Math 615 (Winter 2005) Homework Set #1 Solutions

Problem 1. Let (R,m) be a 0-dimensional Noetherian (i.e. Artinian) local ring of prime char-
acteristic p and M be a finitely generated R-module. Show that there exists ey € N such that
Fe(M) = F(M) for all e > ey. (Actually, this is true as long as R is 0-dimensional Noetherian,
the proof of which reduces to local case.)

Proof. Write down an representation R™ (@) R" — M — 0 such that a;; € m. Then, for any

. (af}) .
q = p°, F¢(M) is represented by exact sequence R™ —5 R"™ — F¢(M) — 0. By assumption,

there exists go = p® such that ml4 = 0 for all ¢ > ¢o. Therefore F (M) = R™ for all e > ey.

(In case R is Artinian (not necessarily local), R = [[;_; R; is a direct product of Artinian local
rings R;. So the claim remains true although the stabled F(M) is not necessarily free over R.
Instead, F¢(M) is isomorphic to @;_, R for all e > 0.) O

Problem 2. Let R be a Noetherian ring of prime characteristic p. It is known that I* C /T
for every ideal I C R (by comparing tight closure with integral closure). Here we show this from
definition of tight closure.

(1) If (R, m) is local (with maximal ideal m), show m* = m.
(2) Show P* = P for any prime ideal of R, which is not assumed to be local.
(3) Show I* C /T for every ideal I of R.
(4) Compute 03,. Here 0 refers to the zero ideal of R.

Proof. (1). Suppose m* D m. Then 1 € m*, meaning that there exists ¢ € R° such that c1? € ml
for all ¢ > 0. But this forces ¢ € ﬁq>>gm[‘ﬂ = 0, a contradiction.

(2). By (1), the ideal Pp is tightly closed in Rp for any P € Spec(R). This gives the conclusion
P* =P as (P3)Rp C (Pp)y, for any P € Spec(R).

(3). For any ideal I of R, say VI = N, P, for P; € Spec(R). Then I* C N, P* = N, P, = /1.

(4). We always have v/0 C 0*. By (3), we also have 0* C v/0. Thus 0* = /0. O

Problem 3. Let k be a field of characteristic 2, S = k[X,Y] be a polynomial ring over k with
indeterminates X, Y, and R = S/(X?)S. Let I = (X*)R C (X)R = J be ideals of R. (Then I C J
are also modules over S under the natural ring homomorphism S — R.)

(1) Let F5(—) be the Frobenius functor over R. Up to isomorphism, how many distinct R-
modules are there among 0,1, J, R, FR(I),FR(J),Ig], Jg]7152]? (Everything is considered
as an R-module, including I as in the notation Fr(I), for example.) Group isomorphic
R-modules together.

(2) Determine I}, and I’y over R. (Everything is considered as an R-module.)

(3) Determine I and I} over S. (Everything is considered as an S-module, including R as in
I%.)

Proof. Denote the images of X,Y in R by z,y. Therefore 23 = 0 in R.

(1). As R-modules, I = xJ =2 R/xR and J = R/x*R. Hence Fr(I) = R/2*R, Fr(J) = R/z'R =
R and I') = 22Fp(J) =2 2R = I. We also have I'J = 2R = 0 and J') = 22R = I. To sum up,
there are four (4) distinct R-modules up to isomorphism, namely 0 = [ 1[%2], 1=J 1[%2] = IBQ], J = Fr(I)
and R = Fgr(J).

(2). First, I}, = v/0 = J because I C +/0. Then notice that Jj = J as J = /0, which means
that 0%, = 0. But R/J = J/I. So 07, = 0, meaning [ = I.

(3). Over regular ring S, N;; = N for any S-modules N C M. So I}, =1 and I} =1 over S. [

Problem 4. Let R be a Noetherian ring of prime characteristic p. Suppose
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is a complex with G free of finite rank for 0 < i < n. Apply Frobenius functor F¢ to get F¢(G,)
for every e € N.
(1) If G, is exact, show F¢(G,) remains exact for every e € N.
(2) If lr(H;(G,)) < oo for every 1 < i < n, show {g(H;(F°(G,))) < oo for every 1 <i <n and
for every e € N. (Here {g(—) represents the length of an R-module.)

Do (1) and (2) still hold if, instead, we assume G; are finitely generated projective R-modules for
0<i<n?

Proof. (1). Since Frobenius function F° commutes with localization and a complex is exact if
and only if every localization of it is exact, we may assume R is local. Then the assumption
that G is exact implies that depth;,,(R) > i and rank(G;) = rank(¢;) + rank(¢;y1) for every
1 <4 < n. In particular, I(¢;) contains a non-zero-divisor for every 1 < i < n, which guarantees
that rank(e;) = rank(F¢(¢;)) for every i and every e. This also implies that I(F¢(¢;)) = (1(¢;))
and thus depth; pe(y,))(R) = depth;,,(R) for every ¢ = p°. Therefore, the complex F°(G.) still
satisfies the ‘rank and depth’ condition. Consequently, F'¢(G,) is exact for every e € N. (If, for any
given i, ¢; is represented by a matrix (a;i), then F°(¢;) may be represented by the matrix (a?k).)

(2). This follows from (1). Indeed, for any given e, {xr(H;(F°(G,))) < oo for all 1 < i < n if and
only if F¢(G,) ®gr Rp is exact for all prime ideals P that are not maximal.

Finally, (1) and (2) still hold if we assume G; are finitely generated projective R-modules for
0 <i <n. As seen in the above proof, both (1) and (2) reduce to local case. O

Problem 5. Let R be a Noetherian ring of prime characteristic p and N C M be R-modules.
Define NI = {z € M |27 € N9 C Fe(M) for some q = p°}. (NI is called the Frobenius closure
of N in M.)
(1) Show that Ni, C Nj,.
(2) Show that Frobenius closure commutes with localization, i.e. (W™'N)E _,, = W=HN5))
for any multiplicatively closed set W C R.

Proof. (It is routine to check that N{; is an R-submodule of M.)

(1). For any x € NI, we have z% € N][\qf} C F(M) for some gy = p*. This actually implies
that 29 € N][\Z] C F¢(M) for all ¢ > qo, showing = € N, (with c=1 € R°).

(2). Let W C R be a multiplicatively closed subset of R. If z € NI, then 29 € N][\Z] -
Fe(M) for some ¢ = p°. This gives (x/1)9 € (W‘lN)E{,]_lM C F4(W~'M). (Here we use the
fact that Frobenius functor commutes with localization.) Hence z/1 € (W~'N){,_,,,, showing
(WN) 1y, 2 WH(NS;). On the other hand, for any z/w € (W'N){,_,,, with z € M
and w € W, there exists ¢ = p°® such that (x/w)? € (WﬁlN)%,lM C Fe(W™IM). (We may
simply assume w = 1 as Frobenius closure is a submodule.) Using the fact that Frobenius functor
commutes (naturally) with localization, we may write (z/w)? € Wﬁl(N][\q}) C WY(F¢(M)) for
the same ¢ = p°. Therefore there exists w’ € W such that w'z? € Nl C F¢(M) and hence
(w'z)? € Nl C Fe(M), which implies w'z € Nf;. This shows that (WIN)E _,  C W-L(NE).
Finally, (W-IN)E _, = W-(NF). O



