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Abstract

Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic
networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem
mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common
for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for
reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional
reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE
corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic
dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce
that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we
find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust,
whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps
oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic
oscillators with highly-regular periods likely have solely negative feedback.
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Introduction

Genetic oscillatory networks are networks of interacting proteins

that regulate gene expression. They are found in many biological

pathways, including the circadian rhythm [1], cell cycle regulation

[2], apoptosis [3], metabolism [4], and morphogenesis [5,6]. Such

networks involve hundreds of reactions and thus are extremely

difficult to characterize biologically and mathematically. This

highlights the importance of methods to simplify the analysis of

these networks.

One currently-utilized method for simplifying analysis is

building a reduced mathematical model [7–10]. These models

have significant value as they can be engineered biologically as

artificial regulatory networks in the lab [11–15]. One type of

reduced model, a delay differential equation (DDE), has demon-

strated particularly strong potential as a viable method of

analyzing genetic oscillatory networks [16]. DDEs account for

time-consuming processes in the cell, such as slow nuclear

transport and long chains of reactions, by incorporating a discrete

time delay [17]. Consequently, DDEs are easier to interpret

biologically than systems of ordinary differential equations

(ODEs), which must account for each individual reaction with

an additional differential equation.

From a mathematical standpoint, however, DDEs are signifi-

cantly more complex than their ordinary counterparts. By

construction, DDEs have an infinite number of dimensions.

Consequently, they can exhibit high-dimensional dynamics. For

example, while systems of ODEs require at least two equations to

generate sustainable oscillations [18], a single DDE can produce

both wildly complex behavior [19] and low-dimensional dynamics

[17]. There is currently no analytical technique in the literature to

predict the complexity of a DDE’s dynamics. In addition, it is not

known what features determine whether DDEs exhibit robustness,

the ability of a model to retain periodic oscillations against

deterministic changes in the parameters of the equations. Because

of these ambiguities, DDEs remain an area of active research

[20,21]. This highlights the need for further analysis of DDEs.

In our analysis, we examine models of the form:

_xx ~ f (xt) { g(x) ð1Þ

where x represents protein concentration, t is a discrete time

delay, xt ~ x(t { t), f (xt) represents the synthesis of the protein,

and g(x) represents the degradation. This single-variable delay

model accounts for the majority of minimal genetic oscillators

modeled with delay [17,22,23]. Multi-variable delay models of

minimal genetic regulatory oscillators have been reduced to single-

variable delay models in previous studies [22]. Consequently,

multi-variable delay models have been shown to exhibit properties

that closely resemble those of single-variable delay models. Thus,

our model covers a broad range of minimal genetic oscillators and

gives us a comprehensive and accurate description of their

dynamics.
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In our study, we analyze the dynamics of DDEs of the form (1),

determine which forms of the synthesis and degradation terms

cause robustness, derive reduced systems of ODEs for robust

models, and calculate analytic dimension lines for the non-robust

models. In the Methods section, we outline the methods we use to

achieve our aims. In the Results section, we present the results of

our analyses. Finally, in the Discussion section, we discuss our

findings and offer insights into their implications.

Methods

The Models
For the dynamics of (1) to be applicable to genetic oscillators, a

few conditions for f (x) and g(x) must be met. Both terms must be

positive to ensure that they perform their intended biological roles.

The degradation term must either be saturable [17]

(g(x)!x=(K2zx)) or non-saturable [19] (g(x)!x). Furthermore,

the synthesis term must either be monotonic, which corresponds to

negative feedback (f (x)!1=(Kn
1 zxn)), see Fig. 1A), or non-

monotonic, which corresponds to positive feedback when xv1
and negative feedback when xw1 (f (x)!x=(Kn

1 zxn), see

Fig. 1B). For our analysis, we have elected to let the Michaelis

constants, denoted by K1 and K2, be equal (K1 ~ K2 ~ 1) for ease

of mathematical analysis. Furthermore, for the case where

K1~K2, the degradation term is essentially non-saturable. For

the case where K1&K2, the degradation term is virtually constant,

which means that the concentration of the protein is so high that

proteosomes are always working at their maximal possible rate.

This is not realistic biologically because a high copy number of the

protein is typically hard to achieve technically and because

proteosome saturation may impair other processes in the cell and

cause cell death. Our preliminary analysis has also shown that the

dynamics resulting from constant degradation are trivial: oscilla-

tions are not possible. Setting K1 ~ K2 ~ 1 and pairing each of

the two possibilities for f (x) with the two possibilities for g(x) gives

us the following family of four models:

_xx~
a

1zxn
t

{
bx

1zx
ð2Þ

_xx~
a

1zxn
t

{bx ð3Þ

_xx~
axt

1zxn
t

{
bx

1zx
ð4Þ

_xx~
axt

1zxn
t

{bx ð5Þ

where a is the synthesis factor, b is the degradation factor, n is the

Hill cooperativity coefficient, t is a discrete time delay, and

xt ~ x(t { t). Of these four models, (2) [17], (4) [24], and (5) [19]

have already been analyzed before, but for this study we wish to

explore their properties further and in different contexts.

