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Each homework set contains four (4) regular problems. When solving the problems, make
sure your arguments are rigorous and complete.

Problems for extra credits are available; see the last page of this file.
There are three (3) PDF files for the homework sets and exams, one with the problems

only, one with hints, and one with solutions. Links are available below.

PROBLEMS HINTS SOLUTIONS
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Math 8220 (Fall 2024) Homework Set #01 (Due 09/06) Hints

Problem 1.1. Consider f(x) = 2x3 − x2 + x+ 1, g(x) = x3 + 2x2 + 3x+ 1 ∈ Z[x] ⊆ Q[x].

(1) Determine whether f(x) has a root in Q.
(2) Determine whether f(x) is irreducible in Q[x].
(3) Is f(x) is irreducible in Z[x]? If not, find a non-trivial factorization of f(x) in Z[x].
(4) Determine whether g(x) has a root in Q.
(5) Determine whether g(x) is irreducible in Q[x]. Is g(x) irreducible in Z[x]?

Hint. This should be straightforward. Use the results covered in class.

Problem 1.2. Consider h(x) = x3 + 2x2 + 3x+ 1 ∈ Z5[x], where Z5 = {0, 1, 2, 3, 4}.
(1) Determine whether h(x) has a root in Z5.
(2) Determine whether h(x) is irreducible in Z5[x].
(3) Write h(x) as a product of monic irreducible polynomials in Z5[x]. Explain why each

of the factors is irreducible.

Hint. Well, Z5 is a finite field. A monic polynomial has leading coefficient 1 by definition.

Problem 1.3. Show that each the following polynomials is irreducible in Q[x].

(1) f1(x) = 3x4 − 7x3 + 7x2 + 7.
(2) f2(x) = 2x4 − 90x3 + 63x2 − 84x+ 105.
(3) f3(x) = 2x4 − 24x3 + 48x2 − 12x+ 28.

Hint. Use Eisenstein’s Criterion.

Problem 1.4. Consider the polynomial p(x) = x3 + 2x2 − 4x + 6, which is irreducible in
Q[x] by Eisenstein’s Criterion. Let u ∈ C be a (fixed) root of p(x). (Such a root exists in
C. In fact, p(x) has at least one root in R by the Intermediate Value Theorem in calculus.)
Consider Q[u] = {a0 + a1u + a2u

2 | ai ∈ Q}, which is a ring. In fact, Q[u] is a field. This
exercise illustrates how to find the inverse of a (typical) non-zero element in Q[u]. (Here u
is not an indeterminate, and Q[u] is not a polynomial ring.)

As an example, we compute the inverse of 2 + 3u and illustrate that it is indeed in Q[u].
Consider the polynomial f(x) = 3x+ 2 ∈ Q[x]. Complete the following:

(1) Find gcd(p(x), f(x)) by the Euclidean Algorithm (repeated division) for polynomials.
(Note that gcd(p(x), f(x)) should be 1 as p(x) ∤ f(x) and p(x) is irreducible in Q[x].)

(2) Use your work in (1) to express 1 as a linear combination of p(x) and f(x). That is,
find a(x), b(x) ∈ Q[x] such that 1 = a(x)p(x) + b(x)f(x).

(3) Show that b(u)f(u) = 1, so that (f(u))−1 = b(u). Finally, show (2+3u)−1 ∈ Q[u] by
writing (2 + 3u)−1 in the form of a0 + a1u+ a2u

2 with ai ∈ Q.

Hint. Just complete (1), (2) and (3) as instructed. In (3), just evaluate the equation derived
in (2) at x = u. You do not need to prove any of the claims in the first paragraph (such as
that Q[u] is a field, etc.). The solution is very short actually.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #02 (Due 09/13) Hints

Problem 2.1. Let F ⊆ K be a field extension such that [K : F ] < ∞. Let α ∈ K and p(x)
be the minimal polynomial of α over F .

(1) Prove that if deg(p(x)) > 1
2
[K : F ] then F (α) = K.

(2) Prove that if [K : F ] is a prime number and α ∈ K \ F then F (α) = K.

