Math 615 (Winter 2005) Homework Set #3 Solutions

Problem 1. Let R be a Noetherian ring of prime characteristic p. Show that R has a weak test
element if and only if R/ v/0 has a weak test element. (Here a weak test element is, by definition, a
g-weak test element for some q.)

Proof. If ¢ € R° is a q;-weak test element for R, then it is straightforward to verify that ¢ + /0
is a q-weak test element for R/+/0. Conversely, suppose R/+/0 has a g,-weak test element, say

d++/0 € (R/\/0)° so that d € R°. Say \/6[%} = 0. Then direct checking shows that d%, which is
in € R°, is a (q2q3)-weak test element for R. O

Problem 2. Let R be a Noetherian ring of prime characteristic p and M an R-module. Recall that
°M 1is the derived R-module structure on M via the Frobenius homomorphism F°: R — R.

(1) If M is a faithful R-module for some e¢q > 0, then R is reduced and °M (including M = °M)
are faithful for all e € N.
(2) Show that Assgr(M) = Assgr(°M) for every e € N,

Proof. (1). Denote gy = p®, which is > p. Suppose R is not reduced. Then there exists 0 # x € /0
such that 2% = 0. Then we see that z € Anng(“M), a contradiction. Now that R is reduced, the
claim that °M is faithful for all e follows immediately from the easy assertion that, quite generally,
Anng(“M) C Anng( M) C /Anng( M) for every e; < ey and any R-module M.

(2). Firstly, we observe an easy claim that Anng(z € M) C Anng(z € ‘M) C \/Anng(xz € M) for
any x € M and any e € N. Then for any P € Assg(M), thereisy € M such that Anng(y € M) = P.
Hence Anng(y € “M) = P and therefore P € Assg(°M). Conversely, suppose P € Assg(°M), i.e.
there is z such that Anng(z € °M) = P. Let Rz be the R-submodule of M generated by z. Then
P € min(R/ Anng(z € M)) = min(Rz) C Assg(Rz) C Assg(M). O

Problem 3. Let (R, m, k) be a Noetherian equidimensional catenary local ring of prime charac-
teristic p with dim(R) = d. Suppose ¢¢ < (r(R/ml4) < ¢? + ¢ for some ¢ = p° > p. Prove
Sing(R) = {m}, where Sing(R) = {P € Spec(R) | Rp is not regular} is the singular locus of R.

Proof. The assumption of (R, m, k) being equidimensional catenary guarantees that dim(R/P) +
dim(Rp) = dim(R) for every P € Spec(R). And R is not regular as ¢% < (z(R/ml4).

If dim(R) = 0, then there is nothing to prove. So we assume dim(R) > 1 and it suffices to show
Rp is regular for any prime ideal P such that dim(R/P) =1 (and hence dim(Rp) = d—1). For any

such P, (g, (Rp/P¥) < Lp(R/ml) < ¢4t 41 = ™) 1, which implies Rp is regular. O

Problem 4. Let R be a ring (not necessarily of characteristic p). Given R-modules M, N and
f € Homg(M, N), we say f is pure if the induced map f®g 1, : M ®r L — N ®p L is injective for
every R-module L. (Denote by m-Spec(R) the set consisting of all maximal ideals of R.)

(1) If f € Homg(M, N) is pure, then f is injective. (Therefore, f € Homg(M, N) is pure if and
only if f is injective and the inclusion map f(M) C N is pure.)

(2) f € Homg(M, N) is pure if and only if fp : Mp — Np is pure for every P € Spec(R) if and
only if fu : My — Ny, is pure for every m € m-Spec(R).

(3) Show (A) f € Hompg(M, N) is pure if and only if f®p1l, : M ®r L — N ®pg L is injective for
every finitely generated R-module L; and (B) If R is Noetherian and M is finitely generated,
then f € Homg(M, N) is pure if and only if f®r1ly: M ®r L — N ®p L is injective for
every finitely generated R-module L such that Assg(L) = {m} for some m € m-Spec(R).

(4) Suppose R is Noetherian and M, N are ﬁmtely generated R-modules. Then [ €
Hompg(M, N) is pure if and only if fm : M — Nm is pure for every m € m-Spec(R) if
and only if f: M — N splits (meaning there exists ¢ € Hompg(N, M) such that go f = 1,,.)

(5) Suppose R is Noetherian and F'is a free R-module. Then f € Hompg(F, N) is pure if and only
if the induced map f®prlp : FOrE — N®gFE is injective, where £ = ®mem-spec(r) Er(R/m).
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Proof. (1). This follows from the injectivity of f ®g 1z : M ® g R — N ®p R.

(2). This is standard.

