Problem 1. Let R be a Noetherian ring of characteristic p, I an ideal, and M an R-module.

- (1) For any given $e \in \mathbb{N}$, show that $\mathrm{H}^{i}_{I}({}^{e}M) \cong {}^{e}(\mathrm{H}^{i}_{I}(M))$ for every *i*.
- (2) Suppose that e_0M is finitely generated over R for some $e_0 \ge 1$. Show that $R/\operatorname{Ann}_R(M)$ is an F-finite ring. Consequently, ${}^{e}M$ is finitely generated over R for every e.

Problem 2. Let (R, \mathfrak{m}, k) be a Noetherian local ring of prime characteristic p and $P \in \operatorname{Spec}(R)$ be any prime ideal of R. Suppose R is F-finite and say $[k:k^p] = p^a$.

- (1) Prove that $\dim(\widehat{R}/Q) = \dim(R/P)$ for every $Q \in \operatorname{Ass}_{\widehat{R}}(\widehat{R}/P\widehat{R}) = \min_{\widehat{R}}(\widehat{R}/P\widehat{R})$. (2) Show that $[(R/P)_P : ((R/P)_P)^p] = p^{a + \dim(R/P)}$. (We have proved this when R is complete.)

Problem 3. Let R be a Noetherian ring of prime characteristic p, M a finitely generated R-module such that $\operatorname{Ann}_R(M) \subseteq \sqrt{0}$. For any *R*-modules $N \subseteq L$ and $x \in L$, prove $x \in N_L^* \iff$ there exists $c \in R^{\circ}$ such that $\operatorname{Image}(x \otimes_R {}^{e}(cM) \to L \otimes_R {}^{e}M) \subseteq \operatorname{Image}(N \otimes_R {}^{e}M \to L \otimes_R {}^{e}M)$ for all $e \gg 0$.

Problem 4. Let R be a Noetherian F-finite ring of prime characteristic p, M a finitely generated *R*-module with FFRT by finitely generated *R*-modules M_1, M_2, \ldots, M_r , and *L* a finitely generated *R*-module. Show that $\bigcup_{e \in \mathbb{N}} \operatorname{Ass}(L \otimes_R {}^eM)$ is a finite set and, moreover, there exists an integer $k \in \mathbb{N}$ such that the following are satisfied.

(1) For every $e \in \mathbb{N}$, there exists a primary decomposition

$$0 = Q_{e1} \cap Q_{e2} \cap \cdots \cap Q_{es_e} \quad \text{of } 0 \text{ in } L \otimes_R {}^e M_{es_e}$$

where $\operatorname{Ass}(L \otimes {}^{e}M) = \{P_{ej} \mid 1 \leq j \leq s_e\}$ and Q_{ej} are P_{ej} -primary components of $0 \subseteq L \otimes_R {}^{e}M$ satisfying $P_{e_j}^k(L \otimes_R {}^eM) \subseteq Q_{e_j}$ for all $1 \leq j \leq s_e$.

(2) We have $J^k(0:_{L\otimes_R e_M} J^\infty) = 0$, i.e., $J^k \operatorname{H}^0_J(L\otimes_R e_M) = 0$ for all $J \subseteq R$ and for all $e \in \mathbb{N}$.

(In case L = R/I, the above may be stated in terms of $\bigcup_{e \in \mathbb{N}} \operatorname{Ass}(M/I^{[q]}M)$ and $\operatorname{H}^{0}_{J}(M/I^{[q]}M)$.)

Problem 5. Let $R \to S$ be a homomorphism of Noetherian rings of prime characteristic p and M a finitely generated R-module. (In this problem, we treat ${}^{e}M$ as an R-R-bimodule where $r_1 \cdot x \cdot r_2 =$ $r_1^q r_2 x$ for any $r_1, r_2 \in R, x \in M$. Also recall that $\#_R({}^e M) = \ell_R^r(\text{Image}(k \otimes_R {}^e M \xrightarrow{\psi \otimes 1} E_R(k) \otimes_R {}^e M))$ where $\psi: k \to E_R(k)$ is any injective *R*-map and $\ell_R^r(-)$ denotes length as a right *R*-module.)

(1) For any *R*-module *E*, there is an isomorphism $(E \otimes {}^{e}M) \otimes_{R} S \cong (E \otimes_{R} S) \otimes_{S} {}^{e}(M \otimes_{R} S)$. Moreover, the isomorphism is natural in the sense that

for any <i>R</i> -linear	$(E_1 \otimes {}^e\!M) \otimes_R S \xrightarrow{\cong}$	$(E_1 \otimes_R S) \otimes_S {}^{e}(M \otimes_R S)$
map $E_1 \to E_2$, the		
following diagram	\downarrow	\downarrow
commutes:	$(E_2 \otimes {}^e\!M) \otimes_R S \xrightarrow{\cong}$	$(E_2 \otimes_R S) \otimes_S {}^{e}(M \otimes_R S)$

(2) Assume, furthermore, that $(R, \mathfrak{m}, k) \to (S, \mathfrak{n}, l)$ is a flat homomorphism of local rings such that $\mathfrak{m}S = \mathfrak{n}$. Show that (a) $E_R(k) \otimes S \cong E_S(l)$ and (b) $\#_R({}^eM) = \#_S({}^e(M \otimes_R S)$ for all e.