Hint. In both (1) and (2), use the relation among [K : F ], [K : F (α)] and [F (α) : F ]. Feel
free to use the fact (an easy fact from linear algebra, in disguise) that if F ⊆ K1 ⊆ K2 is a
field extension such that [K1 : F ] = [K2 : F ] < ∞ then K1 = K2.

Problem 2.2. Let F ⊆ K be a field extension, ω ∈ K and p(x) ∈ F [x]. Prove that, if p(x)
is monic and irreducible in F [x] such that p(ω) = 0, then p(x) is the minimal polynomial of
ω over F .

Hint. Let m(x) be the minimal polynomial of ω over F . Can you show p(x) = m(x)?

Problem 2.3. Consider Q ⊆ Q(
√
2,
√
3) ⊆ R. Show Q(

√
2 +

√
3) = Q(

√
2,
√
3).

Hint. Here is a direct and short approach: Clearly Q(
√
2+

√
3) ⊆ Q(

√
2,
√
3). So it remains

to show that both
√
2 and

√
3 are in Q(

√
2 +

√
3), which would imply Q(

√
2 +

√
3) ⊇

Q(
√
2,
√
3). Note that (

√
2 +

√
3)n are all in Q(

√
2 +

√
3). Can you “get” both

√
2 and

√
3

from the powers of
√
2+

√
3? Do the algebra! (Other ways are available, and are welcome.)

Problem 2.4. Consider the field extension Q ⊆ Q(u) ⊆ C in which u ∈ C is a (fixed) root
of p(x) = x3 + 2x2 − 4x+ 6 and Q(u) = Q[u] = {a0 + a1u+ a2u

2 | ai ∈ Q}; see Problem 1.4.
Express (3− 2u+ u2)−1 in the form of a0 + a1u+ a2u

2 with ai ∈ Q.

Hint. See Problem 1.4. Here it takes more steps to complete the Euclidean Algorithm.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #03 (Due 09/20) Hints

Problem 3.1. Prove the following lemma: Let F ⊆ K be a field extension, ω ∈ K and
p(x) ∈ F [x] such that p(ω) = 0. If p(x) is monic and deg(p(x)) = [F (ω) : F ], then p(x) is
the minimal polynomial of ω over F .

Hint. Let m(x) be the minimal polynomial of ω over F .

Problem 3.2. Consider the field extension Q ⊆ Q(
√

2 +
√
3) ⊆ C.

(1) Show Q ⊆ Q(
√
3) ⊆ Q(

√
2 +

√
3).

(2) Prove
√

2 +
√
3 /∈ Q(

√
3), so that Q(

√
3) ⊊ Q(

√
2 +

√
3).

(3) Determine
[
Q(

√
2 +

√
3) : Q(

√
3)
]
and

[
Q(

√
2 +

√
3) : Q

]
.

Hint. (2) If
√

2 +
√
3 ∈ Q(

√
3), then there would be a, b ∈ Q such that

√
2 +

√
3 = a+b

√
3.

(3) What is the minimal polynomial of
√
2 +

√
3 over Q(

√
3)? Justify fully.

Problem 3.3. Consider
√

2 +
√
3 ∈ R as in Problem 3.2. Find the minimal polynomial of√

2 +
√
3 over Q with rigorous justification.

Hint. Do some algebra with
√

2 +
√
3. To show the polynomial you get is indeed the minimal

polynomial, you might want to use the result in Problem 3.1.

Problem 3.4. Let α ∈ R \ {0} be a (fixed) real number such that α−1 ∈ Q[α]. To be
concrete, suppose α−1 = 5

6
α4 − α3 + 2α2 − 3α+ 4. Show that α is algebraic over Q and find

the minimal polynomial of α over Q.

Hint. Include your step-by-step work and justification.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #04 (Due 09/27) Hints

Problem 4.1. Consider 3
√
2 + 3

√
4, which is algebraic over Q.

(1) Determine [Q( 3
√
2) : Q], with justification.

(2) True or false: Q( 3
√
2 + 3

√
4) = Q( 3

√
2). Please justify your claim.

Hint. Feel free to use the results we have learned (in class or in homework).

Problem 4.2. Find the minimal polynomial of 3
√
2 + 3

√
4 over Q.