The analyses of these models involve examining properties

related to their equilibrium states. We extend the definition of an

equilibrium state for an ODE, which states that x� is an

equilibrium state of the system _xx ~ f (x) if and only if f (x�) ~ 0,

to DDEs. Our definition is as follows: x� is an equilibrium state of

the system _xx ~ f (x,xt) if and only if f (x�,x�) ~ 0. From this

definition, we can derive the equilibrium states of the four models.

To start off, because the synthesis term f (x) is monotonically

decreasing and the degradation term g(x) is monotonically

increasing for both (2) and (3), we can see that each system has

exactly one positive value x� at which f (x�) ~ g(x�). Therefore,

we know that those two models each have exactly one positive

equilibrium state. Next, we can see that (4) and (5) each have an

equilibrium state x�~0. Additionally, (5) has an equilibrium state

x�~
a{b

b

� �1
n

for
a

b
w1, which is the system’s only other positive

equilibrium state. Unfortunately, the other equilibrium states for

(4) are much more dependant on the parameters a and b, and we

will not examine them in our analysis for that reason.

Bifurcation Analysis
The first step in examining the properties of these genetic

oscillators is to determine the values of the parameters at which

oscillations appear. Such a change is a bifurcation, which is

defined as a qualitative change in the dynamics of a system that

results from a change in the parameters of the system. A

bifurcation curve, which defines the values of the parameters at

which bifurcations occur, can be calculated by performing a linear

stability analysis [18] on (1).

To begin the derivation of the bifurcation curves, we linearize

the system around the fixed point x� by letting x ~ x�zj, giving

us the following linearized system via a Taylor series substitution:

_xx ~ jtf 0(x�){jg0(x�), ð6Þ

where jt ~ j(t{t). Next, we assume that the solution to (6) is of

the form j~Cept and substitute it into (6), giving us the following

equation for p:

p~e{ptf 0(x�){g0(x�) ð7Þ

We know that p~lziv, so, by substituting lziv for p in (7), we

can solve for l by converting from exponential form to CIS form

and isolating the imaginary terms, which lets us arrive at (8). Next,

we isolate the real terms of the CIS form of (7) after p-substitution

and solve for l again, which gives us (9).

l~{
1

t
ln

v

f 0(x�)sin({vt)

� �
ð8Þ

l~{v cot vt{g0(x�) ð9Þ

Now, we set l~0 in (9) and solve for v in (8), which we then

substitute back into (9) to obtain (10), an equation for tk in terms of

the number of pairs of positive l’s k and the parameter n. Finally,

we solve for k to obtain (11), which gives us the number of pairs of

positive l’s for a given t and n.

Genetic Oscillatory Networks
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tk~

2pkz cos{1 g0(x�)

f 0(x�)

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f 0(x�))2{(g0(x�))2

q ð10Þ

k~

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f 0(x�))2{(g0(x�))2

q
{ cos{1 g0(x�)

f 0(x�)

� �
2p

ð11Þ

The curve given by substituting k~0 into (10) represents the

bifurcation curve at which the first pair of characteristic exponents

crosses the imaginary axis. This event marks a Hopf bifurcation, in

which an equilibrium state loses stability and transforms into a

stable limit cycle [18]. Because we have performed these

calcuations on (1), we have derived general formulae that we

can use to analyze (2){(5) by plugging in the specific forms of

f (xt) and g(x) into (10) and (11).

Numerical Details
In our numerical simulations, we generate time series using

Euler’s method. We also tried using fourth-order Runge-Kutta

(RK4), but it did not give any advantage for the purpose of

calculating period, amplitude, or correlation dimension. We tested

the stability of Euler’s method by choosing a few sets of parameters

and choosing a time step for Euler’s method such that the maximal

difference between RK4 and Euler’s method at each step was less

than 10{6. We found that a time step of Dt~:001 was sufficient.

To generate three-dimensional diagrams corresponding to how

the period and amplitude of the oscillations respond to changes in

both n and t, we generate a time series for some value of n and t.

For this time series, we record a time ti whenever x crosses 1 from

above. We let the period of the oscillation for the n and t at ti be

the time difference between ti and ti{1, and we let the amplitude

of the oscillation for the n and t at ti be the difference between the

highest value of x and the lowest value of x since ti{1. We then

change n or t by a small value and then repeat the process until

the full diagrams are generated.

Finally, although DDEs have infinite dimensionality, they often

exhibit low-dimensional dynamics. To characterize the complexity

of their dynamics, we need to numerically estimate the dimension

of the system. The easiest way to numerically estimate the

dimension from a one-dimensional time series is to numerically

calculate the correlation dimension. To do this, we use the

TISEAN package [25]. TISEAN calculates the correlation

dimension D2 using the following formula:

C(m,E)&ED2 , ð12Þ

where

C(m,E)~
1

Npairs

XN

j~m

X
kvj{w

H(E{jsj{skj), ð13Þ

where si are m-dimensional vectors, Npairs~(N{mz1)

(N{m{wz1)=2 is the number of pairs of points covered by

the sum, H is the Heaviside step function [26], and w is the Theiler

window [27]. To make the numerical estimation of the correlation

dimension smoother, TISEAN furthermore calculates the Gaus-

sian kernal correlation integral CG(E), which can be obtained from

C(E) using the following formula:

CG(E)~
1

2E2

ð?
0

e
{ r

4E2 rC(r)dr ð14Þ

CG(E) has the same scaling properties as C(E), and it is from

CG(E) that the final correlation dimension is calculated. For more

details and a deeper explanation on correlation dimension, see ref.

