∈ F1[x] and u1 is a root of f(x) in F1, we have

f(x) = (x− u1)f1(x) with f1(x) = a(x− u2) · · · (x− uk) ∈ F1[x].

Hence K = F1(u2, . . . , uk) is a splitting field of f1(x) over F1. Now, as deg(f1(x)) = k − 1,
the induction hypothesis (applied to f1(x) over the field F1) implies

(∗∗) [K : F1] ⩽ (k − 1)!.

Combining (∗) and (∗∗), we see

[K : F ] = [K : F1][F1 : F ] ⩽ k!

as required. This concludes the induction. The proof is complete. □
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Problem 5.3. LetK be a splitting field of xn−a over Q, in which a ∈ Q\{0} and 1 ⩽ n ∈ Z.
Prove K = Q(u, v) for some u, v ∈ K. Assume K ⊆ C without loss of generality.

Proof. Let u ∈ C be a/any root of xn − a (which exists); and let v = e
2π
n
i ∈ C. Then, as

v0, v1, . . . , vn−1 are the distinct roots of xn − 1 ∈ Q[x], we see that u, uv, . . . , uvn−1 are
distinct roots of xn − a. As xn − a have at most n distinct roots in C, we conclude that
u, uv, . . . , uvn−1 must exhaust all the roots of xn − a. Thus

K = Q(u, uv, . . . , uvn−1).

Finally, note that Q(u, uv, . . . , uvn−1) = Q(u, v). (Indeed, as uvt ∈ Q(u, v) for all t ∈ Z,
we get Q(u, uv, . . . , uvn−1) ⊆ Q(u, v). Conversely, as both u and v = u−1(uv) are in
Q(u, uv, . . . , uvn−1), we see Q(u, uv, . . . , uvn−1) ⊇ Q(u, v).) Therefore K = Q(u, v) as
required. (In fact, there exists w ∈ K such that K = Q(w). Stay tuned.) □

Problem 5.4. Let K be a splitting field of x6 − 2 over Q. Determine [K : Q] as follows.
Assume K ⊆ C without loss of generality. Let u = 6

√
2 and v = e

π
3
i.

(1) True or false: K = Q(u, v). Explain why.
(2) Determine [Q(u) : Q] with rigorous justification.
(3) Determine [Q(u, v) : Q(u)] with rigorous justification.
(4) Find [K : Q]. (Feel free to find [K : Q] without going through (1)–(3).)

Solution. (1) It is true that K = Q(u, v), as this has been just shown in Problem 5.3.
(2) As u6 − 2 = 0 while x6 − 2 is monic and irreducible over Q (by Eisenstein’s Criterion

with p = 2), we see x6 − 2 is the minimal polynomial of u over Q (cf. Problem 2.2). Hence

[Q(u) : Q] = deg(x6 − 2) = 6.

(3) Note that v = 1
2
+

√
3
2
i and v−1 = e−

π
3
i = 1

2
−

√
3
2
i. (Indeed, for all z ∈ C with |z| = 1,

z−1 = z, the conjugate of z.) Consequently, we see

v + v−1 = 1 which implies v2 − v + 1 = 0.

So the minimal polynomial of v over Q(u) has degree at most 2; hence

(†) [Q(u, v) : Q(u)] ⩽ 2.

Moreover, as v /∈ R while Q(u) ⊆ R, we see v /∈ Q(u); hence

(‡) [Q(u, v) : Q(u)] ⩾ 2.

Combining (†) and (‡), we see [Q(u, v) : Q(u)] = 2.
(4) Putting (1), (2) and (3) together, we see

[K : Q] = [Q(u, v) : Q] = [Q(u, v) : Q(u)][Q(u) : Q] = 2 · 6 = 12.

In summary, [K : Q] = 12. The solution is now complete.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #06 (Due 10/18) Solutions

Problem 6.1. Let F be a field of characteristic p > 0 and f(x) =
∑d

i=0 aix
i an irreducible

polynomial in F [x]. Prove that the following statements are equivalent to one another.

(1) All roots of f(x) in all splitting fields of f(x) over F are multiple.
(2) f(x) has a multiple root in some extension field of F .
(3) ai = 0 for all 0 ⩽ i ⩽ d such that p ∤ i.
(4) f(x) = g(xp) for some g(x) ∈ F [x].