Hint. Here is a way: Write ( 3
√
2 + 3

√
4)i, 0 ⩽ i ⩽ 3, as linear combinations of 1, 3

√
2 and 3

√
4

over Q. Find a0, a1, a2, a3 ∈ Q, not all zero, such that
∑3

i=0 ai(
3
√
2 + 3

√
4)i = 0.

Problem 4.3. Prove the following theorem: For field extensions F ⊆ K ⊆ L, if L is
algebraic over K and K is algebraic over F , then L is algebraic over F .

Hint. Let u ∈ L. As u is algebraic over K, there exists p(x) =
∑n

i=0 aix
i ∈ K[x] \ {0} such

that p(u) = 0. What can be said about u over F (a0, a1, . . . , an)? What can be said about
[F (a0, a1, . . . , an, u) : F ]? Show your reasoning.

Problem 4.4. Let F ⊆ K be a field extension such that every irreducible polynomial in
F [x] remains irreducible in K[x]. Prove that F is algebraically closed in K (that is, prove
that F = {u ∈ K | u is algebraic over F}). (See Problem E-5 for the converse.)

Hint. It suffices to show that if u ∈ K is algebraic over F then u must be in F . For such
an element u, let mF (x) be the minimal polynomial of u over F , and mK(x) be the minimal
polynomial of u over K. You might want to consider the following ingredients

• Relations between mF (x) and mK(x).
• The fact that mK(x) can be determined explicitly and easily.

Feel free to try your own approach(es), as always.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (SemesterYear) Midterm Exam I (10/02) Review Problems

Irreducible polynomials, roots: Problems 1.1, 1.2, 1.3.

Computing products, quotients: Problems 1.4, 2.4.

Field extensions & extension degrees: Problems 2.1, 2.3, 4.1, 4.2, 4.3, 4.4.

Minimal polynomials & extension degrees: Problems 2.2, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2.

Abstract problems on field extensions: Problems 2.1, 2.2, 3.1, 4.3, 4.4.

Lecture notes and textbooks: All we have covered in class.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 8220 (Fall 2024) Midterm Exam I (10/02) Review Topics

Irreducible elements. Let R be a commutative ring with 1 and 0 ̸= r ∈ R \ U(R). We
say r is irreducible if, for a, b ∈ R, r = ab necessarily implies a ∈ U(R) or b ∈ U(R).

Irreducible polynomials over fields. Let K be a field and f(x) ∈ K[x]. Then f(x) is
irreducible iff f(x) /∈ K and f(x) is not a product of polynomials in K[x] of lower degrees.

Polynomials in Z[x] and Q[x]. Let f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x].

• We say f(x) is primitive iff gcd(an, . . . , a1, a0) = 1.
• The product of primitive polynomials is primitive.
• f(x) reducible in Q[x] =⇒ f(x) reducible in Z[x]. If f(x) is primitive, then ⇐⇒ .
• All rational roots of f(x) are contained in { r

s
: r, s ∈ Z, r | a0, s | an}.

• If there exists a prime p ∈ Z such that p ∤ an, p | ai for all i ⩽ n− 1 and p2 ∤ a0, then
f(x) is irreducible in Q[x]. (This is Eisenstein’s Criterion.)

Field extensions. Let F ⊆ K ⊆ L be field extensions. Let u ∈ K.

• The extension degree of K over F , [K : F ], is the vector space dimension of K/F .
• We say u is algebraic over F if there exists f(x) ∈ F [x] \ {0} such that f(u) = 0.
• We say that K is algebraic over F if all elements of K are algebraic over F .
• If [K : F ] < ∞, then K is algebraic over F .

• The algebraic closure of F in K is defined as F
K
= {a ∈ K | a is algebraic over F},

which is known to be a field. If F
K
= F , we say F is algebraically closed in K.

• We have [L : F ] = [L : K][K : F ].
• If L is algebraic over K and K is algebraic over F , then L is algebraic over F .

Minimal polynomials. Let F ⊆ K be a field extension and u ∈ K algebraic over F . The
minimal polynomial of u over F is the monic m(x) ∈ F [x] of least degree such that m(u) = 0.

