
Math 615 (Winter 2005) Homework Set #4 Solutions

Problem 1. Let R be a Noetherian ring of characteristic p, I an ideal, and M an R-module.

(1) For any given e ∈ N, show that Hi
I(

eM) ∼= e(Hi
I(M)) for every i.

(2) Suppose that e0M is finitely generated over R for some e0 ≥ 1. Show that R/AnnR(M) is
an F -finite ring. Consequently, eM is finitely generated over R for every e.

Proof. (1). Given any ring homomorphism φ : S → T of Noetherian rings, any T -module M (which
is naturally an S-module), and any ideal I of S, we always have Hi

I(M) ∼= Hi
φ(I)T (M) as S-modules

(and as T -modules as well) for all i. To prove (1), apply the above with S = R, T = R, and φ
being the Frobenius ring homomorphism F e : S → T , which gives Hi

I(
eM) ∼= e(Hi

I[q](M)) for every

i. Now notice that Hi
I[q](M)) ∼= Hi

I(M)) for every i.
(2). Since e0 ≥ 1, we have that both M = 0M and 1M are finitely generated over R. Say M

is generated by x1, . . . , xn. Then there is an injective R-linear map R/AnnR(M) → Mn sending
the class of 1 to (x1, . . . , xn) ∈ Mn. This induces an injective R-linear map 1(R/AnnR(M)) →
1(Mn) ∼= (1M)n, which forces 1(R/AnnR(M)) to be finitely generated over R, i.e. R/AnnR(M) is
an F -finite ring. Consequently, e(R/AnnR(M)) is finitely generated over R for every e. Also notice
that there is a surjective R-linear map (R/AnnR(M))n → M , which induces a surjective R-linear
map ( e(R/AnnR(M)))n → eM for every e. Thus eM is finitely generated over R for every e. �

Problem 2. Let (R,m, k) be a Noetherian local ring of prime characteristic p and P ∈ Spec(R) be
any prime ideal of R. Suppose R is F -finite and say [k : kp] = pa.

(1) Prove that dim(R̂/Q) = dim(R/P ) for every Q ∈ AssR̂(R̂/P R̂) = minR̂(R̂/P R̂).

(2) Show that [(R/P )P : ((R/P )P )p] = pa+dim(R/P ). (We have proved this when R is complete.)

Proof. Without loss of generality, we assume R is a domain and P = 0. Then, as proved in class, R̂

is reduced so that AssR̂(R̂) = minR̂(R̂) and R̂Q is the fraction field of R̂/Q for every Q ∈ minR̂(R̂).

By going-down, Q ∩ R = P = 0 for every Q ∈ minR̂(R̂). Thus there is a natural isomorphism

R̂Q
∼= RP ⊗RP R̂Q for every Q ∈ minR̂(R̂). We have shown in class that R̂ ⊗R 1R ∼= 1(R̂), which

is the same as that R1/p ⊗R R̂ ∼= (R̂)1/p. Say [RP : (RP )p] = n, i.e. (RP )1/p = (R1/p)P ∼= (RP )n.

Then (R̂Q)1/p ∼= ((R̂)1/p)Q ∼= (R1/p ⊗R R̂)Q ∼= R1/p ⊗R R̂Q
∼= (R1/p)P ⊗RP R̂Q

∼= (RP )n ⊗RP R̂Q
∼=

(RP ⊗RP R̂Q)n ∼= (R̂Q)n for any Q ∈ minR̂(R̂). In other words, [(R̂Q)1/p : R̂Q] = n = [RP : (RP )p]

for all Q ∈ minR̂(R̂).

We have shown in class that [(R̂Q)1/p : R̂Q] = pa+dim(R̂/Q) for any Q ∈ Spec(R̂). Thus dim(R̂/Q) is

constant for all Q ∈ minR̂(R̂). Since dim(R̂/Q) = dim(R̂) = dim(R/P ) for some Q ∈ minR̂(R̂), we

conclude that (1) dim(R̂/Q) = dim(R/P ) for all Q ∈ minR̂(R̂) and (2) [RP : (RP )p] = pa+dim(R). �

Problem 3. Let R be a Noetherian ring of prime characteristic p, M a finitely generated R-module
such that AnnR(M) ⊆

√
0. For any R-modules N ⊆ L and x ∈ L, prove x ∈ N∗L ⇐⇒ there exists

c ∈ R◦ such that Image(x⊗R e(cM)→ L⊗R eM) ⊆ Image(N ⊗R eM → L⊗R eM) for all e� 0.

Proof. The direction ‘⇒’ is straightforward. To show the implication ‘⇐’, it suffices to prove it for
(N +

√
0M)/

√
0M ⊆M/

√
0M 3 x+

√
0M over the reduced ring R/

√
0M . In other words, we may

assume R is reduced (hence AnnR(M) = 0) without loss of generality. Let W = R◦. Then there
exists a surjective (W−1R)-map W−1M → W−1R, which implies the existence of an R-linear map
φ : M → R such that φ(M) ∩R◦ 6= ∅. Say c′ ∈ φ(M) ∩R◦. Observe that φ ∈ HomR(M,R) implies
that φ ∈ HomR( eM, eR) for every e. Then the assumption that Image(x⊗R e(cM)→ L⊗R eM) ⊆
Image(N ⊗R eM → L ⊗R eM) for all e � 0 would imply that x ⊗R (cc′) ∈ Image(N ⊗R eR →
L⊗R eR) = N

[q]
L for all e� 0, which shows that x ∈ N∗L as cc′ ∈ R◦. �

Problem 4. Let R be a Noetherian F -finite ring of prime characteristic p, M a finitely generated
R-module with FFRT by finitely generated R-modules M1,M2, . . . ,Mr, and L a finitely generated
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R-module. Show that ∪e∈N Ass(L⊗R eM) is a finite set and, moreover, there exists an integer k ∈ N
such that the following are satisfied.

