Problem 1. Let R be a Noetherian ring of characteristic p, I an ideal, and M an R-module.

- (1) For any given $e \in \mathbb{N}$, show that $\mathrm{H}^{i}_{I}({}^{e}M) \cong {}^{e}(\mathrm{H}^{i}_{I}(M))$ for every *i*.
- (2) Suppose that e_0M is finitely generated over R for some $e_0 \ge 1$. Show that $R/\operatorname{Ann}_R(M)$ is an F-finite ring. Consequently, ${}^{e}M$ is finitely generated over R for every e.

Proof. (1). Given any ring homomorphism $\phi: S \to T$ of Noetherian rings, any T-module M (which is naturally an S-module), and any ideal I of S, we always have $\mathrm{H}^{i}_{I}(M) \cong \mathrm{H}^{i}_{\phi(I)T}(M)$ as S-modules (and as T-modules as well) for all i. To prove (1), apply the above with S = R, T = R, and ϕ being the Frobenius ring homomorphism $F^e: S \to T$, which gives $H^i_I({}^eM) \cong {}^e(H^i_{I[q]}(M))$ for every *i*. Now notice that $\mathrm{H}^{i}_{I[q]}(M) \cong \mathrm{H}^{i}_{I}(M)$ for every *i*.

(2). Since $e_0 \ge 1$, we have that both $M = {}^{0}M$ and ${}^{1}M$ are finitely generated over R. Say M is generated by x_1, \ldots, x_n . Then there is an injective R-linear map $R/\operatorname{Ann}_R(M) \to M^n$ sending the class of 1 to $(x_1,\ldots,x_n) \in M^n$. This induces an injective R-linear map ${}^1(R/\operatorname{Ann}_R(M)) \to$ $^{1}(M^{n}) \cong (^{1}M)^{n}$, which forces $^{1}(R/\operatorname{Ann}_{R}(M))$ to be finitely generated over R, i.e. $R/\operatorname{Ann}_{R}(M)$ is an F-finite ring. Consequently, $e(R/\operatorname{Ann}_R(M))$ is finitely generated over R for every e. Also notice that there is a surjective R-linear map $(R/\operatorname{Ann}_R(M))^n \to M$, which induces a surjective R-linear map $\binom{e(R/\operatorname{Ann}_R(M))}{n} \to {}^{e}M$ for every e. Thus ${}^{e}M$ is finitely generated over R for every e.

Problem 2. Let (R, \mathfrak{m}, k) be a Noetherian local ring of prime characteristic p and $P \in \operatorname{Spec}(R)$ be any prime ideal of R. Suppose R is F-finite and say $[k:k^p] = p^a$.

- (1) Prove that $\dim(\widehat{R}/Q) = \dim(R/P)$ for every $Q \in \operatorname{Ass}_{\widehat{R}}(\widehat{R}/P\widehat{R}) = \min_{\widehat{R}}(\widehat{R}/P\widehat{R})$. (2) Show that $[(R/P)_P : ((R/P)_P)^p] = p^{a + \dim(R/P)}$. (We have proved this when R is complete.)