• For f(x) ∈ F (x), f(u) = 0 ⇐⇒ m(x) | f(x). Also, m(x) is irreducible in F [x].
• We have F (u) = F [u] ∼= F [x]/(m(x)), and [F (u) : F ] = deg(m(x)).
• If deg(m(x)) = n, then F (u) = F [u] = {a0 + a1u+ · · ·+ an−1u

n−1 | ai ∈ F}.

Constructing roots. Let F be a field and p(x) ∈ F [x] be irreducible with deg(p(x)) = n.

Consider K = F [x]/(p(x)), which is a field. Denote f(x) = f(x) + (p(x)) ∈ F [x]/(p(x)).

• The map h : F → K defined by h(r) = r is an injective ring homomorphism.
• Identify F as a subfield of K via h, we see x is a root of p(y) ∈ F [y].
• In fact, p(y) (up to the leading coefficient) is the minimal polynomial of x over F .
• We have [K : F ] = n and K = {a0 + a1x+ · · ·+ an−1x

n−1 | ai ∈ F}.

Algebraic closure. Let F ⊆ C be a field extension.

• We say C is algebraically closed if one (or all) of the following holds
– There is no proper field extension of C that is algebraic.
– All irreducible polynomials in C[x] have degree 1.
– Every f(x) ∈ C[x] \ C is a product of linear factors.
– Every f(x) ∈ C[x] \ C has (at least) one root in C.

• C is a algebraic closure of F iff C is algebraic over F and C is algebraically closed.
• Every field has an algebraic closure, and it is unique up to isomorphism.

Note: The above list is not intended to be complete.
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Math 8220 (Fall 2024) Midterm Exam I (10/02) Hints

Hints

have been withdrawn

from the site

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #05 (Due 10/11) Hints

Problem 5.1. Let F ⊆ Kλ ⊆ L be field extensions such that each Kλ is normal over F ,
where λ ∈ Λ ̸= ∅. Denote K = ∩λ∈ΛKλ. Prove that K is a normal extension of F .

Hint. Use one of the criteria for normal extension covered in class.

Problem 5.2. Let F be any field and f(x) ∈ F [x] with deg(f(x)) = n > 0. Let K be a
splitting field of f(x) over F . Prove [K : F ] ⩽ n!.

Hint. One way to prove the claim is by induction. Present your proof rigorously.

Problem 5.3. LetK be a splitting field of xn−a over Q, in which a ∈ Q\{0} and 1 ⩽ n ∈ Z.
Prove K = Q(u, v) for some u, v ∈ K. Assume K ⊆ C without loss of generality.

Hint. Let u ∈ C be a/any root of xn − a, which exists (of course); and let v = e
2π
n
i ∈ C.

What are all the roots of xn − a in C? Can you show K = Q(u, v)?

Problem 5.4. Let K be a splitting field of x6 − 2 over Q. Determine [K : Q] as follows.
Assume K ⊆ C without loss of generality. Let u = 6

√
2 and v = e

π
3
i.

(1) True or false: K = Q(u, v). Explain why.
(2) Determine [Q(u) : Q] with rigorous justification.
(3) Determine [Q(u, v) : Q(u)] with rigorous justification.
(4) Find [K : Q]. (Feel free to find [K : Q] without going through (1)–(3).)

Hint. (3) Note that v = 1
2
+

√
3
2
i. What is the minimal polynomial of v over Q? Is v contained

in Q(u)? These questions should help you figure out [Q(u, v) : Q(u)] precisely.
(4) This should follow from (1)–(3) immediately.
The main goal of this exercise is to find [K : Q]. If you can accomplish this via other

approaches, feel free to present them. That is, you may skip parts (1)–(3), as long as you
are able to find [K : Q] with rigorous justification.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #06 (Due 10/18) Hints

Problem 6.1. Let F be a field of characteristic p > 0 and f(x) =
∑d

i=0 aix
i an irreducible

polynomial in F [x]. Prove that the following statements are equivalent to one another.

(1) All roots of f(x) in all splitting fields of f(x) over F are multiple.
(2) f(x) has a multiple root in some extension field of F .
(3) ai = 0 for all 0 ⩽ i ⩽ d such that p ∤ i.
(4) f(x) = g(xp) for some g(x) ∈ F [x].

Hint. Use the theorems proved in class concerning f ′(x). Given char(F ) = p > 0, a ∈ F and
n ∈ Z, we have na = 0F ⇐⇒ p | n or a = 0F . The proof is not long at all.