Proof. (1) ⇒ (2): This is clear.
(2) ⇒ (3): Suppose that f(x) has a multiple root in an extension field of F . Then

f ′(x) = 0, that is, dadx
d−1 + (d− 1)ad−1x

d−2 + · · ·+ 2a2x+ a1 = 0.

Thus iai = 0, which implies p | i or ai = 0, for 1 ⩽ i ⩽ d. Note that p | 0. Hence ai = 0 for
all 0 ⩽ i ⩽ d such that p ∤ i.
(3) ⇒ (4): Assume ai = 0 for all 0 ⩽ i ⩽ d with p ∤ i. Then f(x) can be written as

f(x) = a0 + apx
p + a2px

2p + · · ·+ a(s−1)px
(s−1)p + aspx

sp for some s ∈ Z with s ⩾ 1.

Let g(x) = a0 + apx+ a2px
2 + · · ·+ a(s−1)px

s−1 + aspx
s ∈ F [x]. It is clear that f(x) = g(xp).

(4) ⇒ (1): Suppose f(x) = g(xp) with g(x) = csx
s + · · ·+ c1x+ c0 ∈ F [x]. Thus

f(x) = g(xp) = csx
sp + cs−1x

(s−1)p + · · ·+ c2x
2p + c1x

p + c0.

It is routine (and easy) to see f ′(x) = 0 as char(F ) = p. (Or by chain rule, f ′(x) =
g′(xp)(xp)′ = g′(xp)(pxp−1) = 0.) Now, for every root r of f(x) in any field extension of F ,

f(r) = 0 = f ′(r).

Consequently all roots of f(x), in all extension fields of F , are multiple. □

Problem 6.2. Let F be a field of characteristic p > 0. Consider f(x) = xp
n − a where

0 ⩽ n ∈ Z and a ∈ F . (Here xp
n
stands for x(p

n).) Let K be a splitting field of f(x) over F .
Prove that xp

n − a has precisely one root, with multiplicity pn, in K.

Proof. As K is a splitting field of f(x) over F , there exists (at least) one root of f(x) in K;
that is, there exists u ∈ K such that f(u) = 0, which gives

up
n

= a.

Now, due to prime characteristic p, we have

f(x) = xp
n − a = xp

n − up
n

= (x− u)p
n

.

This shows that u is the only root of xp
n − a in K, with multiplicity pn. □

Problem 6.3. Let F be a field of characteristic 0, r ∈ F and f(x) ∈ F [x] \ F . Let m ∈ N.
Prove that the following statements are equivalent to each other:

(1) r is a root of f(x) with multiplicity m.
(2) f(r) = 0 and r is a root of f ′(x) of multiplicity m− 1.

(We agree that r is a root of f ′(x) of multiplicity 0 if and only if f ′(r) ̸= 0.)
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Proof. (1) ⇒ (2): Assume that r is a root of f(x) of multiplicity m. By definition,

f(x) = (x− r)mg(x) with g(r) ̸= 0.

Thus, we have f(r) = (r − r)mg(r) = 0. Moreover, we see

f ′(x) = [(x− r)mg(x)]′

= m(x− r)m−1g(x) + (x− r)mg′(x)

= (x− r)m−1[mg(x) + (x− r)g′(x)],

with mg(r) + (r − r)g′(r) = mg(r) ̸= 0, since m ̸= 0Z, g(r) ̸= 0F and char(F ) = 0. This
proves that r is a root of f ′(x) of multiplicity m− 1.
(2) ⇒ (1): Assume that f(r) = 0 and r is a root of f ′(x) of multiplicity m − 1. Since

f(r) = 0, we see that r is a root of f(x), say of multiplicity s ⩾ 1. By (1) ⇒ (2) above
(which has been established), we see that r is a root of f ′(x) of multiplicity s − 1. Note
that the multiplicity of r as a root of f ′(x) is uniquely determined (as F [x] is a UFD). Thus
s − 1 = m − 1, which yields s = m, meaning that r is a root of f(x) with multiplicity m.
This completes the proof. □

Problem 6.4. Let F be a field of characteristic 0, r ∈ F and f(x) ∈ F [x] \ F . Let m ∈ N.
Prove that the following statements are equivalent to each other:

(1) r is a root of f(x) with multiplicity m.
(2) f (i)(r) = 0 for all i = 0, 1, . . . , m− 1 and f (m)(r) ̸= 0.