[25].

Reduction to Systems of ODEs
As discussed in the introduction, an area of particular interest is

the synthesis of reduced models of the DDEs. Such reductions

greatly reduce the complexity of the original models and allow for

a substantially simpler analysis of their properties.

To reduce a system, we begin by converting the first-order DDE

into a system of infinitely-many first-order ODEs by rewriting the

Figure 1. A graph of the synthesis terms f (x) near x ~ 1 for varying n. A: The monotonic synthesis term f (x) ~ 1=(1zxn). Because the term
is monotonically decreasing, it represents universal negative feedback. Furthermore, as n increases, f (x) becomes increasingly step-like. B: The non-
monotonic synthesis term f (x) ~ x=(1zxn). Because the term is not monotonically decreasing, it represents feedback that switches from positive to
negative near x ~ 1. We have chosen to scale both graphs to 1 by setting a to 1.
doi:10.1371/journal.pone.0090666.g001
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coordinate x(t) and its delayed counterparts x(t{kt) as a series of

independent variables xk where k~1,?. For models of the form

(1), we get the recursive system _xxk{1~f (xk){g(xk{1).

The idea is to truncate this system at a certain k. To do this, we

first note that that the monotonic synthesis function becomes

increasingly step-like, only taking on two values, as n increases, see

Fig. 1A. We take advantage of this fact to construct a switch

variable z that will switch between those values. We then replace

the synthesis term of the last equation by z, effectively eliminating

all subsequent ODEs and creating a reduced system of ODEs. We

must then consider the number of ODEs necessary to, in

conjunction with a switching rule for z, accurately reproduce the

dynamics of the original delay system. Based on the number of

ODEs we choose, we will have either a first-order or a second-

order reduction.

First-Order Reduction. The minimum number of ODEs

necessary to reproduce oscillations is one, since that corresponds to

a two-dimensional system in x1 and z. We call this a first-order

reduction:

_xx1~z{g(x1) ð15Þ

Instead of using the synthesis term f (x2~x1(t{t)) in (15), we

replace it with z. In the limit of n??, the monotonic synthesis

function has two states, a and 0. We therefore let z take on two

states, zmax~a and zmin~0. Suppose that at time t, z~zmax. z
stays at this value as long as x1(t{t)v1. In this interval of low

x1(t{t), x1 monotonically increases until x1(t{t)w1. At that

time, x1 takes on the value smax given by the following integral:

ð smax

1

dx1

zmax{g(x1)
~t ð16Þ

Thus, we switch z from zmax to zmin when x1 reaches the

switching point smax. Similarly, x1 monotonically decreases when

z~zmin until x1(t{t)v1. At that time, x1 takes on the value xmin

given by the following integral:

ðsmin

1

dx

zmin{g(x)
~t ð17Þ

Again, we switch z from zmin to zmax when x1 reaches the

switching point smin. A consequence of switching z at smax and smin

these switching points are upper and lower boundaries of the

trajectory. This idea will become important when deriving the

second-order reduction.

Second-Order Reduction. We hypothesize that we can

achieve a more accurate approximation by increasing the number

of ODEs to two. Consider a reduced system of two ODEs _xx1 and

_xx2. We call this the second-order reduction:

_xx1 ~f (x2){g(x1)

_xx2 ~z{g(x2) ð18Þ

We let x1 represent x and x2 represent xt from the original

DDE. Instead of replacing f (x2) with z as in the first-order

reduction, we replace f (x3) with z. A major difference between the

first and second-order reductions is in the treatment of z. Since we

have two dynamical variables x1 and x2, switching conditions for z
can depend on both of them. Accordingly, we will switch z not at

switching points as in the first reduction, but at switching curves

which, similarly to the first-order reduction, can be derived as

boundary curves for the trajectories of the DDE in a projection

onto the (x(t),x(t{t)) plane.

Let us denote the two values that the synthesis function switches

between as fmax and fmin. There are two boundary curves on the

(x,y) plane: a lower boundary that the curve must always stay to

the right of, and an upper boundary that the curve must always

stay to the left of. To calculate the lower boundary curve, we

notice that f (xt)wfmin for all xt. Since we are only dealing with

positive protein concentrations, any solution x(t) of (1) is greater

than a solution of

_xx�~fmin{g(x�), ð19Þ

assuming that x(0)~x�(0). We can say that

ðx�

y

dx

fmin{g(x)
~t ð20Þ

defines the solution x�(t) of (19) at time t with the initial condition

xt~x(t{t)~y. Accordingly, any solution of (1) such that

x(t{t)~x�(t{t)~y satisfies x(t)wx�(t). Thus, any trajectory

of (1) lies to the right of the curve defined by (20) on the (x,y)
plane. To calculate the upper boundary curve, we notice that

f (xt)vfmax for all xt. This means that any solution x(t) of (1) is

less than a solution of

_xx�~fmax{g(x�), ð21Þ

assuming that x(0)~x�(0). We can say that

ðx�

y

dx

fmax{g(x)
~t ð22Þ

defines the solution x�(t) of (21) at time t with the initial condition

xt~x(t{t)~y. Using similar reasoning as above, any trajectory

of (1) lies to the left of the curve defined by (22).

