Problem 1. Let (R, \mathfrak{m}) be a homomorphic image of a Noetherian Cohen-Macaulay local ring (S, \mathfrak{n}) . Assume that R is equidimensional with $\dim(R) = d$. For any system of parameters x_1, \ldots, x_d of R, show that $((x_1, \ldots, x_i)_R^* : R x_{i+1}) = (x_1, \ldots, x_i)_R^*$ for every i < d. (The case i = 0 may be interpreted as $(0^* :_R x_1) = 0^*$, the proof of which should be well incorporated into the general case.)

Problem 2. Let $R \subseteq S$ be an extension of Noetherian domains of prime characteristic p such that R is complete local and S is weakly F-regular. Moreover, assume that $(IS) \cap R = I$ for all ideals I of R (e.g. R is a direct summand of S as R-modules). Show R is Cohen-Macaulay.

Problem 3. Let $R \subseteq S$ be any integral extension of commutative rings of prime characteristic p in which R is Noetherian.

- (1) Assume that S is module-finite over R. Then $(IS)_S^* \cap R \subseteq I_R^*$ for any ideal I of R.
- (2) Show that $(IS) \cap R \subseteq I_R^*$ for any ideal I of R.

Problem 4. Let R be a Noetherian ring of prime characteristic p and $N \subsetneq M$ be finitely generated R-modules. Let $\Lambda = \{L \mid N \subseteq L \subseteq M \text{ and } \sqrt{\operatorname{Ann}_R(M/L)} \text{ is a maximal ideal}\}.$

- (1) Show that $N = \bigcap_{L \in \Lambda} L$. (This claim does not depend on characteristic p.)
- (2) Suppose that $J^* = J$ for all ideals J of R such that \sqrt{J} are maximal ideals. Show that R is weakly F-regular, i.e. every ideal is tightly closed.
- (3) Show that R is weakly F-regular if and only if $R_{\mathfrak{m}}$ is weakly F-regular for all maximal ideals \mathfrak{m} of R.

Problem 5. Let R be a commutative ring (not necessarily Noetherian or with characteristic p). Given an ideal $I \subseteq R$ and $x \in R$, prove that x is in the integral closure of I if and only if x + P is in the integral closure of $(I + P)/P \subseteq R/P$ for all P in min(R), the set of minimal primes of R.

Problem 6. Let R be a Noetherian ring of prime characteristic p and $N \subseteq M$ R-modules such that $(N_P)^*_{M_P} = (N^*_M)_P$ for every $P \in \operatorname{Ass}(M/N^*_M)$. Show that $(W^{-1}N)^*_{W^{-1}M} = W^{-1}(N^*_M)$ for any multiplicatively closed set $W \subset R$.