(Here f (0)(x) = f(x) and, recursively, f (n+1)(x) = (f (n)(x))′ for all n ⩾ 0; so f (1) = f ′(x).)

Proof. We proceed by induction on m. The case where m = 1 has been proved in class (and
is also proved in Problem 6.3 above).

Let k ⩾ 1 be an integer and suppose that the equivalence (1) ⇔ (2) holds for m = k.
(Stated explicitly, the induction hypothesis says that, for every polynomial g(x) ∈ F [x] \ F ,
r is a root of g(x) of multiplicity k if and only if g(i)(r) = 0 for all i = 0, . . . , k − 1 and
g(k)(r) ̸= 0. This is labeled (∗).) Now we have

r is a root of f(x) of multiplicity k + 1

6.3⇐⇒ f(r) = 0 and r is a root of f ′(x) of multiplicity k

(∗)⇐⇒ f (i)(r) = 0 for all i = 0, 1, . . . , k and f (k+1)(r) ̸= 0.

So the desired equivalence holds for m = k + 1. By induction, the desired equivalence
(1) ⇔ (2) holds for all m ∈ N. The proof is now complete. □

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #07 (Due 10/25) Solutions

Problem 7.1. Let F be a field of characteristic p > 0 (hence p is prime) and let a ∈ F .
Prove that xp − a either factors completely in F [x] or is irreducible in F [x].

Proof. Write xp − a = p1(x) · · · pn(x) with each pi(x) monic and irreducible in F [x]. Also,
let C be an algebraic closure of F , so that xp − a has a root r ∈ C. Consequently,

(†) p1(x) · · · pn(x) = xp − a = xp − rp = (x− r)p ∈ C[x].

In particular, r is a root of pi(x) for all i = 1 . . . , n. (In fact, it follows from (†) that each
pi(x) is a power of x− r, since C[x] is a UFD.)

By Problem 2.2, each pi(x) is the (unique) minimial polynomial of r over F . Thus, by the
uniqueness of minimal polynomial, we see p1(x) = · · · = pn(x). Consequently,

xp − a = p1(x) · · · pn(x) = m(x) · · ·m(x) = m(x)n

in which m(x) denotes the minimial polynomial of r over F . Thus p = n deg(m(x)).
As p is prime, we get deg(m(x)) ∈ {1, p}. If deg(m(x)) = 1, then xp−a factors completely

in F [x]; If deg(m(x)) = p, then xp − a = m(x), which is irreducible in F [x]. □

Problem 7.2. Let F ⊆ K be an extension of fields of characteristic p > 0 (hence p is prime).
Define E = {a ∈ K | apn ∈ F for some integer n ⩾ 0}. Determine whether the following
statements are true or false, with justifications.

(1) F ⊆ E ⊆ K.
(2) E is a field (under the operations of (K, +, ·)), that is, E is a subfield of K.

Solution/Proof. (1) True. Indeed, the inclusion E ⊆ K is clear by the construction of E.

For F ⊆ E, observe that every a ∈ F satisfies ap
0 ∈ F , which yields a ∈ E.

(2) True. To prove it, let us first note that E ̸= ∅ because ∅ ̸= F ⊆ E. (This also shows
1K = 1F ∈ E.) Next, let a, b ∈ E. There exist non-negative integers m, n such that

ap
m ∈ F and bp

n ∈ F.

Let t = max{m, n} (or choose any t ⩾ max{m, n}). By the Frobenius, we see

(a− b)p
t

= ap
t − bp

t

= (ap
m

)p
t−m − (bp

n

)p
t−n ∈ F,

(ab)p
t

= ap
t

bp
t

= (ap
m

)p
t−m

(bp
n

)p
t−n ∈ F,

(a−1)p
m

= (ap
m

)−1 ∈ F if a ̸= 0,

which implies a− b ∈ E, ab ∈ E, and a−1 ∈ E if a ̸= 0. Given E ⊆ K, this shows that E is
a subfield of K. □

Problem 7.3. Let F be a fields of prime characteristic p > 0. Prove (1) ⇒ (2).

