Problem 1. Let R be a Noetherian ring of prime characteristic p . Show that R has a weak test **Problem 1.** Let R be a Noetherian ring of prime characteristic p. Show that R has a weak test element if and only if $R/\sqrt{0}$ has a weak test element. (Here a weak test element is, by definition, a q -weak test element for some q .)

Proof. If $c \in \mathbb{R}^{\circ}$ is a q_1 -weak test element for R, then it is straightforward to verify that $c + \sqrt{0}$ *Proof.* If $c \in \mathbb{R}^{\circ}$ is a q_1 -weak test element for R, then it is straightforward to verify that $c + \sqrt{0}$ is a q_1 -weak test element for $R/\sqrt{0}$. Conversely, suppose $R/\sqrt{0}$ has a q_2 -weak test element, sa is a q_1 -weak test element for n/\sqrt{v} . Conversely, suppose n/\sqrt{v} has a q_2 -weak test element, say $d + \sqrt{0} \in (R/\sqrt{0})^{\circ}$ so that $d \in R^{\circ}$. Say $\sqrt{0}^{[q_3]} = 0$. Then direct checking shows that d^{q_3} , which i in ∈ R° , is a (q_2q_3) -weak test element for R.

Problem 2. Let R be a Noetherian ring of prime characteristic p and M an R-module. Recall that ${}^e\!M$ is the derived R-module structure on M via the Frobenius homomorphism $F^e: R \to R$.

- (1) If e_0M is a faithful R-module for some $e_0 > 0$, then R is reduced and e_M (including $M = {}^0\!M$) are faithful for all $e \in \mathbb{N}$.
- (2) Show that $\operatorname{Ass}_R(M) = \operatorname{Ass}_R({}^eM)$ for every $e \in \mathbb{N}$.

Proof. (1). Denote $q_0 = p^{e_0}$, which is $\geq p$. Suppose R is not reduced. Then there exists $0 \neq x \in$ $\overline{0}$ such that $x^{q_0} = 0$. Then we see that $x \in Ann_R({}^{e_0}M)$, a contradiction. Now that R is reduced, the claim that ${}^e\!M$ is faithful for all e follows immediately from the easy assertion that, quite generally, $\text{Ann}_{R}(e_{1}M) \subseteq \text{Ann}_{R}(e_{2}M) \subseteq \sqrt{\text{Ann}_{R}(e_{1}M)}$ for every $e_{1} \leq e_{2}$ and any R-module M.

(2). Firstly, we observe an easy claim that $\text{Ann}_R(x \in M) \subseteq \text{Ann}_R(x \in M) \subseteq \sqrt{\text{Ann}_R(x \in M)}$ for any $x \in M$ and any $e \in \mathbb{N}$. Then for any $P \in \text{Ass}_{R}(M)$, there is $y \in M$ such that $\text{Ann}_{R}(y \in M) = P$. Hence $\text{Ann}_R(y \in {}^e M) = P$ and therefore $P \in \text{Ass}_R({}^e M)$. Conversely, suppose $P \in \text{Ass}_R({}^e M)$, i.e. there is z such that $\text{Ann}_R(z \in M) = P$. Let Rz be the R-submodule of M generated by z. Then $P \in \min(R/\operatorname{Ann}_R(z \in M)) = \min(Rz) \subseteq \operatorname{Ass}_R(Rz) \subseteq \operatorname{Ass}_R(M).$

Problem 3. Let (R, \mathfrak{m}, k) be a Noetherian equidimensional catenary local ring of prime characteristic p with $\dim(R) = d$. Suppose $q^d < \ell_R(R/\mathfrak{m}^{[q]}) < q^d + q$ for some $q = p^e \geq p$. Prove $\text{Sing}(R) = \{\mathfrak{m}\}\,$, where $\text{Sing}(R) = \{P \in \text{Spec}(R) \mid R_P \text{ is not regular}\}\$ is the singular locus of R.

Proof. The assumption of (R, \mathfrak{m}, k) being equidimensional catenary guarantees that $dim(R/P)$ + $\dim(R_P) = \dim(R)$ for every $P \in \text{Spec}(R)$. And R is not regular as $q^d < \ell_R(R/\mathfrak{m}^{[q]})$.

If $\dim(R) = 0$, then there is nothing to prove. So we assume $\dim(R) \geq 1$ and it suffices to show R_P is regular for any prime ideal P such that $\dim(R/P) = 1$ (and hence $\dim(R_P) = d-1$). For any such $P, \ell_{R_P}(R_P / P_P^{[q]}) \leq \frac{1}{q}$ $\frac{1}{q}\ell_R(R/\mathfrak{m}^{[q]}) < q^{d-1} + 1 = q^{\dim(R_P)} + 1$, which implies R_P is regular. \square

Problem 4. Let R be a ring (not necessarily of characteristic p). Given R-modules M, N and $f \in \text{Hom}_R(M, N)$, we say f is pure if the induced map $f \otimes_R 1_L : M \otimes_R L \to N \otimes_R L$ is injective for every R-module L. (Denote by m-Spec (R) the set consisting of all maximal ideals of R.)

