Problem 1. Let (R, \mathfrak{m}) be a homomorphic image of a Noetherian Cohen-Macaulay local ring (S, \mathfrak{n}) . Assume that R is equidimensional with $\dim(R) = d$. For any system of parameters x_1, \ldots, x_d of R, show that $((x_1, \ldots, x_i)_R^* : R x_{i+1}) = (x_1, \ldots, x_i)_R^*$ for every i < d. (The case i = 0 may be interpreted as $(0^* : R x_1) = 0^*$, the proof of which should be well incorporated into the general case.)

Proof. Say R = S/Q with height(Q) = h. As shown in class, there exist $\underline{y} = y_1, \ldots, y_d \in S$, $\underline{z} = z_1, \ldots, z_h \in Q$, and $c \in S$ such that (a) the images of y_i are x_i for $i = 1, \ldots, d$; (b) $y_1, \ldots, y_d, z_1, \ldots, z_h$ form part of a system of parameters of S; (c) the image of c is $\overline{c} \in R^\circ$; and (d) there exists $q_0 \in \mathbb{N}$ such that $cQ^{[q_0]} \subseteq (\underline{z})S$.

For any i < d and any $x \in ((x_1, \ldots, x_i)_R^* : x_{i+1})$, we have $xx_{i+1} \in (x_1, \ldots, x_i)_R^*$, meaning that there exists $\bar{b} \in R^\circ$ and q_1 such that $\bar{b}(xx_{i+1})^q \in (x_1, \ldots, x_i)^{[q]}$ for all $q \ge q_1$. Say $y, b \in S$ maps to $x, \bar{b} \in R$ respectively. Then $b(yy_{i+1})^q \in (y_1, \ldots, y_i)^{[q]} + Q$ for all $q \ge q_1$. Thus $b^{q_0}(yy_{i+1})^{q_0q} \in (y_1, \ldots, y_i)^{[q_0q]} + Q^{[q_0]}$ for all $q \ge q_1$. Hence $cb^{q_0}y^{q_0q}y_{i+1}^{q_0q} \in (y_1, \ldots, y_i)^{[q_0q]} + (\underline{z})$, which implies $cb^{q_0}y^{q_0q} \in (y_1, \ldots, y_i)^{[q_0q]} + (\underline{z})$ for all $q \ge q_1$ (as S is Cohen-Macaulay). Applying the homomorphism $S \to R$, we get $c\bar{b}^{\bar{q}_0}x^{q_0q} \in (x_1, \ldots, x_i)^{[q_0q]}$ for all $q \ge q_1$. In other words, we have $c\bar{b}^{\bar{q}_0}x^q \in (x_1, \ldots, x_i)^{[q]}$ for all $q \ge q_0q_1$. As $c\bar{b}^{\bar{q}_0} \in R^\circ$, we conclude that $x \in (x_1, \ldots, x_i)_R^*$. Hence $((x_1, \ldots, x_i)_R^* : x_{i+1}) \subseteq (x_1, \ldots, x_i)_R^*$. Consequently, $((x_1, \ldots, x_i)_R^* : x_{i+1}) = (x_1, \ldots, x_i)_R^*$ as the other containment, $((x_1, \ldots, x_i)_R^* : x_{i+1}) \supseteq (x_1, \ldots, x_i)_R^*$, is obvious.

Problem 2. Let $R \subseteq S$ be an extension of Noetherian domains of prime characteristic p such that R is complete local and S is weakly F-regular. Moreover, assume that $(IS) \cap R = I$ for all ideals I of R (e.g. R is a direct summand of S as R-modules). Show R is Cohen-Macaulay.

Proof. Choose a system of parameters x_1, \ldots, x_d of R (with $d = \dim(R)$). Observe that R has 'colon-capture' property: $((x_1, \ldots, x_i) :_R x_{i+1}) \subseteq (x_1, \ldots, x_i)_R^*$ for every i < d. Hence it suffices to show that $(x_1, \ldots, x_i)_R^* = (x_1, \ldots, x_i)R$ for every i < d. We are actually to prove $I^* = I$ for every ideal I of R. Indeed, since $R^\circ \subseteq S^\circ$ and S is weakly F-regular, we have $I_R^*S \subseteq (IS)_S^* = IS$ and therefore $I_R^* = (I_R^*S) \cap R = (IS) \cap R = I$ for every ideal I of R.