(1) All algebraic field extensions of F are separable over F .
(2) F = {up | u ∈ F}.

Proof. Suppose F ̸= {up | u ∈ F}. This necessarily means {up | u ∈ F} ⊊ F , so there exists
a ∈ F such that a /∈ {up | u ∈ F}. Consider the following polynomial

p(x) = xp − a ∈ F [x].

By the assumption above, p(x) has no roots in F and, hence, p(x) does not factor completely
over F . By Problem 7.1, we conclude that p(x) is irreducible over F . Let K be a splitting
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field of p(x) = xp − a over F , so that there exists r ∈ K such that r is a root of p(x), which
simply means rp = a. Thus, in K[x], we have

p(x) = xp − a = xp − rp = (x− r)p.

Moreover, p(x) is the minimal polynomial of r over F ; see Problem 2.2. Therefore, the
element r is not separable over F , because r is a multiple root of its minimal polynomial
over F (namely p(x)). Altogether, we get an algebraic field extension F ⊆ K such that K
is not separable over F . This completes the proof. □

Problem 7.4. Consider Q ⊆ Q(
√
2) ⊆ Q( 4

√
2), all subfields of C.

(1) True or false: Q ⊆ Q(
√
2) is a Galois extension. Show your justification.

(2) True or false: Q(
√
2) ⊆ Q( 4

√
2) is a Galois extension. Show your justification.

(3) True or false: Q ⊆ Q( 4
√
2) is a Galois extension. Show your justification.

Solution/Proof. (1) True. The field extension Q ⊆ Q(
√
2) is separable since char(Q) = 0.

Also, Q(
√
2) is normal over Q since Q(

√
2) = Q(

√
2,−

√
2) is a splitting field of x2 − 2 over

Q. Therefore Q(
√
2) is Galois over Q.

(2) True. The field extension Q(
√
2) ⊆ Q( 4

√
2) is separable since char(Q(

√
2)) = 0. Also,

as Q( 4
√
2) = Q( 4

√
2,− 4

√
2) is a splitting field of x2 −

√
2 over Q(

√
2), we see that Q( 4

√
2) is

normal over Q(
√
2). In conclusion, Q( 4

√
2) is Galois over Q(

√
2).

(3) False. Indeed, consider x4 − 2, which is irreducible in Q[x] (by Eisenstein’s criterion).
Clearly, x4− 2 has roots ± 4

√
2 ∈ Q( 4

√
2). But Q( 4

√
2) does not contain the other roots ± 4

√
2 i

of x4 − 2, since Q( 4
√
2) ⊆ R. Thus Q( 4

√
2) is not normal, hence not Galois, over Q. □

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #08 (Due 11/01) Solutions

Problem 8.1. Consider the Galois extension Q ⊆ E where E = Q(
√
2,
√
3). We have seen

in class that Gal(E/Q) = {σ1, σ2, σ3, σ4} where σi are determined by

e = σ1 :
√
2 7→

√
2,

√
3 7→

√
3; σ3 :

√
2 7→ −

√
2,

√
3 7→

√
3;

σ2 :
√
2 7→

√
2,

√
3 7→ −

√
3; σ4 :

√
2 7→ −

√
2,

√
3 7→ −

√
3.

(1) Compute σ2(1− 2
√
2 + 3

√
3− 4

√
6).

(2) Let H = {σ1, σ4}. Find u ∈ Q(
√
2,
√
3) such that EH = Q(u).

(3) Let K = Q(5
√
2 + 8

√
3). Determine Gal(E/K).

(4) Prove Q(5
√
2 + 8

√
3) = Q(

√
2,
√
3). (Compare with Problem 2.3.)

Solution/Proof. (1) It is straightforward to see

σ2(1− 2
√
2 + 3

√
3− 4

√
6) = 1− 2

√
2− 3

√
3 + 4

√
6.

(2) By inspection (details skipped), we see EH = {a+ b
√
6 | a, b ∈ Q} = Q(

√
6).