Because (20) and (22) define lower and upper boundary curves

respectively, we need to switch z when the image point (x,y)
crosses either of the boundary curves. If z~fmax when (x,y)
crosses a boundary curve, we will switch z to fmin; likewise, if

z~fmin when (x,y) crosses a boundary curve, we will switch z to

fmax.

Higher order reductions through adding additional dimensions

may be possible. However, while there are qualitative improve-

ments in the second-order reduction over the first-order reduction

(which will be discussed in the results), we did not find a method

for qualitatively improving the reduction in the space of higher

dimensions. Since our study is primarily concerned with the

qualitative characteristics of our models, we will not discuss higher-

dimension reductions further in this study.

Results

Bifurcation Curves
Using the methods outlined in the section on Bifurcation

Analysis, we calculate bifurcation curves for each of the

four models. For the two models with monotonic synthesis

Genetic Oscillatory Networks
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terms, (2) and (3), f 0(x�)~{a
nx�n{1

(1zx�n)2
. For the two models with

non-monotonic synthesis terms, (4) and (5), f 0(x�)~

a
1z(1{n)x�nt

(1zx�nt )2
. For the two models with saturable degradation,

(2) and (4), g0(x�)~
b

(1zx�)2
. For the two models with non-

saturable degradation, (3) and (5), g0(x�)~b. Substituting the

values specified for a and b into these equations and substituting

the resulting values into (10), we can calculate bifurcation curves

for each of the models.

As shown in Fig. 2, these bifurcation curves correspond to the

the birth of oscillations, as predicted. Thus, (10) at k~0 yields the

equation of a bifurcation curve representing a Hopf bifurcation.

Analysis of the Models
In this section, we generate time series for the four models and

discuss their behavior at different parameter values. In our

simulations, we find that for each model, there are parameters at

which the system produces regular, robust oscillations (see Fig. 3).

However, increasing n for the models with non-monotonic

synthesis, (4) and (5), causes their dynamics to become drastically

more complex and even chaotic.

To better understand the effects the parameters have on the

dynamics of the models, we generate two-dimensional bifurcation

diagrams for each of the models, observing how the period and the

amplitude of the models’ oscillations change with n and t. Our

simulations indicate that the period of the oscillations increases

linearly with t for all the models, as long as the parameter n is such

that the model does not exhibit high-dimensional chaotic behavior

(see Fig. 3). However, the same is not true for the amplitude of the

oscillations (see Fig. 4). The amplitude of the oscillations increases

with t for (2). In contrast, the amplitude of the oscillations is largely

constant for (3), despite increases in both n and t.

Significantly, Fig. 5 shows that the models with non-monotonic

synthesis exhibit high-dimensional, chaotic behavior for a large

range of parameter values, whereas those models with monotonic-

synthesis exhibit regular, periodic, robust oscillations for all values

of n and t at which oscillations exist. This lets us conclude that the

synthesis term determines whether the dynamics of genetic

oscillatory models governed by DDEs of the form (1) become

chaotic at high n and t.

Further analysis of the monotonic synthesis term f (x) provides a

clue regarding the reason the monotonic synthesis term yields

robust, regular oscillations. Figure 1A shows the behavior of f (x)
around x~1. For values of xw1, f (x)&0, whereas for values of

xv1, f (x)&1. For large values of n, in fact, f (x) behaves very

much like a stepwise function. This property of the monotonic

synthesis term, coupled with the fact that the models with the

monotonic synthesis term are robust make those models prime

candidates for reduction via the methods outlined in the section on

Reduction to Systems of ODEs.

Reduction of Systems with Monotonic Synthesis
As discussed in the section on Reduction to Systems of ODEs,

we can use the step-like nature of the monotonic synthesis term to

reduce the models with monotonic synthesis to systems of ODEs.

Saturable degradation. We begin the first-order approx-

imation of (2) by writing it in the form of (15):

Figure 2. Two-dimensional diagrams showing the dependence of the period of oscillation of the models on n and t, along with
bifurcation curves in blue. The top two diagrams represent the models with monotonic synthesis, while the bottom two diagrams represent the
models with non-monotonic synthesis. Similarly, the left two diagrams represent the models with saturable degradation, while the right two
diagrams represent the models with non-saturable degradation. From these diagrams, it is apparent that the models with non-monotonic synthesis
are not robust at high n and t, while the models with monotonic synthesis are robust at high n and t. Note that the scales of the x-axes and color axes
vary for each diagram. b~1 for all four models, a~1 for the models with saturable degradation, and a~2 for the models with non-saturable
degradation. a and b are chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g002
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_xx~z{
bx

1zx
ð23Þ

By substituting bx=(1zx) into (16) and (17), we can calculate

the switching points, smax and smin respectively, which satisfy the

following equations:

smax : smax~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z2at
p

{1 if a~b

smax{1
a{b { b

(a{b)2
ln az(a{b)smax

2a{b

� �
~t if a=b

smin : 1
b ln(smin)z

smin
b ~ 1

b {t for all a

ð24Þ

Using these switching points, our simulations (see Fig. 6A) show

that the first-order reduction approximates (2) well but does not

retain a dependence of the period of oscillation on n (see Fig. 7A).