(1) For every e ∈ N, there exists a primary decomposition

0 = Qe1 ∩Qe2 ∩ · · · ∩Qese of 0 in L⊗R eM,

where Ass(L⊗ eM) = {Pej | 1 ≤ j ≤ se} and Qej are Pej-primary components of 0 ⊆ L⊗R eM
satisfying P k

ej(L⊗R eM) ⊆ Qej for all 1 ≤ j ≤ se.

(2) We have Jk(0 :L⊗R eM J∞) = 0, i.e., Jk H0
J(L⊗R eM) = 0 for all J ⊆ R and for all e ∈ N.

(In case L = R/I , the above may be stated in terms of ∪e∈N Ass(M/I [q]M) and H0
J(M/I [q]M).)

Proof. For each i = 1, 2, . . . , r, choose a primary decomposition of 0 in L⊗RMi (ignore the possible
cases of i where L⊗RMi = 0) as follows

0 = Q′i1 ∩Q′i2 ∩ · · · ∩Q′iti ,
where Q′ij are P ′ij-primary components of 0 ⊂ L ⊗R Mi for 1 ≤ i ≤ r, 1 ≤ j ≤ ti. Since eM is
a direct sum of the Mi (implying that L ⊗R eM is a sum of the L ⊗R Mi), we naturally get an
induced primary decomposition 0 = Qe1 ∩Qe2 ∩ · · · ∩Qese of 0 in L⊗R eM for every e. Therefore
∪e∈N AssR(L ⊗R eM) is finite as it is contained in ∪ri=1 AssR(L ⊗R Mi). Choose k ∈ N such that

P ′ij
k(L⊗RMi) ⊆ Q′ij for all i = 1, 2, . . . , r and all j = 1, 2, . . . , ti. Then (1) is evidently true.
To see (2), recall that, for any ideal J , (0 :L⊗R eM J∞) = ∩J 6⊆PejQej. Thus, for any ideal J and

any e ∈ N, we have Jk(0 :L⊗R eM J∞) ⊆
(
∩J 6⊆Pej Qej

)
∩
(
∩J⊆Pej Qej

)
= 0.

(In case L = R/I , the result implies that ∪e∈N Ass(M/I [q]M) is finite (cf. Homework Set #3
Problem 2(2)) and, for any ideal J , J (k+µ(J))q H0

J( M
I[q]M

) ⊆ (Jk)[q] H0
J(M/I [q]M) = 0, where µ(J) is

the least number of generators of the ideal J .) �

Problem 5. Let R→ S be a homomorphism of Noetherian rings of prime characteristic p and M
a finitely generated R-module. (In this problem, we treat eM as an R-R-bimodule where r1 ·x ·r2 =

rq1r2x for any r1, r2 ∈ R, x ∈M . Also recall that #R( eM) = `rR(Image(k⊗R eM
ψ⊗1−→ ER(k)⊗R eM))

where ψ : k → ER(k) is any injective R-map and `rR(−) denotes length as a right R-module.)

(1) For any R-module E, there is an isomorphism (E ⊗ eM)⊗R S ∼= (E ⊗R S)⊗S e(M ⊗R S).
Moreover, the isomorphism is natural in the sense that

for any R-linear
map E1 → E2, the
following diagram
commutes:

(E1 ⊗ eM)⊗R S
∼=−−−→ (E1 ⊗R S)⊗S e(M ⊗R S)y y

(E2 ⊗ eM)⊗R S
∼=−−−→ (E2 ⊗R S)⊗S e(M ⊗R S)

(2) Assume, furthermore, that (R,m, k) → (S, n, l) is a flat homomorphism of local rings such
that mS = n. Show that (a) ER(k)⊗S ∼= ES(l) and (b) #R( eM) = #S( e(M ⊗R S) for all e.

Proof. (1). For every e ∈ N, we have a series of natural isomorphisms

(E ⊗R eM)⊗R S ∼= E ⊗R e(M ⊗R S) ∼= E ⊗R (S ⊗S e(M ⊗R S)) ∼= (E ⊗R S)⊗S e(M ⊗R S).

And it is routine to verify that the diagram commutes.
(2). Since every element of ER(k) is killed by a power of m, every element of ER(k)⊗ S is killed

by a power of mS = n. Thus ER(k)⊗ S is an essential extension of its socle (0 :ER(k)⊗S n) while

(0 :ER(k)⊗S n) = (0 :ER(k)⊗S mS) ∼= (0 :ER(k) m)⊗S S ∼= (R/m)⊗S S ∼= S/mS = S/n = l.

This implies that ER(k) ⊗ S is isomorphic to an S-submodule of ES(l). To prove (a), it will
then suffice to show AnnS(ER(k) ⊗R S) = 0. For any i ∈ N, let Ei = (0 :ER(k) mi), which is a
finitely generated R-module with AnnR(Ei) = mi. Then AnnS(ER(k) ⊗R S) ⊆ AnnS(Ei ⊗R S) =
AnnR(Ei)S = miS = ni for all i ∈ N, which forces AnnS(ER(k)⊗R S) = 0. Finally, (b) follows from
(a) and (1) immediately: Simply apply the commutative diagram in (1) with E1 = k, E2 = ER(k),
and ψ : E1 = k → ER(k) = E2 being the injective R-linear map as in the definition of #( eM). �
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