Problem 6.2. Let F be a field of characteristic p > 0. Consider f(x) = xpn − a where
0 ⩽ n ∈ Z and a ∈ F . (Here xpn stands for x(pn).) Let K be a splitting field of f(x) over F .
Prove that xpn − a has precisely one root, with multiplicity pn, in K.

Hint. There exists u ∈ K such that f(u) = 0. Now, given this u, can you factor f(x)
completely over K? Make use of the assumption that K has a prime characteristic p.

Problem 6.3. Let F be a field of characteristic 0, r ∈ F and f(x) ∈ F [x] \ F . Let m ∈ N.
Prove that the following statements are equivalent to each other:

(1) r is a root of f(x) with multiplicity m.
(2) f(r) = 0 and r is a root of f ′(x) of multiplicity m− 1.

(We agree that r is a root of f ′(x) of multiplicity 0 if and only if f ′(r) ̸= 0.)

Hint. All should be straightforward, relying on basic definitions and char(F ) = 0.

Problem 6.4. Let F be a field of characteristic 0, r ∈ F and f(x) ∈ F [x] \ F . Let m ∈ N.
Prove that the following statements are equivalent to each other:

(1) r is a root of f(x) with multiplicity m.
(2) f (i)(r) = 0 for all i = 0, 1, . . . , m− 1 and f (m)(r) ̸= 0.

(Here f (0)(x) = f(x) and, recursively, f (n+1)(x) = (f (n)(x))′ for all n ⩾ 0; so f (1) = f ′(x).)

Hint. You might want to use Problem 6.3. One way to present your proof is by induction
on m. Present your proof rigorously.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #07 (Due 10/25) Hints

Problem 7.1. Let F be a field of characteristic p > 0 (hence p is prime) and let a ∈ F .
Prove that xp − a either factors completely in F [x] or is irreducible in F [x].

Hint. Fix an extension field K of F such that xp − a has a root, say r, in K. Let m(x) be
the minimial polynomial of r over F and examine the relations between m(x) and xp − a.
Other approaches are available and are (of course) welcome.

Problem 7.2. Let F ⊆ K be an extension of fields of characteristic p > 0 (hence p is prime).
Define E = {a ∈ K | apn ∈ F for some integer n ⩾ 0}. Determine whether the following
statements are true or false, with justifications.

(1) F ⊆ E ⊆ K.
(2) E is a field (under the operations of (K, +, ·)), that is, E is a subfield of K.

Hint. All should be straightforward. For (2), you might want to review one of the subfield
criteria (i.e., subring criteria plus every non-zero element being invertible). Make use of the
assumption that char(K) = p > 0.

Problem 7.3. Let F be a fields of prime characteristic p > 0. Prove (1) ⇒ (2).

(1) All algebraic field extensions of F are separable over F .
(2) F = {up | u ∈ F}.

Hint. Feel free to use what we have proved in class or in homework.

Problem 7.4. Consider Q ⊆ Q(
√
2) ⊆ Q( 4

√
2), all subfields of C.

(1) True or false: Q ⊆ Q(
√
2) is a Galois extension. Show your justification.

(2) True or false: Q(
√
2) ⊆ Q( 4

√
2) is a Galois extension. Show your justification.

(3) True or false: Q ⊆ Q( 4
√
2) is a Galois extension. Show your justification.

Hint. All should be straightforward. Recall that a field extension F ⊆ K is Galois if it is
both normal and separable.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #08 (Due 11/01) Hints

Problem 8.1. Consider the Galois extension Q ⊆ E where E = Q(
√
2,
√
3). We have seen

in class that Gal(E/Q) = {σ1, σ2, σ3, σ4} where σi are determined by

e = σ1 :
√
2 7→

√
2,

√
3 7→

√
3; σ3 :

√
2 7→ −

√
2,

√
3 7→

√
3;

σ2 :
√
2 7→

√
2,

√
3 7→ −

√
3; σ4 :

√
2 7→ −

√
2,

√
3 7→ −

√
3.

(1) Compute σ2(1− 2
√
2 + 3

√
3− 4

√
6).