(3) By definition (and also because 5
√
2 + 8

√
3 generates K over Q), σi ∈ Gal(E/K) if

and only if σi(5
√
2 + 8

√
3) = 5

√
2 + 8

√
3. Direct checking reveals (details skipped)

σ1(5
√
2 + 8

√
3) = 5

√
2 + 8

√
3 while σi(5

√
2 + 8

√
3) ̸= 5

√
2 + 8

√
3 for all i = 2, 3, 4.

That is, only σ1 keeps 5
√
2 + 8

√
3 fixed. Thus Gal(E/K) = {σ1}.

(4) By the fundamental theorem of Galois theory,K = EGal(E/K). Since Gal(E/K) = {σ1},
we must haveK = E{σ1}, the fixed field of {σ1}. On the other hand, direct calculation reveals
that E{σ1} = E. (Indeed, σ1 is the identity map on E, so every element of E is fixed by σ1.)

Thus K = E, which verifies Q(5
√
2 + 8

√
3) = Q(

√
2,
√
3). □

Problem 8.2. Let E = Q(
√
2,
√
3) and Gal(E/Q) = {σ1, σ2, σ3, σ4} be as in Problem 8.1.

(1) Determine the group structure of Gal(E/Q). Explain why.
(2) Find all (proper and improper) subgroups of Gal(E/Q) explicitly.
(3) Find all intermediate fields K between Q and E explicitly, including Q and K.

Solution. (1) The Galois group Gal(E/Q) has order 4. And direct computing shows

σ2
i (
√
2) =

√
2 and σ2

i (
√
3) =

√
3 for all i = 1, 2, 3, 4.

That is, σ2
i = σ1 for all i. Thus Gal(E/Q) is the Klein four-group (cf. Problem 8.4).

(2) There are precisely five subgroups of Gal(E/Q), which are listed as follows

H1 = {σ1}, H2 = {σ1, σ2}, H3 = {σ1, σ3}, H4 = {σ1, σ4}, H5 = Gal(E/Q).

(3) By the fundamental theorem of Galois theory, the intermediate fields must be the fixed
fields EHi

, 1 ⩽ i ⩽ 5, precisely. Studying each EHi
directly (details skipped), we see

EH1 = Q(
√
2,

√
3), EH2 = Q(

√
2), EH3 = Q(

√
3), EH4 = Q(

√
6), EH5 = Q.

So there are precisely five intermediate fields: Q, Q(
√
2), Q(

√
3), Q(

√
6) and Q(

√
2,

√
3).

Problem 8.3. Consider the Galois group of x4 − 2 over Q, Gal(E/Q) where E = Q( 4
√
2, i).

It can be shown that Gal(E/Q) = {σ1, σ2, . . . , σ8} in which σi are determined by

i
σ17→ i,

4
√
2

σ17→ 4
√
2; i

σ37→ i,
4
√
2

σ37→ − 4
√
2; i

σ57→ −i, 4
√
2

σ57→ 4
√
2; i

σ77→ −i, 4
√
2

σ77→ − 4
√
2;

i
σ27→ i,

4
√
2

σ27→ 4
√
2 i; i

σ47→ i,
4
√
2

σ47→ − 4
√
2 i; i

σ67→ −i, 4
√
2

σ67→ 4
√
2 i; i

σ87→ −i, 4
√
2

σ87→ − 4
√
2 i.
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(1) Let H = {σ1, σ8}. Find u ∈ Q( 4
√
2, i) such that EH = Q(u).

(2) Let K = Q( 4
√
2 + i). Determine Gal(E/K).

(3) Prove Q( 4
√
2 + i) = Q( 4

√
2, i). (Compare with Problem 2.3 and Problem 8.1.)

Solution/Proof. (1) For w = c1+c2 i+c3
4
√
2+c4

4
√
2 i+c5

√
2+c6

√
2 i+c7

4
√
8+c8

4
√
8 i ∈ Q( 4

√
2, i)

with cj ∈ Q, we have (with some details skipped in
∗⇐⇒ )

w ∈ EH ⇐⇒ σ1(w) = w and σ8(w) = w ⇐⇒ σ8(w) = w
∗⇐⇒ c2 = c5 = 0, c3 = −c4 and c7 = c8

⇐⇒ c1 + c3(
4
√
2− 4

√
2 i) + c4

√
2 i+ c7(

4
√
8 +

4
√
8 i).

