
Math 615 (Winter 2005) Homework Set #1 Solutions

Problem 1. Let (R,m) be a 0-dimensional Noetherian (i.e. Artinian) local ring of prime char-
acteristic p and M be a finitely generated R-module. Show that there exists e0 ∈ N such that
F e(M) ∼= F e0(M) for all e ≥ e0. (Actually, this is true as long as R is 0-dimensional Noetherian,
the proof of which reduces to local case.)

Proof. Write down an representation Rm (aij)−→ Rn −→ M −→ 0 such that aij ∈ m. Then, for any

q = pe, F e(M) is represented by exact sequence Rm
(aqij)−→ Rn −→ F e(M) −→ 0. By assumption,

there exists q0 = pe0 such that m[q] = 0 for all q ≥ q0. Therefore F e(M) ∼= Rn for all e ≥ e0.
(In case R is Artinian (not necessarily local), R =

∏s
i=1 Ri is a direct product of Artinian local

rings Ri. So the claim remains true although the stabled F e(M) is not necessarily free over R.
Instead, F e(M) is isomorphic to ⊕si=1R

bi
i for all e� 0.) �

Problem 2. Let R be a Noetherian ring of prime characteristic p. It is known that I∗ ⊆
√
I

for every ideal I ⊆ R (by comparing tight closure with integral closure). Here we show this from
definition of tight closure.

(1) If (R,m) is local (with maximal ideal m), show m∗ = m.
(2) Show P ∗ = P for any prime ideal of R, which is not assumed to be local.

(3) Show I∗ ⊆
√
I for every ideal I of R.

(4) Compute 0∗R. Here 0 refers to the zero ideal of R.

Proof. (1). Suppose m∗ ) m. Then 1 ∈ m∗, meaning that there exists c ∈ R◦ such that c1q ∈ m[q]

for all q � 0. But this forces c ∈ ∩q�0m
[q] = 0, a contradiction.

(2). By (1), the ideal PP is tightly closed in RP for any P ∈ Spec(R). This gives the conclusion
P ∗ = P as (P ∗R)RP ⊆ (PP )∗RP for any P ∈ Spec(R).

(3). For any ideal I of R, say
√
I = ∩ni=1Pi for Pi ∈ Spec(R). Then I∗ ⊆ ∩ni=1P

∗
i = ∩ni=1Pi =

√
I.

(4). We always have
√

0 ⊆ 0∗. By (3), we also have 0∗ ⊆
√

0. Thus 0∗ =
√

0. �

Problem 3. Let k be a field of characteristic 2, S = k[X, Y ] be a polynomial ring over k with
indeterminates X,Y , and R = S/(X3)S. Let I = (X2)R ⊂ (X)R = J be ideals of R. (Then I ⊂ J
are also modules over S under the natural ring homomorphism S → R.)

(1) Let F e
R(−) be the Frobenius functor over R. Up to isomorphism, how many distinct R-

modules are there among 0, I, J, R, FR(I), FR(J), I
[2]
R , J

[2]
R , I

[2]
J ? (Everything is considered

as an R-module, including I as in the notation FR(I), for example.) Group isomorphic
R-modules together.

(2) Determine I∗R and I∗J over R. (Everything is considered as an R-module.)
(3) Determine I∗R and I∗J over S. (Everything is considered as an S-module, including R as in

I∗R.)

Proof. Denote the images of X, Y in R by x, y. Therefore x3 = 0 in R.
(1). As R-modules, I = xJ ∼= R/xR and J ∼= R/x2R. Hence FR(I) ∼= R/x2R, FR(J) ∼= R/x4R =

R and I
[2]
J = x2FR(J) ∼= x2R = I. We also have I

[2]
R = x4R = 0 and J

[2]
R = x2R = I. To sum up,

there are four (4) distinct R-modules up to isomorphism, namely 0 ∼= I
[2]
R , I ∼= J

[2]
R
∼= I

[2]
J , J ∼= FR(I)

and R ∼= FR(J).
(2). First, I∗R =

√
0 = J because I ⊂

√
0. Then notice that J∗R = J as J =

√
0, which means

that 0∗R/J = 0. But R/J ∼= J/I. So 0∗J/I = 0, meaning I∗J = I.