(3). In both (A) and (B), we only need to show ‘if’. Suppose f : M — N is not pure. Then
there exists an R-module L such that f ®g 17, has a non-zero kernel. Then, by property of tensor
product, there exists a (sufficiently large) finitely generated R-submodule L' C L such that f®g 1.,
is not injective, which proves (A). If, moreover, R is Noetherian and M is finitely generated, then
0 # ker(f ®r 1) € M ®p L' are all finitely generated R-modules. Choose m € m-Spec(R)
such that 0 # (ker( f®grl L’>)m' Then, by Krull intersection theorem, Artin-Rees Lemma etc.,
ker(f ®r 1/ /mnrs) # 0 for some integer n > 0, which proves case (B) as Assp(L//m"L’) = {m}.

(4). Without loss of generality, we assume (R, m,k) is local. Denote — = HomR( ,Eg5(k)).
Then f is pure = f®pgL is injective for all R-module L such that ER( ) < 00 = f®RL is 1nJectlve
for all R-module L such that ¢ (L) < 00 = f is pure = f@RJ\/[v M® MY — N®RMV
is mJectlve = (f Rz MV) : (N ®p MV) (M Rp MV)V is surjective <= HomR(f7 M) ;

HomR(N M) — HomR(M M) is surjective —> f splits = f splits = f is pure.

(5). Without loss of generality, we assume (R, m, k) is local. We only need to show ‘if’. Suppose
f € Hompg(F, N) is not pure. Then, as F' is free (not necessarily of finite rank), an argument similar
to the one in part (3) above shows ker(f ®pg 1) # 0 for some L with ¢(L) < co. Then there exists
an integer n > 0 such that L is embedded into E™ where E = Eg(k). Then, as F' is free, we have
ker(f ®pg 1gn) # 0 = ker(f ®g 1g) # 0, a contradiction. O

Problem 5. Given a local Noetherian ring (R, m, k) of prime characteristic p (not necessarily F-
finite), one could define R to be strongly F-regular if, for any ¢ € R°, there exists an integer e > 1
such that the R-linear map R — °R sending 1 to ¢ is pure. In general, one could define R is strongly
F-regular if Ry, is strongly F-regular for every m € m-Spec(R). (By Problem 4, we see that the
above definition agrees with the one given in class when R is F-finite.)

(1) If there exists a pure R-linear map R — °R sending 1 to ¢ with e > 1, then R is reduced
and, for every ¢ > e, the R-linear map R — R sending 1 to ¢ is pure. (Thus the above
definition of strong F-regularity forces R to be reduced.)

(2) Show that (R, m, k) is strongly F-regular if and only if 03, ) = 0.

Proof. (1). The given pure map shows °R is faithful, implying R is reduced by Problem 2(1). So
we are free to identify °R with R as R-modules for any ¢ = p°. Thus the given pure map may

be considered as f : R — R4 sending 1 to ¢'/9. But f =goi: R é RY? 2, R4 in which g is the
RY?-linear map sending 1 to ¢!/9. Thus the purity of f forces the purity of inclusion map i (which is
easy to check). Also the purity of f amounts to the purity of the R'/P-linear map f’: RY/P — R/
sending 1 to ¢'/%_ which readily implies the purity of f’ as an R-linear map. Therefore the R-linear
map f’ oi: R — RY% is pure (which is easy to check) and it sends 1 to ¢'/%. In other words, the
R-linear map R — “"R sending 1 to c is pure. This in enough to prove (1).

(2). First of all, for any ¢ € R and e € N, let us denote by f.. : R — °R the R-linecar map
sending 1 to ¢ € “R.

To show ‘only if’, suppose R is strongly F'-regular. For any z € O*ER(k), by the definition of
tight closure, there exists ¢ € R° such that 0 = ¢ ®g x € ‘R ®g Fgr(k) for all e > 0. Thus
1 ®px € R®p Er(k) is in ker(feq ®r 1gyu) for all e > 0. But, by part (1) above, we know that
feq i R — °R are pure for all e > 0, which forces 0 = 1 ®g 2z € R ®p Eg(k), implying x = 0. So

0% 4 = 0.
r(k)

Finally, let us prove ‘if’. Choose 0 # w € (0 ER( )y m) so that w generates the socle of Eg(k).
The assumption 0% pry = 0 implies that w ¢ 0}, . Thus, for any ¢ € R°, there exists an integer

e > 1 such that 0 # c®r w € ‘R ®g Er(k), Wthh means that 1 ® g w € R @ Fr(k) is not in

ker(feq ®r 1E,k)), which implies that ker(f.q ®r 1g,x)) = 0 as every non-zero R-submodule of

R ®p Eg(k) contains 1 ®p w. Thus foq ®r lp,mw) @ R ®r 1ER( K — “R®p lg,m is injective and,

therefore, f.,: R — °R is pure by Problem 4(5). Hence R is strongly F-regular. O
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