Proof. Without loss of generality, we assume R is a domain and P = 0. Then, as proved in class, R is reduced so that $\operatorname{Ass}_{\widehat{R}}(\widehat{R}) = \min_{\widehat{R}}(\widehat{R})$ and \widehat{R}_Q is the fraction field of \widehat{R}/Q for every $Q \in \min_{\widehat{R}}(\widehat{R})$. By going-down, $Q \cap R = P = 0$ for every $Q \in \min_{\widehat{R}}(\widehat{R})$. Thus there is a natural isomorphism $\widehat{R}_Q \cong R_P \otimes_{R_P} \widehat{R}_Q$ for every $Q \in \min_{\widehat{R}}(\widehat{R})$. We have shown in class that $\widehat{R} \otimes_R {}^1R \cong {}^1(\widehat{R})$, which is the same as that $R^{1/p} \otimes_R \widehat{R} \cong (\widehat{R})^{1/p}$. Say $[R_P : (R_P)^p] = n$, i.e. $(R_P)^{1/p} = (R^{1/p})_P \cong (R_P)^n$. Then $(\widehat{R}_Q)^{1/p} \cong ((\widehat{R})^{1/p})_Q \cong (R^{1/p} \otimes_R \widehat{R})_Q \cong R^{1/p} \otimes_R \widehat{R}_Q \cong (R^{1/p})_P \otimes_{R_P} \widehat{R}_Q \cong (R_P)^n \otimes_{R_P} \widehat{R}_Q \cong$ $(R_P \otimes_{R_P} \widehat{R}_Q)^n \cong (\widehat{R}_Q)^n$ for any $Q \in \min_{\widehat{R}}(\widehat{R})$. In other words, $[(\widehat{R}_Q)^{1/p} : \widehat{R}_Q] = n = [R_P : (R_P)^p]$ for all $Q \in \min_{\widehat{R}}(R)$.

We have shown in class that $[(\widehat{R}_Q)^{1/p} : \widehat{R}_Q] = p^{a + \dim(\widehat{R}/Q)}$ for any $Q \in \operatorname{Spec}(\widehat{R})$. Thus $\dim(\widehat{R}/Q)$ is constant for all $Q \in \min_{\widehat{R}}(\widehat{R})$. Since $\dim(\widehat{R}/Q) = \dim(\widehat{R}) = \dim(R/P)$ for some $Q \in \min_{\widehat{R}}(\widehat{R})$, we conclude that (1) $\dim(\widehat{R}/Q) = \dim(R/P)$ for all $Q \in \min_{\widehat{R}}(\widehat{R})$ and (2) $[R_P : (R_P)^p] = p^{a + \dim(R)}$. \Box

Problem 3. Let R be a Noetherian ring of prime characteristic p, M a finitely generated R-module such that $\operatorname{Ann}_R(M) \subseteq \sqrt{0}$. For any *R*-modules $N \subseteq L$ and $x \in L$, prove $x \in N_L^* \iff$ there exists $c \in R^{\circ}$ such that $\operatorname{Image}(x \otimes_R {}^{e}(cM) \to L \otimes_R {}^{e}M) \subseteq \operatorname{Image}(N \otimes_R {}^{e}M \to L \otimes_R {}^{e}M)$ for all $e \gg 0$.

Proof. The direction ' \Rightarrow ' is straightforward. To show the implication ' \Leftarrow ', it suffices to prove it for $(N+\sqrt{0}M)/\sqrt{0}M \subseteq M/\sqrt{0}M \ni x+\sqrt{0}M$ over the reduced ring $R/\sqrt{0}M$. In other words, we may assume R is reduced (hence $\operatorname{Ann}_{R}(M) = 0$) without loss of generality. Let $W = R^{\circ}$. Then there exists a surjective $(W^{-1}R)$ -map $W^{-1}M \to W^{-1}R$, which implies the existence of an R-linear map $\phi: M \to R$ such that $\phi(M) \cap R^{\circ} \neq \emptyset$. Say $c' \in \phi(M) \cap R^{\circ}$. Observe that $\phi \in \operatorname{Hom}_{R}(M, R)$ implies that $\phi \in \operatorname{Hom}_R({}^{e}M, {}^{e}R)$ for every e. Then the assumption that $\operatorname{Image}(x \otimes_R {}^{e}(cM) \to L \otimes_R {}^{e}M) \subseteq$ Image $(N \otimes_R {}^eM \to L \otimes_R {}^eM)$ for all $e \gg 0$ would imply that $x \otimes_R (cc') \in \text{Image}(N \otimes_R {}^eR \to C)$ $L \otimes_R {}^e R) = N_L^{[q]}$ for all $e \gg 0$, which shows that $x \in N_L^*$ as $cc' \in R^\circ$.