(3). Over regular ring S, N∗M = N for any S-modules N ⊆M . So I∗R = I and I∗J = I over S. �

Problem 4. Let R be a Noetherian ring of prime characteristic p. Suppose

G• : 0 −→ Gn
φn−→ Gn−1

φn−1−→ · · · φ2−→ G1
φ1−→ G0
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is a complex with Gi free of finite rank for 0 ≤ i ≤ n. Apply Frobenius functor F e to get F e(G•)
for every e ∈ N.

(1) If G• is exact, show F e(G•) remains exact for every e ∈ N.
(2) If `R(Hi(G•)) <∞ for every 1 ≤ i ≤ n, show `R(Hi(F

e(G•))) <∞ for every 1 ≤ i ≤ n and
for every e ∈ N. (Here `R(−) represents the length of an R-module.)

Do (1) and (2) still hold if, instead, we assume Gi are finitely generated projective R-modules for
0 ≤ i ≤ n?

Proof. (1). Since Frobenius function F e commutes with localization and a complex is exact if
and only if every localization of it is exact, we may assume R is local. Then the assumption
that G• is exact implies that depthI(φi)(R) ≥ i and rank(Gi) = rank(φi) + rank(φi+1) for every
1 ≤ i ≤ n. In particular, I(φi) contains a non-zero-divisor for every 1 ≤ i ≤ n, which guarantees
that rank(φi) = rank(F e(φi)) for every i and every e. This also implies that I(F e(φi)) = (I(φi))

[q]

and thus depthI(F e(φi))(R) = depthI(φi)(R) for every q = pe. Therefore, the complex F e(G•) still
satisfies the ‘rank and depth’ condition. Consequently, F e(G•) is exact for every e ∈ N. (If, for any
given i, φi is represented by a matrix (ajk), then F e(φi) may be represented by the matrix (aqjk).)

(2). This follows from (1). Indeed, for any given e, `R(Hi(F
e(G•))) <∞ for all 1 ≤ i ≤ n if and

only if F e(G•)⊗R RP is exact for all prime ideals P that are not maximal.
Finally, (1) and (2) still hold if we assume Gi are finitely generated projective R-modules for

0 ≤ i ≤ n. As seen in the above proof, both (1) and (2) reduce to local case. �

Problem 5. Let R be a Noetherian ring of prime characteristic p and N ⊆ M be R-modules.

Define NF
M = {x ∈ M |xq ∈ N [q]

M ⊆ F e(M) for some q = pe}. (NF
M is called the Frobenius closure

of N in M .)

(1) Show that NF
M ⊆ N∗M .

(2) Show that Frobenius closure commutes with localization, i.e. (W−1N)FW−1M = W−1(NF
M)

for any multiplicatively closed set W ⊂ R.

Proof. (It is routine to check that NF
M is an R-submodule of M .)

(1). For any x ∈ NF
M , we have xq0 ∈ N [q0]

M ⊆ F e0(M) for some q0 = pe0 . This actually implies

that xq ∈ N [q]
M ⊆ F e(M) for all q ≥ q0, showing x ∈ N∗M (with c = 1 ∈ R◦).

(2). Let W ⊂ R be a multiplicatively closed subset of R. If x ∈ NF
M , then xq ∈ N

[q]
M ⊆

F e(M) for some q = pe. This gives (x/1)q ∈ (W−1N)
[q]

W−1M ⊆ F e(W−1M). (Here we use the
fact that Frobenius functor commutes with localization.) Hence x/1 ∈ (W−1N)FW−1M , showing
(W−1N)FW−1M ⊇ W−1(NF

M). On the other hand, for any x/w ∈ (W−1N)FW−1M with x ∈ M

and w ∈ W , there exists q = pe such that (x/w)q ∈ (W−1N)
[q]

W−1M ⊆ F e(W−1M). (We may
simply assume w = 1 as Frobenius closure is a submodule.) Using the fact that Frobenius functor

commutes (naturally) with localization, we may write (x/w)q ∈ W−1(N
[q]
M ) ⊆ W−1(F e(M)) for

the same q = pe. Therefore there exists w′ ∈ W such that w′xq ∈ N [q] ⊆ F e(M) and hence
(w′x)q ∈ N [q] ⊆ F e(M), which implies w′x ∈ NF

M . This shows that (W−1N)FW−1M ⊆ W−1(NF
M).

Finally, (W−1N)FW−1M = W−1(NF
M). �
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