(2) Let H = {σ1, σ4}. Find u ∈ Q(
√
2,
√
3) such that EH = Q(u).

(3) Let K = Q(5
√
2 + 8

√
3). Determine Gal(E/K).

(4) Prove Q(5
√
2 + 8

√
3) = Q(

√
2,
√
3). (Compare with Problem 2.3.)

Hint. For (2), first determine EH and, then, u should be clear. For (4), the fundamental
theorem of Galois theory says K = EGal(E/K); So we might want to examine EGal(E/K).

Problem 8.2. Let E = Q(
√
2,
√
3) and Gal(E/Q) = {σ1, σ2, σ3, σ4} be as in Problem 8.1.

(1) Determine the group structure of Gal(E/Q). Explain why.
(2) Find all (proper and improper) subgroups of Gal(E/Q) explicitly.
(3) Find all intermediate fields K between Q and E explicitly, including Q and K.

Hint. For (1), compute σ2
i for all σi ∈ Gal(E/Q). For (3), the fundamental theorem of

Galois theory says that there is an one-one correspondence between the subgroups and the
intermediate fields. No justification is necessary for (2) and (3).

Problem 8.3. Consider the Galois group of x4 − 2 over Q, Gal(E/Q) where E = Q( 4
√
2, i).

It can be shown that Gal(E/Q) = {σ1, σ2, . . . , σ8} in which σi are determined by

i
σ17→ i,

4
√
2

σ17→ 4
√
2; i

σ37→ i,
4
√
2

σ37→ − 4
√
2; i

σ57→ −i,
4
√
2

σ57→ 4
√
2; i

σ77→ −i,
4
√
2

σ77→ − 4
√
2;

i
σ27→ i,

4
√
2

σ27→ 4
√
2 i; i

σ47→ i,
4
√
2

σ47→ − 4
√
2 i; i

σ67→ −i,
4
√
2

σ67→ 4
√
2 i; i

σ87→ −i,
4
√
2

σ87→ − 4
√
2 i.

(1) Let H = {σ1, σ8}. Find u ∈ Q( 4
√
2, i) such that EH = Q(u).

(2) Let K = Q( 4
√
2 + i). Determine Gal(E/K).

(3) Prove Q( 4
√
2 + i) = Q( 4

√
2, i). (Compare with Problem 2.3 and Problem 8.1.)

Hint. See the hint for Problem 8.1.

Problem 8.4. Let G = {e, a, b, c} be a group of order 4 that is not cyclic (or equivalently,
a2 = b2 = c2 = e). (Such G is unique up to isomorphism, called the Klein four-group.) Let
V = Gal(Q(

√
2,
√
3)/Q) = {σ1, σ2, σ3, σ4} as in Problem Problem 8.1.

(1) Let H be any group. Prove that H must be abelian if x2 = e for all x ∈ H.
(2) Complete the multiplication table (a.k.a. the Cayley table) of G. No need to justify.

· e a b c

e
a
b
c

(3) True or false: G ∼= V . If it is true, construct a group isomorphism explicitly.

Hint. This involves group theory. By default, e stands for the identity element of G.

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Midterm Exam II (11/06) Review Problems

Materials covered earlier: Homework Sets 1, 2, 3, 4; Exam I.

Splitting fields, normal extensions: Problems 5.1, 5.2, 5.3, 5.4, 7.4.

Simple roots, multiple roots, separable extensions: Problems 6.1, 6.2, 6.3, 6.4, 7.3.

Fields of characteristic p > 0: Problems 6.1, 6.2, 7.1, 7.2, 7.3.

Galois extensions, fundamental theorem of Galois theory: Problems 7.4, 8.1, 8.2, 8.3.

Group theory: Problems 8.4.

Lecture notes and textbooks: All we have covered.

Note: The above list is not intended to be complete. The problems in
the actual test may vary in difficulty as well as in content. Going over,
understanding, and digesting the problems listed above will definitely help.
However, simply memorizing the solutions of the problems may not help you
as much.

You are strongly encouraged to practice more problems (than the ones
listed above) on your own.
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Math 8220 (SemesterYear) Midterm Exam II (11/06) Review Topics

Splitting fields. Let F ⊆ K be a field extension and f(x) ∈ F [x]\F . We sayK is a splitting
field of f(x) over F iff f(x) = a(x− r1) · · · (x− rm) with ri ∈ K and K = F (r1, . . . , rm).