Problem 4. Let R be a Noetherian F-finite ring of prime characteristic p, M a finitely generated *R*-module with FFRT by finitely generated *R*-modules M_1, M_2, \ldots, M_r , and *L* a finitely generated *R*-module. Show that $\bigcup_{e \in \mathbb{N}} \operatorname{Ass}(L \otimes_R {}^e M)$ is a finite set and, moreover, there exists an integer $k \in \mathbb{N}$ such that the following are satisfied.

(1) For every $e \in \mathbb{N}$, there exists a primary decomposition

$$0 = Q_{e1} \cap Q_{e2} \cap \dots \cap Q_{es_e} \quad \text{of} \ 0 \text{ in } L \otimes_R {}^eM,$$

where $\operatorname{Ass}(L \otimes {}^{e}M) = \{P_{ej} \mid 1 \leq j \leq s_e\}$ and Q_{ej} are P_{ej} -primary components of $0 \subseteq L \otimes_R {}^{e}M$ satisfying $P_{ej}^k(L \otimes_R {}^{e}M) \subseteq Q_{ej}$ for all $1 \leq j \leq s_e$.

(2) We have $J^k(0:_{L\otimes_R e_M} J^\infty) = 0$, i.e., $J^k \operatorname{H}^0_J(L \otimes_R e_M) = 0$ for all $J \subseteq R$ and for all $e \in \mathbb{N}$.

(In case L = R/I, the above may be stated in terms of $\bigcup_{e \in \mathbb{N}} \operatorname{Ass}(M/I^{[q]}M)$ and $\operatorname{H}^0_J(M/I^{[q]}M)$.)

Proof. For each i = 1, 2, ..., r, choose a primary decomposition of 0 in $L \otimes_R M_i$ (ignore the possible cases of i where $L \otimes_R M_i = 0$) as follows

$$0 = Q'_{i1} \cap Q'_{i2} \cap \dots \cap Q'_{it_i},$$

where Q'_{ij} are P'_{ij} -primary components of $0 \subset L \otimes_R M_i$ for $1 \leq i \leq r, 1 \leq j \leq t_i$. Since eM is a direct sum of the M_i (implying that $L \otimes_R {}^eM$ is a sum of the $L \otimes_R M_i$), we naturally get an induced primary decomposition $0 = Q_{e1} \cap Q_{e2} \cap \cdots \cap Q_{es_e}$ of 0 in $L \otimes_R {}^eM$ for every e. Therefore $\cup_{e \in \mathbb{N}} \operatorname{Ass}_R(L \otimes_R {}^eM)$ is finite as it is contained in $\cup_{i=1}^r \operatorname{Ass}_R(L \otimes_R M_i)$. Choose $k \in \mathbb{N}$ such that $P'_{ij}{}^k(L \otimes_R M_i) \subseteq Q'_{ij}$ for all $i = 1, 2, \ldots, r$ and all $j = 1, 2, \ldots, t_i$. Then (1) is evidently true.

To see (2), recall that, for any ideal J, $(0:_{L\otimes_R e_M} J^{\infty}) = \bigcap_{J \not\subseteq P_{e_j}} Q_{e_j}$. Thus, for any ideal J and any $e \in \mathbb{N}$, we have $J^k(0:_{L\otimes_R e_M} J^{\infty}) \subseteq (\bigcap_{J \not\subseteq P_{e_j}} Q_{e_j}) \cap (\bigcap_{J \subseteq P_{e_j}} Q_{e_j}) = 0$.

(In case L = R/I, the result implies that $\bigcup_{e \in \mathbb{N}} \operatorname{Ass}(M/I^{[q]}M)$ is finite (cf. Homework Set #3 Problem 2(2)) and, for any ideal J, $J^{(k+\mu(J))q} \operatorname{H}^0_J(\frac{M}{I^{[q]}M}) \subseteq (J^k)^{[q]} \operatorname{H}^0_J(M/I^{[q]}M) = 0$, where $\mu(J)$ is the least number of generators of the ideal J.)