For the second-order approximation, we begin by writing (2) as

a system of ODEs x and y, and switch variable z:

_xx ~
a

1zyn
{

bx

1zx

_yy ~z{
by

1zy

ð25Þ

where x represents x in the original DDE, y represents xt in the

original DDE, and z represents f (xt). For this system, we let

fmax~a and fmin~0, since it is not possible to calculate the

maximum and minimum of the synthesis function any more

precisely. We thus let zmax~a and zmin~0. Substituting

bx=(1zx) for g(x) and zmin for fmin in (20), expanding, and

substituting x for x� to map the curve to the (x,y) plane yields the

following lower boundary curve:

1

b
ln

x

y
z

1

b
(x{y)zt~0 ð26Þ

Substituting into and expanding (22) yields the following upper

boundary curve:

Figure 3. Various time series of the four models. A: Time series for the models with monotonic synthesis at n~7,t~7. The model with
saturable degradation is in red, and the model with non-saturable degradation is in green. B: Time series for the model with non-monotonic
synthesis and saturable degradation at n~5,t~5 in red and at n~8,t~10 in green. Our simulations indicate that the models with monotonic
synthesis stay robust at high n and t, whereas the models with non-monotonic synthesis become chaotic at high n and t. b~1 for all models, a~1
for the models with saturable degradation, and a~2 for the model with non-saturable degradation. a and b chosen to keep the equilibrium state x�

at x�~1.
doi:10.1371/journal.pone.0090666.g003

Figure 4. Two-dimensional diagrams showing the dependence of amplitude of oscillations of the models with monotonic synthesis
with n and t, along with bifurcation curves in blue. A: the model with saturable degradation. B: the model with non-saturable degradation.
Notice that the amplitude of the model with saturable degradation increases with t, whereas the amplitude of the model with non-saturable
degradation saturates. b~1 for both models, a~1 for the model with saturable degradation, and a~2 for the model with non-saturable
degradation. a and b are chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g004
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1

2
(x2{y2)z(x{y){t~0 if a~b

(x{y)(a{b){b ln (ax{bxza)=(ay{byza)ð Þ½ �=(a{b)2 if a=b

8<
: ð27Þ

Using these boundary curves, our simulations (see Figs. 6A and

8A) indicate that (25) approximates (2) well for sufficiently high n.

Furthermore, we find that the second-order reduction adds a

correct dependence of the period on n (7A).

Non-saturable degradation. To produce the first-order

approximation for (3), we again begin by writing it in the form

of (15):

_xx~z{bx ð28Þ

By substituting bx into (16) and (17), we can calculate the upper

and lower boundaries, smax and smin respectively, which satisfy the

following equations:

smax ~
zmax

b
{

zmax{b

b
e{bt

smin ~
zmin

b
z

b{zmin

b
e{bt

ð29Þ

Using these switching points, our simulations (see Fig. 6B) show

that the first-order reduction approximates (3) well. Once again,

however, the first-order reduction provides no dependence of the

period on n (see Fig. 7B).

For the second-order approximation, we again begin by writing

(3) as a system of ODEs x and y, and switch variable z:

_xx ~
a

1zyn
{bx

_yy ~z{by

ð30Þ

where x represents x in the original DDE, y represents xt in the

original DDE, and z represents f (xt) in the original DDE.

Figure 5. Two-dimensional diagrams showing the dependence of the correlation dimension of the time series obtained from the
models with non-monotonic synthesis on n and t, along with bifurcation curves in blue. A: the model with saturable degradation. B: the
model with non-saturable degradation. The diagrams indicate that for high n and t, the models with non-monotonic synthesis exhibit high-
dimensional, chaotic behavior. Note that the color axes vary between the two diagrams. b~1 for all models, a~1 for the models with saturable
degradation, and a~2 for the model with non-saturable degradation. a and b chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g005

Figure 6. Time series of the two models with monotonic synthesis, along with their first- and second- order reductions, at t~7 and
two different values of n (n~7 for A, n~10 for B). A: the model with saturable degradation. B: the model with non-saturable degradation. In
both figures, the red curve is the original model, the green curve is the first-order reduction, and the blue curve is the second-order reduction. For
both models, both reductions approximate the originals well. However, the periods of the first-order reductions are slightly off from the originals,
whereas the periods for the second-order reductions are much closer. b~1 for all models, a~1 for the models with saturable degradation, and a~2
for the model with non-saturable degradation. a and b chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g006

(27)
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For the second-order reduction, we let z switch between two

values that are close to 0 and a but are significantly different from

them. Recall that fmax and fmin are the maximum and minimum

values of the synthesis function f (xt)~a=(1zxn
t ). Because of the

form of (30), x, and therefore xt as well, are bounded from above

by the maximum value of f (xt)=b and from below by the

minimum value of f (xt)=b. The maximum value of f (xt) is in turn

determined by the minimum value of xt, and the minimum value

of f (xt) is determined by the maximum value of xt. Therefore,

fmax and fmin are the solutions of the following system:

fmax~
a

1z fmin=bð Þn

fmin~
a

1z fmax=bð Þn
ð31Þ

We numerically calculate fmax and fmin and let zmax~fmax and

zmin~fmin. Substituting bx for g(x) and zmin for fmin in (20),

expanding, and substituting x for x� to map the curve to the (x,y)
plane yields the following lower boundary curve:

1

b
ln

zmin{bx

zmin{by

����
����zt~0 ð32Þ

Substituting into and expanding (22) yields the following upper

boundary curve:

1

b
ln

zmax{bx

zmax{by

����
����zt~0 ð33Þ

Using these boundary curves, our simulations indicate (see

Figs. 6B and 8B) that the second-order reduction again

approximates (3) well for sufficiently high n. We also again find

that the second-order reduction adds a correct dependence of the

period on n (see Fig. 7B).