Problem 3. Let $R \subseteq S$ be any integral extension of commutative rings of prime characteristic p in which R is Noetherian.

- (1) Assume that S is module-finite over R. Then $(IS)_S^* \cap R \subseteq I_R^*$ for any ideal I of R.
- (2) Show that $(IS) \cap R \subseteq I_R^*$ for any ideal I of R.

Proof. Say $\min(R) = \{P_1, \ldots, P_r\}$. By lying over, there exists $Q_i \in \operatorname{Spec}(S)$ such that $Q_i \cap R = P_i$ for every $1 \leq i \leq r$. By incomparability, each Q_i is a minimal prime of S. For every $1 \leq i \leq r$, there is an induced embedding $R/P_i \to S/Q_i$. For this reason, we simply treat $R_i := R/P_i$ as a subring of $S_i := S/Q_i$ for every $1 \leq i \leq r$. Remember that we have proved the claims of this problem in case of extensions of domains.

(1). For any $x \in (IS)^* \cap R$, we have $x + Q_i \in (IS_i)_{S_i}^*$ over S_i , which implies $x + P_i \in (IS_i)_{S_i}^* \cap R_i = (IR_i)_{R_i}^*$ over R_i for every $1 \le i \le r$. This shall force $x \in I_R^*$ over R.

(2). For any $x \in (IS) \cap R$, we can write $x = x_1s_1 + \cdots + x_ns_n$ for some $x_i \in I$, $s_i \in S$. Then we may apply part (1) to $R \subseteq R[s_1, \ldots, s_n]$ and conclude $x \in I_R^*$. Alternatively, we observe that $x \in (IS) \cap R$ implies that $x + Q_i \in IS_i$, which implies $x + P_i \in (IS_i) \cap R_i \subseteq (IR_i)_{R_i}^*$ over R_i for every $1 \leq i \leq r$. This shall force $x \in I_R^*$ over R.

Problem 4. Let R be a Noetherian ring of prime characteristic p and $N \subsetneq M$ be finitely generated R-modules. Let $\Lambda = \{L \mid N \subseteq L \subseteq M \text{ and } \sqrt{\operatorname{Ann}_R(M/L)} \text{ is a maximal ideal}\}.$

- (1) Show that $N = \bigcap_{L \in \Lambda} L$. (This claim does not depend on characteristic p.)
- (2) Suppose that $J^* = J$ for all ideals J of R such that \sqrt{J} are maximal ideals. Show that R is weakly F-regular, i.e. every ideal is tightly closed.

(3) Show that R is weakly F-regular if and only if $R_{\rm m}$ is weakly F-regular for all maximal ideals \mathfrak{m} of R.

Proof. (1). We assume N = 0 without loss of generality. For any $0 \neq x \in M$, choose a maximal ideal \mathfrak{m} of R such that $(0:_R x) \subseteq \mathfrak{m}$. Then x/1 is nonzero in $M_{\mathfrak{m}}$. But we have $\bigcap_{n>0} \mathfrak{m}^n M_{\mathfrak{m}} = 0$, which implies that $x/1 \notin \mathfrak{m}^n M_{\mathfrak{m}}$ and, hence, $x \notin \mathfrak{m}^n M$ for some $0 < n \in \mathbb{N}$. Let $L = \mathfrak{m}^n M$ and, clearly, $\sqrt{\operatorname{Ann}_R(M/L)} = \mathfrak{m}$. (The argument actually implies that $N = \bigcap_{\mathfrak{m}} \bigcap_{n \in \mathbb{N}} (N + \mathfrak{m}^n M)$, in which \mathfrak{m} runs through all maximal ideals of R.)

(2). For any ideal I of R, we have $I = \bigcap_{J \in \Lambda} J$ with $\Lambda = \{J \mid I \subseteq J \text{ and } \sqrt{J} \text{ is maximal} \}$ by part (1). Therefore $I^* \subseteq \bigcap_{J \in \Lambda} J^* = \bigcap_{J \in \Lambda} J = I$. So $I^* = I$ for every ideal I of R.

