
Math 615 (Winter 2005) Homework Set #3 Solutions

Problem 1. Let R be a Noetherian ring of prime characteristic p. Show that R has a weak test
element if and only if R/

√
0 has a weak test element. (Here a weak test element is, by definition, a

q-weak test element for some q.)

Proof. If c ∈ R◦ is a q1-weak test element for R, then it is straightforward to verify that c +
√

0
is a q1-weak test element for R/

√
0. Conversely, suppose R/

√
0 has a q2-weak test element, say

d +
√

0 ∈ (R/
√

0)◦ so that d ∈ R◦. Say
√

0
[q3]

= 0. Then direct checking shows that dq3 , which is
in ∈ R◦, is a (q2q3)-weak test element for R. �

Problem 2. Let R be a Noetherian ring of prime characteristic p and M an R-module. Recall that
eM is the derived R-module structure on M via the Frobenius homomorphism F e : R→ R.

(1) If e0M is a faithful R-module for some e0 > 0, then R is reduced and eM (including M = 0M)
are faithful for all e ∈ N.

(2) Show that AssR(M) = AssR( eM) for every e ∈ N.

Proof. (1). Denote q0 = pe0 , which is ≥ p. Suppose R is not reduced. Then there exists 0 6= x ∈
√

0
such that xq0 = 0. Then we see that x ∈ AnnR( e0M), a contradiction. Now that R is reduced, the
claim that eM is faithful for all e follows immediately from the easy assertion that, quite generally,
AnnR( e1M) ⊆ AnnR( e2M) ⊆

√
AnnR( e1M) for every e1 ≤ e2 and any R-module M .

(2). Firstly, we observe an easy claim that AnnR(x ∈M) ⊆ AnnR(x ∈ eM) ⊆
√

AnnR(x ∈M) for
any x ∈M and any e ∈ N. Then for any P ∈ AssR(M), there is y ∈M such that AnnR(y ∈M) = P .
Hence AnnR(y ∈ eM) = P and therefore P ∈ AssR( eM). Conversely, suppose P ∈ AssR( eM), i.e.
there is z such that AnnR(z ∈ eM) = P . Let Rz be the R-submodule of M generated by z. Then
P ∈ min(R/AnnR(z ∈M)) = min(Rz) ⊆ AssR(Rz) ⊆ AssR(M). �

Problem 3. Let (R,m, k) be a Noetherian equidimensional catenary local ring of prime charac-
teristic p with dim(R) = d. Suppose qd < `R(R/m[q]) < qd + q for some q = pe ≥ p. Prove
Sing(R) = {m}, where Sing(R) = {P ∈ Spec(R) |RP is not regular} is the singular locus of R.

Proof. The assumption of (R,m, k) being equidimensional catenary guarantees that dim(R/P ) +
dim(RP ) = dim(R) for every P ∈ Spec(R). And R is not regular as qd < `R(R/m[q]).

If dim(R) = 0, then there is nothing to prove. So we assume dim(R) ≥ 1 and it suffices to show
RP is regular for any prime ideal P such that dim(R/P ) = 1 (and hence dim(RP ) = d−1). For any

such P , `RP (RP/P
[q]
P ) ≤ 1

q
`R(R/m[q]) < qd−1 + 1 = qdim(RP ) + 1, which implies RP is regular. �

Problem 4. Let R be a ring (not necessarily of characteristic p). Given R-modules M,N and
f ∈ HomR(M,N), we say f is pure if the induced map f ⊗R 1L : M ⊗R L→ N ⊗R L is injective for
every R-module L. (Denote by m-Spec(R) the set consisting of all maximal ideals of R.)

(1) If f ∈ HomR(M,N) is pure, then f is injective. (Therefore, f ∈ HomR(M,N) is pure if and
only if f is injective and the inclusion map f(M) ⊆ N is pure.)

(2) f ∈ HomR(M,N) is pure if and only if fP : MP → NP is pure for every P ∈ Spec(R) if and
only if fm : Mm → Nm is pure for every m ∈ m-Spec(R).

(3) Show (A) f ∈ HomR(M,N) is pure if and only if f⊗R 1L : M⊗RL→ N⊗RL is injective for
every finitely generated R-module L; and (B) If R is Noetherian and M is finitely generated,
then f ∈ HomR(M,N) is pure if and only if f ⊗R 1L : M ⊗R L → N ⊗R L is injective for
every finitely generated R-module L such that AssR(L) = {m} for some m ∈ m-Spec(R).

(4) Suppose R is Noetherian and M,N are finitely generated R-modules. Then f ∈
HomR(M,N) is pure if and only if f̂m : M̂m → N̂m is pure for every m ∈ m-Spec(R) if
and only if f : M → N splits (meaning there exists g ∈ HomR(N,M) such that g ◦f = 1M .)

(5) Suppose R is Noetherian and F is a free R-module. Then f ∈ HomR(F,N) is pure if and only
if the induced map f⊗R1E : F⊗RE → N⊗RE is injective, where E = ⊕m∈m-Spec(R)ER(R/m).
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Proof. (1). This follows from the injectivity of f ⊗R 1R : M ⊗R R→ N ⊗R R.
(2). This is standard.
(3). In both (A) and (B), we only need to show ‘if’. Suppose f : M → N is not pure. Then

there exists an R-module L such that f ⊗R 1L has a non-zero kernel. Then, by property of tensor
product, there exists a (sufficiently large) finitely generated R-submodule L′ ⊆ L such that f⊗R 1L′
is not injective, which proves (A). If, moreover, R is Noetherian and M is finitely generated, then
0 6= ker(f ⊗R 1L′) ⊆ M ⊗R L′ are all finitely generated R-modules. Choose m ∈ m-Spec(R)
such that 0 6=

(
ker(f ⊗R 1L′)

)
m

. Then, by Krull intersection theorem, Artin-Rees Lemma etc.,
ker(f ⊗R 1L′/mnL′) 6= 0 for some integer n� 0, which proves case (B) as AssR(L′/mnL′) = {m}.