Figure 7. Dependence of the period on n, with t fixed at 5. A: the model with saturable degradation. B: the model with non-saturable
degradation. In both figures, the red curve is the period of the original model, the blue curve is the period of the first-order reduction, and the green
curve is the period of the second-order reduction. For both pictures, the second-order reduction reproduces the dependence on the period on n for
sufficiently large n. b~1 for all models, a~1 for the models with saturable degradation, and a~2 for the model with non-saturable degradation. a
and b chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g007

Figure 8. Phase portraits of the two models with monotonic synthesis, along with their second-order reductions to systems of
ODEs, at n~7,t~7. A: the model with saturable degradation. B: the model with non-saturable degradation. In both figures, the red curve is the
original model, the green curve is the second-order reduction, and the blue dotted and black curves are switching curves. The closeness with which
the second-order reductions approximate the originals shows that the second-order reduction technique is valid. Note that the x-axes for the two
graphs are different for better resolution. b~1 for all models, a~1 for the models with saturable degradation, and a~2 for the model with non-
saturable degradation. a and b chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g008
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For both models, increasing the order of the reduction from first

to second-order introduces a qualitative improvement in the

approximation. In neither of the first-order reductions is there a

dependence of the period of oscillation on n. In fact, as Fig. 7

shows, both first-order reductions underestimate the period for all

n. However, both second-order reductions provide an asympto-

tically correct dependence of period on n for large n (about nw6
for (2) and nw10 for (3)). This improvement confirms that the

second-order reduction is an approximation of a higher precision

than the first reduction.

Dimension Analysis of Non-Robust Models
As discussed before, (4) and (5) display high-dimensional

dynamics at increased values of n and t. The dependence of the

correlation dimension on parameters n and t is shown in Fig. 5.

We hypothesize that the dimension of the dynamics should be

related to the number of conjugate pairs of characteristic numbers

with positive real part. Our reasoning is largely geometrical. When

the first pair of conjugate pairs of characteristic numbers crosses

the imaginary axis, a limit cycle in one subsystem is born. When

additional conjugate pairs cross the imaginary axis, limit cycles are

born in additional dimensions. Since the motion of the trajectory is

a result of the motion in all subsystems, additional conjugate pairs

thus correspond to more complex behavior. In addition, because

(11) gives the number of pairs k of characteristic numbers p with

positive real part, it should be related to the dimension.

We compute (11) for (4) and (5), which yields the following two

equations, respectively:

k~
t

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(1z(1{n)x�n)

(1zx�n)2

� �2

{
b

(1zx�)2

� �2
s

:{

cos{1 b(1zx�n)2

a(1z(1{n)x�n)(1zx�)2

 !
ð34Þ

k~
t

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(1z(1{n)x�n)

(1zx�nt )2

 !2

{b2

vuut :{

cos{1 b(1zx�n)2

a(1z(1{n)x�n)

 !
ð35Þ

If we take the above two equations and compare them to the

calculated correlation dimensions of their respective models, we

find that the slopes dk
dt

of (34) and (35) match the change in the

correlation dimension with respect to t. In Fig. 9, we take the lines

given by the above two equations and manually adjust their offsets

to show this.

Discussion

We have developed two novel techniques for analyzing DDEs: a

reduction of a DDE to a system of ODEs and an equation giving

the rate of change of dimension. We have used these two

techniques to analyze a family of four DDEs, each with a different

combination of synthesis and degradation terms. In doing so, we

have determined criteria for robustness as well as the roles of the

synthesis and degradation terms within the family of four DDEs.

Our method for reducing models with step-like synthesis terms

is, to the best of our knowledge, the first of its kind. The reduction

allows us to analyze DDEs easier, for the reduced systems are only

two- or three-dimensional, whereas the original DDEs are

infinitely-dimensional. In particular, it allows us to make

conclusions about the dynamics of the original models at high n
and t, parameter ranges at which complex dynamics are expected

to occur. Both reductions are robust at high n and t, even though

the second-order reduction has three variables and could therefore

be chaotic. This leads us to believe that reducibility corresponds to

robustness.

Our reduction method does have some limitations, however. In

the first-order reduction, there is no accurate dependence of the

period on n, and the reduction tends to underestimate the period

for low values of n. Our second-order reduction does introduce a

dependence of the period on n, but it tends to overestimate the

period for low values of n. This suggests that potentially better

higher order reductions may exist if more precise boundary curves

can be derived in the space of a higher dimension.