Normal extensions. Let F ⊆ K be a field extension. We say K is a normal over F iff K
is a splitting field of {fi(x) ∈ F [x] \ F}i∈Λ, a family of polynomials in F [x].
An algebraic field extension F ⊆ K is normal if and only if every irreducible polynomial

in F [x] that has a root in K can be factored completely over K if and only if ⟨omitted⟩.
Fields of prime characteristic p > 0, finite fields. Let F be a field.

• If char(F ) = p > 0, then (a± b)p
n
= ap

n ± bp
n
for all a, b ∈ F and all n ∈ N.

• Every finite field F has prime characteristic p > 0 and hence |F | = pn for some n ⩾ 1.
• For every prime number p and every n ⩾ 1, there is a field F such that |F | = pn.

Separable extensions. Let F ⊆ K ⊆ L be algebraic field extensions. Let u ∈ K.

• Given f(x) ∈ F [x], u is a multiple root of f(x) iff f(u) = 0 = f ′(u).
• A irreducible polynomial p(x) over F has a multiple root in F iff p′(x) = 0.
• [Definition] We say u is separable over F iff u is a simple root of its minimal polyno-
mial over F (iff the minimal polynomial of u over F has no multiple roots).

• [Definition] We say K is separable over F iff all elements of K are separable over F .
• If u is separable over F , then F (u) is separable over F .
• L is separable over F if and only if L is separable over K and K is separable over F .
• The separable closure of F in L is {u ∈ L | u is separable over F}, which is a field.
• If [K : F ] < ∞ and K is separable over F , then there is a ∈ K such that K = F (a).
• We say F is perfect if every algebraic field extension of F is separable.

Automorphisms. Let F ⊆ E be a (finite) field extension.

• An F -automorphism of E is an isomorphism h : E → E satisfying h(a) = a, ∀ a ∈ F .
• All F -automorphisms of E form a group under composition, denoted Aut(E/F ).
• For H ⊆ Aut(E/F ), the fixed field of H is EH = {u ∈ E |h(u) = u for all h ∈ H}.
• |Aut(E/F )| ⩽ [E : F ]. For H ⩽ Aut(E/F ), H = Aut(E/EH) and |H| = [E : EH ].

Galois extensions. Let F ⊆ E be a finite field extension. We say E is Galois over F iff E
is normal and separable over F iff |Aut(E/F )| = [E : F ] iff F = EAut(E/F ). When F ⊆ E is
Galois, we denote Aut(E/F ) = Gal(E/F ), called the Galois group of E over F .

The fundamental theorem of Galois theory. Let F ⊆ E be a Galois extension. Then,
for any intermediate field K (so F ⊆ K ⊆ E) and for any H ⩽ Gal(E/F ), we have

• K = EGal(E/K) and [E : K] = |Gal(E/K)|. (Note that E is Galois over K.)
• H = Gal(E/EH), |H| = [E : EH ] and |Gal(E/F )|/|H| = [EH : F ].
• K is Galois over F iff K is normal over F iff Gal(E/K)�Gal(E/F ).
• If K is normal (hence Galois) over F , then Gal(K/F ) ∼= Gal(E/F )/Gal(E/K).

Group theory. Groups, subgroups, normal subgroups, group homomorphisms, quotient
groups, Lagrange’s theorem, isomorphism theorems of homomorphisms, etcetera.

Note: The above list is not intended to be complete.
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Math 8220 (Fall 2024) Midterm Exam II (11/06) Hints

Hints

have been withdrawn

from the site

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Homework Set #09 (Due 11/15) Hints

Problem 9.1. Let G be a group, X be a G-set, and x, y ∈ X. Using elementary arguments,
prove that the following statements, (1)–(4), are equivalent:

(1) Gx = Gy;
(2) x ∈ Gy;
(3) y ∈ Gx;
(4) Gx ∩Gy ̸= ∅.

Hint. All should follow from the definition of G-sets. Note that Gx = {g ∗ x | g ∈ G}.
Problem 9.2. Let S3 = {f1, f2, f3, f4, f5, f6} = X, in which

f1 = (1) = e, f2 = (1 2), f3 = (1 3), f4 = (2 3), f5 = (1 2 3), f6 = (1 3 2).