- (1) If $f \in \text{Hom}_R(M, N)$ is pure, then f is injective. (Therefore, $f \in \text{Hom}_R(M, N)$ is pure if and only if f is injective and the inclusion map $f(M) \subseteq N$ is pure.)
- (2) $f \in \text{Hom}_R(M, N)$ is pure if and only if $f_P : M_P \to N_P$ is pure for every $P \in \text{Spec}(R)$ if and only if $f_{\mathfrak{m}} : M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is pure for every $\mathfrak{m} \in \mathrm{m-Spec}(R)$.
- (3) Show (A) $f \in \text{Hom}_R(M, N)$ is pure if and only if $f \otimes_R 1_L : M \otimes_R L \to N \otimes_R L$ is injective for every finitely generated R-module L; and (B) If R is Noetherian and M is finitely generated, then $f \in \text{Hom}_R(M, N)$ is pure if and only if $f \otimes_R 1_L : M \otimes_R L \to N \otimes_R L$ is injective for every finitely generated R-module L such that $\text{Ass}_R(L) = \{\mathfrak{m}\}\$ for some $\mathfrak{m} \in \text{m-Spec}(R)$.
- (4) Suppose R is Noetherian and M, N are finitely generated R-modules. Then $f \in$ Hom_R (M, N) is pure if and only if $\widehat{f_{\mathfrak{m}}} : \widehat{M_{\mathfrak{m}}} \to \widehat{N_{\mathfrak{m}}}$ is pure for every $\mathfrak{m} \in \mathrm{m}\text{-}\mathrm{Spec}(R)$ if and only if $f : M \to N$ splits (meaning there exists $g \in \text{Hom}_R(N, M)$ such that $g \circ f = 1_M$.)
- (5) Suppose R is Noetherian and F is a free R-module. Then $f \in \text{Hom}_R(F, N)$ is pure if and only if the induced map $f \otimes_R 1_E : F \otimes_R E \to N \otimes_R E$ is injective, where $E = \bigoplus_{\mathfrak{m} \in \mathfrak{m} \text{-}Spec(R)} E_R(R/\mathfrak{m})$.

Proof. (1). This follows from the injectivity of $f \otimes_R 1_R : M \otimes_R R \to N \otimes_R R$.

(2). This is standard.

(3). In both (A) and (B), we only need to show 'if'. Suppose $f : M \to N$ is not pure. Then there exists an R-module L such that $f \otimes_R 1_L$ has a non-zero kernel. Then, by property of tensor product, there exists a (sufficiently large) finitely generated R-submodule $L' \subseteq L$ such that $f \otimes_R 1_{L'}$ is not injective, which proves (A) . If, moreover, R is Noetherian and M is finitely generated, then $0 \neq \text{ker}(f \otimes_R 1_{L'}) \subseteq M \otimes_R L'$ are all finitely generated R-modules. Choose $\mathfrak{m} \in \text{m-Spec}(R)$ such that $0 \neq (\ker(f \otimes_R 1_{L'}))_{\mathfrak{m}}$. Then, by Krull intersection theorem, Artin-Rees Lemma etc., $\ker(f \otimes_R 1_{L'/\mathfrak{m}^nL'}) \neq 0$ for some integer $n \gg 0$, which proves case (B) as $\operatorname{Ass}_R(L'/\mathfrak{m}^nL') = \{\mathfrak{m}\}.$

(4). Without loss of generality, we assume (R, \mathfrak{m}, k) is local. Denote $-^{\vee} = \text{Hom}_{\hat{R}}(-, E_{\hat{R}}(k)).$ Then f is pure $\implies f \otimes_R L$ is injective for all R-module L such that $\ell_R(L) < \infty \implies \widehat{f} \otimes_{\widehat{R}} L$ is injective for all \hat{R} -module L such that $\ell_{\hat{R}}(L) < \infty \Longrightarrow \hat{f}$ is pure $\Longrightarrow \hat{f} \otimes_{\hat{R}} \widehat{M}^{\vee} : \widehat{M} \otimes_{\hat{R}} \widehat{M}^{\vee} \to \widehat{N} \otimes_{\hat{R}} \widehat{M}^{\vee}$ is injective $\implies (\widehat{f}\otimes_{\widehat{R}}\widehat{M}^{\vee})^{\vee} : (\widehat{N}\otimes_{\widehat{R}}\widehat{M}^{\vee})^{\vee} \rightarrow (\widehat{M}\otimes_{\widehat{R}}\widehat{M}^{\vee})^{\vee}$ is surjective $\iff \text{Hom}_{\widehat{R}}(\widehat{f},\widehat{M}) :$ $\text{Hom}_{\widehat{\mathcal{B}}}(\widehat{N}, \widehat{M}) \to \text{Hom}_{\widehat{\mathcal{B}}}(\widehat{M}, \widehat{M})$ is surjective $\Longrightarrow \widehat{f}$ splits $\Longrightarrow f$ splits $\Longrightarrow f$ is pure.