Our analytical dimension estimates are, to the best of our

knowledge, the first analytical method for estimating the rate at

which the dimension of a system grows. This is significant because

numerical estimates of dimension require exponentially longer

time for accurate calculation as the dimension grows [25].

Additionally, numerical estimates have a tendency to fail at high

dimensions (see Fig. 9). Our analytical estimates do not suffer from

these numerical limitations. Our findings also predict that the

dimension of the models with the non-monotonic synthesis term

grows linearly with t.

A recent study has concluded that models with negative

feedback are robust and hypothesized that models with feedback

that switches its sign (called ‘‘mixed-mode feedback’’ in the study

in question) might not be robust [17]. Our results support this. The

models with the monotonic synthesis term, which corresponds to

negative feedback, produce robust oscillations at lower levels of n
and sustain them for high levels of n and t. On the other hand, the

models with the non-monotonic synthesis term, which corresponds

to feedback that switches its sign near 1, require higher levels of n
to produce oscillations and become chaotic at high n and t.

Furthermore, the models with the monotonic synthesis term are

reducible, whereas the models with the non-monotonic synthesis

term are not reducible. Thus, our findings strongly imply that

models with exclusively negative feedback are robust, whereas

models with mixed-mode feedback are not robust.

Our results also characterize the role that the degradation term

plays in the models. In our simulations of models with the

monotonic synthesis term, the amplitude in the model with

saturable degradation increases with t, whereas the amplitude in

the model with non-saturable degradation does not increase with

t. Although this phenomenon does not apply the models with the

non-monotonic synthesis term, the average amplitude in the

model with saturable degradation and non-monotonic synthesis is

greater than the average amplitude in the model with non-

saturable degradation and non-monotonic synthesis. Furthermore,

through examining Fig. 2, it is clear that the bifurcation curves of

the models with non-saturable degradation are steeper than those

of the models with saturable degradation. Thus, we conclude that

a non-saturable degradation term both damps oscillations and

narrows the range of values of n that can produce oscillations.

(34)

(35)
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The bifurcation curves indicate that models of the form (1)

require at least some degree of cooperativity to produce

oscillations. Furthermore, some models become chaotic as the

levels of cooperativity increase and cross further bifurcation curves

tk that correspond to k, the number of conjugate pairs of

characteristic exponents with positive real part, being greater than

or equal to 1. Thus, our results indicate that a certain degree of

cooperativity is required for robust oscillations, but greater

cooperativity can lead to chaos.

Our findings have implications for the role of feedback in

natural genetic oscillators. Certain oscillators, such as the

Circadian Clock, remain regular against a wide range of

conditions [28,29]. Since the monotonic synthesis term corre-

sponds to negative feedback, and negative feedback results in

robust oscillations at both low values of n and high levels of n and

t, it is likely that natural genetic oscillators with highly-regular

periods have monotonic promoters with negative feedback.

Conversely, it is known that certain oscillators, such as heart rate

or cell cycle, have slightly irregular period and near-constant

amplitude. Previous research has shown these oscillators require

both positive and negative feedback [30]. We have found that

adding delay to oscillators with positive and negative feedback (i.e.,

having the non-monotonic synthesis term, see Fig. 1B) results in

highly chaotic behavior. Thus, it is likely that any delay in heart

rate and cell cycle oscillators is not large enough to play a

significant role.

Finally, our findings have implications for the role of long chains

of reactions, slow nuclear transport, etc, in natural genetic

oscillators. Such processes take time and are thus equivalent to

the delay in our models [17]. For oscillators with monotonic

synthesis (and thus robust oscillations), such processes have

exclusive control over the period of oscillation. Furthermore, for

oscillators with monotonic synthesis and saturable degradation, the

processes also have control over the amplitude of oscillations. On

the other hand, for oscillators with non-monotonic synthesis, our

analytic dimension lines indicate that the delays have direct

control over the dimension of the model.

Conclusions and Future Work

Our project has answered a number of questions concerning

DDEs, but they have also highlighted a number of new research

directions which could lead to further understanding of genetic

oscillatory networks.

We have determined the effects the synthesis and degradation

terms have on the end dynamics of the models, but understanding

the fundamental mechanisms behind those effects could result in

greater understanding of the models as a whole. For example, we

Figure 9. Diagrams showing the dependence of the numerically-calculated dimension of the trajectory of the models with non-
monotonic synthesis on t, along with the analytical dimension lines, for different n. The set of diagrams on the top corresponds to the
model with saturable degradation, and the set of diagrams on the bottom corresponds to the model with non-saturable degradation. The diagrams
indicate that the slope of the analytical dimension lines match the slope of the numerically-calculated dimension points. It is important to note that
the numerical estimates fail for high dimension, as evidenced by the trailing points in the bottom set of diagrams. The analytical dimension lines have
no such limitation. b~1 for all models, a~1 for the models with saturable degradation, and a~2 for the model with non-saturable degradation. a
and b chosen to keep the equilibrium state x� at x�~1.
doi:10.1371/journal.pone.0090666.g009

Genetic Oscillatory Networks

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e90666



have determined that the dimension of the systems with non-

monotonic synthesis grows with t and that the dimension of the

systems with monotonic synthesis does not. We do not yet have a

compelling explanation for this, but further analysis of the

synthesis and degradation terms might reveal the underlying

reason. Next, we have empirically determined that the reductions

of the robust models do not become chaotic, but we have not

conducted a rigorous mathematical proof. Such a proof would

likely involve taking a Poincáre section along one of the switching

boundaries and could result in interesting new information about

the reductions [18]. Similarly, the analytic dimension lines, which

give the rate of change of dimension, are only the first step to

having an analytical understanding of chaos in DDEs. Deriving a

formula for the offsets of our analytical dimension lines would

result in a complete analytical method for estimating dimension.