(4). Without loss of generality, we assume (R,m, k) is local. Denote −∨ = HomR̂(−, ER̂(k)).

Then f is pure =⇒ f⊗RL is injective for all R-module L such that `R(L) <∞ =⇒ f̂⊗R̂L is injective

for all R̂-module L such that `R̂(L) < ∞ =⇒ f̂ is pure =⇒ f̂ ⊗R̂ M̂∨ : M̂ ⊗R̂ M̂∨ → N̂ ⊗R̂ M̂∨

is injective =⇒
(
f̂ ⊗R̂ M̂∨)∨ :

(
N̂ ⊗R̂ M̂∨)∨ → (

M̂ ⊗R̂ M̂∨)∨ is surjective ⇐⇒ HomR̂(f̂ , M̂) :

HomR̂(N̂ , M̂)→ HomR̂(M̂, M̂) is surjective =⇒ f̂ splits =⇒ f splits =⇒ f is pure.
(5). Without loss of generality, we assume (R,m, k) is local. We only need to show ‘if’. Suppose

f ∈ HomR(F,N) is not pure. Then, as F is free (not necessarily of finite rank), an argument similar
to the one in part (3) above shows ker(f ⊗R 1L) 6= 0 for some L with `(L) <∞. Then there exists
an integer n > 0 such that L is embedded into En where E = ER(k). Then, as F is free, we have
ker(f ⊗R 1En) 6= 0 =⇒ ker(f ⊗R 1E) 6= 0, a contradiction. �

Problem 5. Given a local Noetherian ring (R,m, k) of prime characteristic p (not necessarily F -
finite), one could define R to be strongly F -regular if, for any c ∈ R◦, there exists an integer e ≥ 1
such that the R-linear map R→ eR sending 1 to c is pure. In general, one could define R is strongly
F -regular if Rm is strongly F -regular for every m ∈ m-Spec(R). (By Problem 4, we see that the
above definition agrees with the one given in class when R is F -finite.)

(1) If there exists a pure R-linear map R → eR sending 1 to c with e ≥ 1, then R is reduced
and, for every e′ ≥ e, the R-linear map R → e′R sending 1 to c is pure. (Thus the above
definition of strong F -regularity forces R to be reduced.)

(2) Show that (R,m, k) is strongly F -regular if and only if 0∗ER(k) = 0.

Proof. (1). The given pure map shows eR is faithful, implying R is reduced by Problem 2(1). So
we are free to identify eR with R1/q as R-modules for any q = pe. Thus the given pure map may

be considered as f : R→ R1/q sending 1 to c1/q. But f = g ◦ i : R
i

⊆ R1/p g→ R1/q in which g is the
R1/p-linear map sending 1 to c1/q. Thus the purity of f forces the purity of inclusion map i (which is
easy to check). Also the purity of f amounts to the purity of the R1/p-linear map f ′ : R1/p → R1/qp

sending 1 to c1/qp, which readily implies the purity of f ′ as an R-linear map. Therefore the R-linear
map f ′ ◦ i : R→ R1/qp is pure (which is easy to check) and it sends 1 to c1/qp. In other words, the
R-linear map R→ e+1R sending 1 to c is pure. This in enough to prove (1).

(2). First of all, for any c ∈ R and e ∈ N, let us denote by fc,e : R → eR the R-linear map
sending 1 to c ∈ eR.

To show ‘only if’, suppose R is strongly F -regular. For any x ∈ 0∗ER(k), by the definition of

tight closure, there exists c ∈ R◦ such that 0 = c ⊗R x ∈ eR ⊗R ER(k) for all e � 0. Thus
1⊗R x ∈ R ⊗R ER(k) is in ker(fc,q ⊗R 1RR(k)) for all e� 0. But, by part (1) above, we know that
fc,q : R → eR are pure for all e � 0, which forces 0 = 1 ⊗R x ∈ R ⊗R ER(k), implying x = 0. So
0∗ER(k) = 0.

Finally, let us prove ‘if’. Choose 0 6= w ∈ (0 :ER(k) m) so that w generates the socle of ER(k).
The assumption 0∗ER(k) = 0 implies that w /∈ 0∗ER(k). Thus, for any c ∈ R◦, there exists an integer

e ≥ 1 such that 0 6= c ⊗R w ∈ eR ⊗R ER(k), which means that 1 ⊗R w ∈ R ⊗R ER(k) is not in
ker(fc,q ⊗R 1ER(k)), which implies that ker(fc,q ⊗R 1ER(k)) = 0 as every non-zero R-submodule of
R ⊗R ER(k) contains 1 ⊗R w. Thus fc,q ⊗R 1ER(k) : R ⊗R 1ER(k) → eR ⊗R 1ER(k) is injective and,
therefore, fc,q : R→ eR is pure by Problem 4(5). Hence R is strongly F -regular. �
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