Consequently, we obtain EH = {a + b( 4
√
2− 4

√
2 i) + c

√
2 i + d( 4

√
8 + 4

√
8 i) | a, b, c, d ∈ Q} =

Q( 4
√
2− 4

√
2 i), noting that −1

2
( 4
√
2− 4

√
2 i)2 =

√
2 i and −1

2
( 4
√
2− 4

√
2 i)3 = 4

√
8 + 4

√
8 i.

(2) By definition (and because 4
√
2 + i generates K over Q), we have σj ∈ Gal(E/K) if

and only if σj(
4
√
2 + i) = 4

√
2 + i. Direct checking reveals (details skipped) that

σ1(
4
√
2 + i) =

4
√
2 + i while σj(

4
√
2 + i) ̸= 4

√
2 + i for all j = 2, 3, . . . , 8.

That is, only σ1 keeps 4
√
2 + i fixed. Thus Gal(E/K) = {σ1}.

(3) By the fundamental theorem of Galois theory, K = EGal(E/K) = E{σ1}. Moreover, from
direct inspection, we see that the fixed field of {σ1} is E{σ1} = E, since σ1 is the identity

map on E. Thus K = E, which completes the proof that Q( 4
√
2 + i) = Q( 4

√
2, i). □

Problem 8.4. Let G = {e, a, b, c} be a group of order 4 that is not cyclic (or equivalently,
a2 = b2 = c2 = e). (Such G is unique up to isomorphism, called the Klein four-group.) Let
V = Gal(Q(

√
2,
√
3)/Q) = {σ1, σ2, σ3, σ4} as in Problem Problem 8.1.

(1) Let H be any group. Prove that H must be abelian if x2 = e for all x ∈ H.
(2) Complete the multiplication table (a.k.a. the Cayley table) of G. No need to justify.

· e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(3) True or false: G ∼= V . If it is true, construct a group isomorphism explicitly.

Proof/Solution. (1) Indeed, xy = xey = x(xy)2y = x2yxy2 = eyxe = yx for all x, y ∈ H. □
(2) See the completed multiplication table (a.k.a. the Cayley table) of G above. (Note

that G is abelian by (1).)
(3) It is true that G ∼= V . For example, there is an isomorphism h : G→ V defined by

h(e) = σ1, h(a) = σ2, h(b) = σ3, h(c) = σ4.

(It is routine to verify that h(xy) = h(x)h(y) for all x, y ∈ G.)

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Midterm Exam II (11/06) Review Problems

Materials covered earlier: Homework Sets 1, 2, 3, 4; Exam I.

Splitting fields, normal extensions: Problems 5.1, 5.2, 5.3, 5.4, 7.4.

Simple roots, multiple roots, separable extensions: Problems 6.1, 6.2, 6.3, 6.4, 7.3.

Fields of characteristic p > 0: Problems 6.1, 6.2, 7.1, 7.2, 7.3.

Galois extensions, fundamental theorem of Galois theory: Problems 7.4, 8.1, 8.2, 8.3.

Group theory: Problems 8.4.

Lecture notes and textbooks: All we have covered.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 8220 (SemesterYear) Midterm Exam II (11/06) Review Topics

Splitting fields. Let F ⊆ K be a field extension and f(x) ∈ F [x]\F . We sayK is a splitting
field of f(x) over F iff f(x) = a(x− r1) · · · (x− rm) with ri ∈ K and K = F (r1, . . . , rm).

Normal extensions. Let F ⊆ K be a field extension. We say K is a normal over F iff K
is a splitting field of {fi(x) ∈ F [x] \ F}i∈Λ, a family of polynomials in F [x].
An algebraic field extension F ⊆ K is normal if and only if every irreducible polynomial

in F [x] that has a root in K can be factored completely over K if and only if ⟨omitted⟩.
Fields of prime characteristic p > 0, finite fields. Let F be a field.