In future projects, we would like to explore some of these research

directions.

Author Contributions

Analyzed the data: DF PT AK YIM. Wrote the paper: DF PT. Provided

useful discussions: DF PT AK YIM. Wrote the original software used in

analysis: DF.

References

1. Ko C, Takahashi J (2006) Molecular components of the mammalian circadian

clock. Hum Mol Genet 15: R271–R277.
2. Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100:

71–78.

3. Ma L, Wagner J, Rice J, Hu W, Levine A, et al. (2005) A plausible model for the
digital response of p53 to dna damage. P Natl Acad Sci USA 102: 14266–14271.

4. Tsaneva-Atanasova K, Zimliki C, Bertram R, Sherman A (2006) Di_usion of
calcium and metabo- lites in pancreatic islets: Killing oscillations with a

pitchfork. Biophys J 90: 3434–3446.

5. Kaern M, Menzinger M, Satnoianu R, Hunding A (2002) Chemical waves in
open ows of active media: Their relevance to axial segmentation in biology.

Faraday Discuss 120: 295–312.
6. Pourquie O (2003) The segmentation clock: Converting embryonic time into

spatial pattern. Science 301: 328–330.
7. Atkinson M, Savageau M, Myers J, Ninfa A (2003) Development of genetic

circuitry exhibiting toggle switch or oscillatory behavior in escherichia coli. Cell

113: 597–607.
8. Gardner T, Cantor R, Collins J (2000) Construction of a genetic toggle switch in

escherichia coli. Nature 403: 339–342.
9. Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional

regulators. Nature 403: 335–338.

10. Becskei A, Serrano L (2000) Engineering stability in gene networks by
autoregulation. Nature 405: 590–593.

11. Sprinzak D, Elowitz M (2005) Reconstruction of genetic circuits. Nature 438:
443–448.

12. Hasty J, McMillen D, Collins J (2002) Engineered gene circuits. Nature 420:
224–230.

13. Kholodenko B (2006) Cell-signaling dynamics in time and space. Nat Rev Mol

Cell Bio 7: 165–176.
14. Tyson J, Chen K, Novak B (2003) Sniffers, buzzers, toggles and blinkers:

Dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol
15: 221–231.

15. Hasty F, Isaacs F, Dolin M, McMillen D, Colllins J (2001) Designer gene

networks: Towards fundamental cellular control. Chaos 11: 207–220.

16. Purcell O, Savery N, Grierson C (2010) A comparative analysis of synthetic

genetic oscillators. J R Soc Interface 7: 1503–1524.
17. Novak B, Tyson J (2008) Design principles of biochemical oscillators. Nat Rev

mol Cell Bio 9: 981–991.

18. Strogatz S (1994) Nonlinear Dynamics and Chaos. Boulder, CO: Westview
Press.

19. Mackey M, Glass L (1997) Oscillation and chaos in physiological control
systems. Science 197: 287–289.

20. Martin A, Ruan S (2001) Predeator-prey models with delay and prey harvesting.

J Math Biol 43: 247–267.
21. Raghothama A, Narayanan S (2002) Periodic response and chaos in nonlinear

systems with para-metric excitation and time delay. Nonlinear Dynam 27: 341–
365.

22. Smolen P, Baxter D, Byrne J (2002) A reduced model clarifies the role of
feedback loops and time delays in the drosophila circadian oscillator. Biophys J

83: 2349–2359.

23. Stricker J, Cookson S, Bennett M, Mather W, Tsimring L, et al. (2008) A fast,
robust and tunable synthetic gene oscillator. NAture 456: 516–520.

24. Lewis J (2003) Autoinhibition with transcriptional delay: A simple mechanism
for the zebrafish somitogenesis oscillator. Current Biology 13: 1398–1408.

25. Hegger R, Kantz H, Schreiber T (1999) Practical implementation of nonlinear

time series methods: The TISEAN package. Chaos 9: 413–435.
26. Abramowitz A, Stegun IA, editors (1972) Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. New York: Dover
Publications.

27. Theiler J (1990) Estimating fractal dimension. Journal of the Optical Society of
America A 6: 1055–1073.

28. Pittendrigh C (1954) On temperature independence in the clock system

controlling emergence time in drosophila. P Natl Acad Sci USA 40: 1018–1029.
29. Hastings J, Sweeney B (1957) On the mechanism of temperature independence

in a biological clock. P Natl Acad Sci USA 43: 804–811.
30. Tsai T, Choi Y, Ma W, Pomerening J, Tang C, et al. (2008) Robust, tunable

biological oscillations from interlinked positive and negative feedback loops.

Science 321: 126–129.

Genetic Oscillatory Networks

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90666