(3). If R is weakly F-regular, then $I^* = I$ for all ideals I of R. In particular, $J^* = J$ for all ideals J primary to any given maximal ideal \mathfrak{m} . For any $\mathfrak{m}R_{\mathfrak{m}}$ -primary ideal H of $R_{\mathfrak{m}}$, $H = JR_{\mathfrak{m}}$ for some \mathfrak{m} -primary ideal J of R. Therefore $H_{R_{\mathfrak{m}}}^* = J_R^* R_{\mathfrak{m}} = J R_{\mathfrak{m}} = H$, implying $R_{\mathfrak{m}}$ is weakly F-regular by part (2). Conversely, suppose $R_{\mathfrak{m}}$ is weakly F-regular for all maximal ideals \mathfrak{m} of R. For any ideal J that is primary to a maximal ideal, say \mathfrak{m} , we have $J_R^*R_\mathfrak{m} = (JR_\mathfrak{m})_{R_\mathfrak{m}}^* = JR_\mathfrak{m}$. This implies that $J_R^* = J$. Hence R is weakly F-regular by part (2).

Problem 5. Let R be a commutative ring (not necessarily Noetherian or with characteristic p). Given an ideal $I \subseteq R$ and $x \in R$, prove that x is in the integral closure of I if and only if x + P is in the integral closure of $(I+P)/P \subseteq R/P$ for all P in min(R), the set of minimal primes of R.

Proof. Let $W = \{x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \mid n \in \mathbb{Z}, a_i \in I^i\}$. Then we see that W is a multiplicatively closed subset of R.

Suppose that x is not in the integral closure of I on the contrary. Then $0 \notin W$, meaning $W^{-1}R$ is not a zero ring and hence $\operatorname{Spec}(W^{-1}R) \neq \emptyset$. Then, by Zorn lemma, there is a minimal prime ideal Q of $W^{-1}R$, in which Q has to be of the form $W^{-1}P$ for some $P \in \min(R)$. Clearly $P \cap W = \emptyset$. But this contradicts to the assumption that x + P is in the integral closure of $(I + P)/P \subseteq R/P$.

Problem 6. Let R be a Noetherian ring of prime characteristic p and $N \subseteq M$ R-modules such that $(N_P)_{M_P}^* = (N_M^*)_P$ for every $P \in Ass(M/N_M^*)$. Show that $(W^{-1}N)_{W^{-1}M}^* = W^{-1}(N_M^*)$ for any multiplicatively closed set $W \subset R$.

Proof. Let W be any multiplicatively closed subset of R. Since $W^{-1}(N_M^*) \subseteq (W^{-1}N)_{W^{-1}M}^*$ and, hence, $(W^{-1}(N_M^*))_{W^{-1}M}^* = (W^{-1}N)_{W^{-1}M}^*$, we may mod out N_M^* . In other words, we may assume $N = 0 = 0_M^*$ without loss of generality. Now we need to show that $0 = 0_{W^{-1}M}^*$. Say $\operatorname{Ass}_R(M) = \{P_1, \ldots, P_t\}$ and $\operatorname{Ass}_{W^{-1}R}(W^{-1}M) = \{W^{-1}P_1, \ldots, W^{-1}P_s\}$ for some $s \leq t$.

Clearly, we have $\operatorname{Ass}_{W^{-1}R}(0^*_{W^{-1}M}) \subseteq \operatorname{Ass}_{W^{-1}R}(W^{-1}M).$

Suppose, on the contrary, that $0 \subsetneq 0^*_{W^{-1}M}$. Then $\operatorname{Ass}_{W^{-1}R}(0^*_{W^{-1}M}) \neq \emptyset$. Say $\operatorname{Ass}_{W^{-1}R}(0^*_{W^{-1}M}) = \{W^{-1}P_1, \ldots, W^{-1}P_r\}$ for some $1 \le r \le s$. Let $P = P_1$. Then M_P can be viewed as a further localization of $W^{-1}M$ at $W^{-1}P$. Thus we have $(0^*_{W^{-1}M})_{W^{-1}P} \subseteq 0^*_{M_P}$.

By our choice, $W^{-1}P \in \operatorname{Ass}_{W^{-1}R}(0^*_{W^{-1}M})$, which implies that $0 \neq (0^*_{W^{-1}M})_{W^{-1}P} \subseteq 0^*_{M_P}$. On the other hand, the assumption, together with the fact that $P \in \operatorname{Ass}_R(M)$ (which is $\operatorname{Ass}_R(M/N_M^*)$ since we are assuming $N_M^* = 0$, forces $0_{M_P}^* = 0$. We have reached a contradiction.