• If char(F ) = p > 0, then (a± b)p
n
= ap

n ± bp
n
for all a, b ∈ F and all n ∈ N.

• Every finite field F has prime characteristic p > 0 and hence |F | = pn for some n ⩾ 1.
• For every prime number p and every n ⩾ 1, there is a field F such that |F | = pn.

Separable extensions. Let F ⊆ K ⊆ L be algebraic field extensions. Let u ∈ K.

• Given f(x) ∈ F [x], u is a multiple root of f(x) iff f(u) = 0 = f ′(u).
• A irreducible polynomial p(x) over F has a multiple root in F iff p′(x) = 0.
• [Definition] We say u is separable over F iff u is a simple root of its minimal polyno-
mial over F (iff the minimal polynomial of u over F has no multiple roots).

• [Definition] We say K is separable over F iff all elements of K are separable over F .
• If u is separable over F , then F (u) is separable over F .
• L is separable over F if and only if L is separable over K and K is separable over F .
• The separable closure of F in L is {u ∈ L | u is separable over F}, which is a field.
• If [K : F ] <∞ and K is separable over F , then there is a ∈ K such that K = F (a).
• We say F is perfect if every algebraic field extension of F is separable.

Automorphisms. Let F ⊆ E be a (finite) field extension.

• An F -automorphism of E is an isomorphism h : E → E satisfying h(a) = a, ∀ a ∈ F .
• All F -automorphisms of E form a group under composition, denoted Aut(E/F ).
• For H ⊆ Aut(E/F ), the fixed field of H is EH = {u ∈ E |h(u) = u for all h ∈ H}.
• |Aut(E/F )| ⩽ [E : F ]. For H ⩽ Aut(E/F ), H = Aut(E/EH) and |H| = [E : EH ].

Galois extensions. Let F ⊆ E be a finite field extension. We say E is Galois over F iff E
is normal and separable over F iff |Aut(E/F )| = [E : F ] iff F = EAut(E/F ). When F ⊆ E is
Galois, we denote Aut(E/F ) = Gal(E/F ), called the Galois group of E over F .

The fundamental theorem of Galois theory. Let F ⊆ E be a Galois extension. Then,
for any intermediate field K (so F ⊆ K ⊆ E) and for any H ⩽ Gal(E/F ), we have

• K = EGal(E/K) and [E : K] = |Gal(E/K)|. (Note that E is Galois over K.)
• H = Gal(E/EH), |H| = [E : EH ] and |Gal(E/F )|/|H| = [EH : F ].
• K is Galois over F iff K is normal over F iff Gal(E/K)�Gal(E/F ).
• If K is normal (hence Galois) over F , then Gal(K/F ) ∼= Gal(E/F )/Gal(E/K).

Group theory. Groups, subgroups, normal subgroups, group homomorphisms, quotient
groups, Lagrange’s theorem, isomorphism theorems of homomorphisms, etcetera.

Note: The above list is not intended to be complete.
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Math 8220 (Fall 2024) Extra Credit Set Solutions

You must solve a problem completely and correctly in order to get the extra credit. You
may attempt a problem for as many times as you wish by 12/06.

The points you get here will be added to the total score from the homework assignments.

Each ⋆ represents a correct solution submitted.

Problem E-1 (3 points). Let D be an integral domain (not necessarily commutative) and
R a subring of D such that R is non-zero with unity 1R. Prove that 1R is the unity of D.
(Thus, if R is a field, then D is naturally a vector space over R.)

Problem E-2 (3 points). Let D be a commutative integral domain and F a subring of D
such that F is a field and D has finite dimension as a vector space over F (cf. Problem E-1).
Prove that D is a field.

Problem E-3 (3 points). Let D be an integral domain and F a subring of D such that F
is a field and D has finite dimension as a vector space over F (cf. Problem E-1). Prove that
D is a division ring.

Problem E-4 (3 points). Let F ⊆ K be a field extension and u ∈ K such that [F (u) : F ]
is finite and odd. Prove F (u) = F (u2).

Problem E-5 (3 points). Prove or disprove: If F ⊆ K is a field extension such that F
is algebraically closed in K, then every irreducible polynomial in F [x] is irreducible in K[x].
(This is the converse of Problem 4.4.)

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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