Consider the action of S3 on X by conjugation (i.e., g ∗x = gxg−1 for all g ∈ G and x ∈ X).

(1) For each i = 1, . . . , 6, determine C(fi) and N(fi) explicitly. (Skip the details.)
(2) Does the results in (1) verify the equalities |C(fi)| = [S3 : N(fi)] for all i = 1, . . . , 6?
(3) Verify that X is a disjoint union of the distinct conjugate classes (i.e., orbits).

Hint. (1) You don’t need to show the details—answers are enough.
(2) & (3) Don’t quote the theorems. Instead, verify the relevant theorems on S3 directly.

Problem 9.3. Let S3 = {f1, . . . , f6} be as in Problem 9.2 and Y = {H |H ⩽ S3}. Consider
the action of S3 on Y by conjugation (i.e., g ∗H = gHg−1 for all g ∈ G and H ∈ Y ).

(1) Determine all elements of Y explicitly. (Skip the details.)
(2) Let H1 = {f1, f2}. Determine C(H1) and N(H1) explicitly. (Skip the details.)
(3) Let H2 = {f1, f5, f6}. Determine C(H2) and N(H2) explicitly. (Skip the details.)
(4) List all the distinct orbits (i.e., conjugate classes) in Y explicitly. (Skip the details.)

Hint. Don’t miss the trivial subgroups of S3. You may present your answers directly.

Problem 9.4. Let G be a finite group with |G| = n and p a prime number such that p | n.
Write n = prm with p ∤ m. Let H be a Sylow p-subgroup of G (so that |H| = pr). Let K be
any subgroup of G such that |K| = ps for some integer s. Denote L = K ∩N(H).

(1) True or false: (a) L ⩽ N(H); (b) H �N(H); (c) LH ⩽ N(H); (d) LH ⩽ G.
(2) Prove L ⊆ H. (Hence L ⩽ H.)

Hint. (1) If B ⩽ A, C ⩽ A and D � A, then B ∩ C ⩽ A and BD ⩽ A. No need to justify.
(2) Suppose L ⊈ H. Now, what can be said about |L|/|L ∩H| and, hence, about |LH|?

Do you see a contradiction?

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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Math 8220 (Fall 2024) Extra Credit Set Hints

You must solve a problem completely and correctly in order to get the extra credit. You
may attempt a problem for as many times as you wish by 12/06.

The points you get here will be added to the total score from the homework assignments.

Each ⋆ represents a correct solution submitted.

Problem E-1 (3 points). Let D be an integral domain (not necessarily commutative) and
R a subring of D such that R is non-zero with unity 1R. Prove that 1R is the unity of D.
(Thus, if R is a field, then D is naturally a vector space over R.)

Problem E-2 (3 points). Let D be a commutative integral domain and F a subring of D
such that F is a field and D has finite dimension as a vector space over F (cf. Problem E-1).
Prove that D is a field.

Problem E-3 (3 points). Let D be an integral domain and F a subring of D such that F
is a field and D has finite dimension as a vector space over F (cf. Problem E-1). Prove that
D is a division ring.

Problem E-4 (3 points). Let F ⊆ K be a field extension and u ∈ K such that [F (u) : F ]
is finite and odd. Prove F (u) = F (u2).

Problem E-5 (3 points). Prove or disprove: If F ⊆ K is a field extension such that F
is algebraically closed in K, then every irreducible polynomial in F [x] is irreducible in K[x].
(This is the converse of Problem 4.4.)

Problem E-6 (3 points). Let F be a field with char(F ) = p > 0 and let C be an algebraic
closure of F . Assume that F is separably closed in C. Prove or disprove: Every monic
irreducible polynomial in F [x] is of the form xpn − a for some integer n ⩾ 0 and a ∈ F .

PROBLEMS HINTS SOLUTIONS

F ⊆ K ⊆ E . . . . . . .mα, F (x) . . . . . . . EH = K ⇐⇒ Gal(E/K) = H . . . . . . . C = C . . . . . . . [G : N(P )] = |C(P )| = np ≡ 1 mod p
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