Problem 5. Let $R \to S$ be a homomorphism of Noetherian rings of prime characteristic p and M a finitely generated R-module. (In this problem, we treat ${}^{e}M$ as an R-R-bimodule where $r_1 \cdot x \cdot r_2 = r_1^q r_2 x$ for any $r_1, r_2 \in R, x \in M$. Also recall that $\#_R({}^{e}M) = \ell_R^r(\text{Image}(k \otimes_R {}^{e}M \xrightarrow{\psi \otimes 1} E_R(k) \otimes_R {}^{e}M))$ where $\psi : k \to E_R(k)$ is any injective R-map and $\ell_R^r(-)$ denotes length as a right R-module.)

- (1) For any *R*-module *E*, there is an isomorphism $(E \otimes {}^{e}M) \otimes_{R} S \cong (E \otimes_{R} S) \otimes_{S} {}^{e}(M \otimes_{R} S)$. Moreover, the isomorphism is natural in the sense that
- (2) Assume, furthermore, that $(R, \mathfrak{m}, k) \to (S, \mathfrak{n}, l)$ is a flat homomorphism of local rings such that $\mathfrak{m}S = \mathfrak{n}$. Show that (a) $E_R(k) \otimes S \cong E_S(l)$ and (b) $\#_R({}^eM) = \#_S({}^e(M \otimes_R S))$ for all e.

Proof. (1). For every $e \in \mathbb{N}$, we have a series of natural isomorphisms

$$(E \otimes_R {}^{e}M) \otimes_R S \cong E \otimes_R {}^{e}(M \otimes_R S) \cong E \otimes_R (S \otimes_S {}^{e}(M \otimes_R S)) \cong (E \otimes_R S) \otimes_S {}^{e}(M \otimes_R S).$$

And it is routine to verify that the diagram commutes.

(2). Since every element of $E_R(k)$ is killed by a power of \mathfrak{m} , every element of $E_R(k) \otimes S$ is killed by a power of $\mathfrak{m}S = \mathfrak{n}$. Thus $E_R(k) \otimes S$ is an essential extension of its socle $(0 :_{E_R(k) \otimes S} \mathfrak{n})$ while

$$(0:_{E_R(k)\otimes S}\mathfrak{n}) = (0:_{E_R(k)\otimes S}\mathfrak{m}S) \cong (0:_{E_R(k)}\mathfrak{m})\otimes_S S \cong (R/\mathfrak{m})\otimes_S S \cong S/\mathfrak{m}S = S/\mathfrak{n} = l.$$

This implies that $E_R(k) \otimes S$ is isomorphic to an S-submodule of $E_S(l)$. To prove (a), it will then suffice to show $\operatorname{Ann}_S(E_R(k) \otimes_R S) = 0$. For any $i \in \mathbb{N}$, let $E_i = (0 :_{E_R(k)} \mathfrak{m}^i)$, which is a finitely generated R-module with $\operatorname{Ann}_R(E_i) = \mathfrak{m}^i$. Then $\operatorname{Ann}_S(E_R(k) \otimes_R S) \subseteq \operatorname{Ann}_S(E_i \otimes_R S) =$ $\operatorname{Ann}_R(E_i)S = \mathfrak{m}^i S = \mathfrak{n}^i$ for all $i \in \mathbb{N}$, which forces $\operatorname{Ann}_S(E_R(k) \otimes_R S) = 0$. Finally, (b) follows from (a) and (1) immediately: Simply apply the commutative diagram in (1) with $E_1 = k$, $E_2 = E_R(k)$, and $\psi : E_1 = k \to E_R(k) = E_2$ being the injective R-linear map as in the definition of $\#({}^eM)$. \Box