(5). Without loss of generality, we assume (R, \mathfrak{m}, k) is local. We only need to show 'if'. Suppose $f \in \text{Hom}_R(F, N)$ is not pure. Then, as F is free (not necessarily of finite rank), an argument similar to the one in part (3) above shows ker($f \otimes_R 1_L$) $\neq 0$ for some L with $\ell(L) < \infty$. Then there exists an integer $n > 0$ such that L is embedded into $Eⁿ$ where $E = E_R(k)$. Then, as F is free, we have $\ker(f \otimes_R 1_{E^n}) \neq 0 \Longrightarrow \ker(f \otimes_R 1_E) \neq 0$, a contradiction.

Problem 5. Given a local Noetherian ring (R, \mathfrak{m}, k) of prime characteristic p (not necessarily Ffinite), one could define R to be strongly F-regular if, for any $c \in R^{\circ}$, there exists an integer $e \geq 1$ such that the R-linear map $R \to {}^e R$ sending 1 to c is pure. In general, one could define R is strongly F-regular if R_m is strongly F-regular for every $\mathfrak{m} \in \text{m-Spec}(R)$. (By Problem 4, we see that the above definition agrees with the one given in class when R is F -finite.)

- (1) If there exists a pure R-linear map $R \to {^eR}$ sending 1 to c with $e \geq 1$, then R is reduced and, for every $e' \geq e$, the R-linear map $R \to e'R$ sending 1 to c is pure. (Thus the above definition of strong F -regularity forces R to be reduced.)
- (2) Show that (R, \mathfrak{m}, k) is strongly F-regular if and only if $0^*_{E_R(k)} = 0$.

Proof. (1). The given pure map shows eR is faithful, implying R is reduced by Problem 2(1). So we are free to identify ${}^e\!R$ with $R^{1/q}$ as R-modules for any $q = p^e$. Thus the given pure map may be considered as $f: R \to R^{1/q}$ sending 1 to $c^{1/q}$. But $f = g \circ i : R \subseteq R^{1/p} \stackrel{g}{\to} R^{1/q}$ in which g is the $R^{1/p}$ -linear map sending 1 to $c^{1/q}$. Thus the purity of f forces the purity of inclusion map i (which is easy to check). Also the purity of f amounts to the purity of the $R^{1/p}$ -linear map $f': R^{1/p} \to R^{1/qp}$ sending 1 to $c^{1/qp}$, which readily implies the purity of f' as an R-linear map. Therefore the R-linear map $f' \circ i : R \to R^{1/qp}$ is pure (which is easy to check) and it sends 1 to $c^{1/qp}$. In other words, the R-linear map $R \to e^{+1}R$ sending 1 to c is pure. This in enough to prove (1).

(2). First of all, for any $c \in R$ and $e \in \mathbb{N}$, let us denote by $f_{c,e}: R \to {}^e\!R$ the R-linear map sending 1 to $c \in {}^e \! R$.

To show 'only if', suppose R is strongly F-regular. For any $x \in 0^*$ $E_{R(k)}$, by the definition of tight closure, there exists $c \in R^{\circ}$ such that $0 = c \otimes_R x \in {}^e R \otimes_R E_R(k)$ for all $e \gg 0$. Thus $1 \otimes_R x \in R \otimes_R E_R(k)$ is in ker $(f_{c,q} \otimes_R 1_{R_R(k)})$ for all $e \gg 0$. But, by part (1) above, we know that $f_{c,q}: R \to {}^e\!R$ are pure for all $e \gg 0$, which forces $0 = 1 \otimes_R x \in R \otimes_R E_R(k)$, implying $x = 0$. So $0^*_{E_R(k)} = 0.$

Finally, let us prove 'if'. Choose $0 \neq w \in (0 :_{E_R(k)} \mathfrak{m})$ so that w generates the socle of $E_R(k)$. The assumption $\hat{0}_{E_R(k)}^* = 0$ implies that $w \notin \hat{0}_P^*$ $E_{R(k)}^*$. Thus, for any $c \in R^{\circ}$, there exists an integer $e \geq 1$ such that $0 \neq c \otimes_R w \in {}^e R \otimes_R E_R(k)$, which means that $1 \otimes_R w \in R \otimes_R E_R(k)$ is not in $\ker(f_{c,q} \otimes_R 1_{E_R(k)})$, which implies that $\ker(f_{c,q} \otimes_R 1_{E_R(k)}) = 0$ as every non-zero R-submodule of $R \otimes_R E_R(k)$ contains $1 \otimes_R w$. Thus $f_{c,q} \otimes_R 1_{E_R(k)} : R \otimes_R 1_{E_R(k)} \to {}^eR \otimes_R 1_{E_R(k)}$ is injective and, therefore, $f_{c,q}: R \to {}^e R$ is pure by Problem 4(5). Hence R is strongly F-regular.