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The importance of the investigation of nonlinear dynamical properties (NDPs) of the
atmospheric photochemical systems (PCSs) was demonstrated in ref. 1 and 2 (A. M. Feigin
and I. B. Konovalov, J. Geophys. Res., 1996, 101 (D20), 26038 ; 1. B. Konovalov, A. M.
Feigin and A. Y. Mukhina, J. Geophys. Res., 1999, 104 (D3), 3669). The only known way
to study NDPs of any natural dynamical system (including atmospheric PCSs) is to
construct a mathematical model of the system. The key point here is adequacy of the
NDPs of the constructed model to the system observed. We propose a new approach to
construction of such an adequate model for systems manifesting nonstationary chaotic
behaviour and describe an algorithm based exclusively on nonlinear dynamical analysis of
the observed time series (TS) without invoking any a priori knowledge about the
properties of the system observed. Potentialities of the algorithm are demonstrated with
the aid of a computer model of the mesospheric PCS. The duration of the ““observedÏÏ TS
is limited so that the system demonstrates only oneÈchaoticÈtype of behaviour, without
any bifurcations throughout the observed TS. The proposed algorithm enabled us to make
a correct prognosis of bifurcation sequences and calculate probabilities to reveal, at the
time instant of interest, predicted regimes of the systemÏs behaviour for times much greater
than the length of the initial TS.

1. Introduction
1.1.

Atmospheric photochemical systems (PCSs) are ensembles of interrelated chemical processes,
including photolysis processes, that occur in the EarthÏs atmosphere and a†ect dynamics of minor
gaseous constituents of the atmosphere (i.e., all chemical compounds present in the atmosphere,
excluding molecular nitrogen and oxygen). The processes and their characteristics di†er appre-
ciably in di†erent regions of the atmosphere. The following PCSs are typically distinguished : PCS
of the boundary layer, of the free troposphere, of the polar lower stratosphere, of the mesosphere,
and others. Photochemical processes are among the principal elements in the chain of global
atmospheric processes deÐning the thermal structure of the EarthÏs atmosphere, its radiation
balance and global circulation. Analysis of PCS evolution is of key importance for investigation of
changes in the state of the ozone layer, climatic consequences of civilization (in particular, the
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greenhouse e†ect), control of the chemical composition of the air in densely populated regions and
in regions of intensive plant cultivation, etc.

1.2.

One of the principal goals in investigating the problems mentioned above and many others is
prognosis of the expected changes in the characteristics of the processes and phenomena observed
in the atmosphere today. Nonlinearity is the inherent property of atmospheric photochemistry.
Therefore, knowledge of NDPs of atmospheric PCSs, namely, types of possible regimes of behav-
iour for di†erent combinations of parameter values, is of principal importance for construction of
an adequate prognosis of phenomena in which photochemistry plays a signiÐcant role. Firstly, it
allows for prognosis of possible (due to parameter trends) switchings of the system between
regimes of behaviour co-existing in its phase space under current parameter values. Secondly,
knowledge of NDPs enables one to foresee bifurcations (disappearance of the existing regimes and
birth of the new ones) and evaluate their consequences.

A general approach to the study of NDPs is well known and consists in investigation of the
structure of the phase space of the system and analysis of changes occurring in this structure when
the values of control parameters vary, in other words investigation of the structure of the space of
the parameters of the system. Apparently, this approach implies that there is a deÐnite mathemati-
cal model of the system under consideration.

A traditional method of modellingÈconstruction of a model on the basis of ““Ðrst principles ÏÏÈ
demands general understanding of the origin of the processes playing the main role in the studied
phenomenon, as well as speciÐc knowledge about the composition of the ““ensemble ÏÏ of processes
of ““ requiredÏÏ origin. The generally adopted method of veriÐcation of the ““Ðrst principles ÏÏ models
is comparison of results of modelling with the observed ones (and earlier observed results) by
quantitative characteristics of the phenomenon under consideration. Clearly, in terms of prognosis
of the evolution of a nonlinear dynamic system (DS), such veriÐcation is sound only under the
condition of revealing the bifurcations that occurred in the course of observations and were repro-
duced by the model. However, for ““natural ÏÏ DSs another situation is typical, when, in spite of the
““ intrinsic ÏÏ nonlinearity of such systems and nonstationarity of the processes running in them, no
bifurcations occur during the observation time. In this case, the traditional method of veriÐcation
can only testify to adequate reproduction by the model of the current type of behaviour of the
system, giving no guarantees as regards prognosis of possible future bifurcations. Indeed, satisfac-
tory quantitative adequacy of the model of the observed evolution can be attained by either taking
into account or neglecting processes that introduce into the model qualitatively di†erent NDPs. A
““qualitative ÏÏ error in creating the ““Ðrst principles ÏÏ model of such complex and insufficiently
studied DSs as various natural systems is highly probable.

1.3.

The above is absolutely true for atmospheric PCSs. A classical mathematical model of an atmo-
spheric PCS is a set of equations of chemical kinetics, complicated to a greater or lesser extent by
contributions from processes of a non-chemical nature. In the simplest case, such a model is a box
in which ““correctly ÏÏ selected chemical reactions proceed. This model can be written in the form of
a system of Ðrst-order ordinary di†erential equations for concentrations of minor gaseous constit-
uents of the atmosphere :

dX
i

dt
\ f

i
(XŠ , AŠ ), XŠ \ MX

i
N
i/1N , AŠ \ MA

j
N
j/1M . (1)

Here, is the concentration of the chemical constituents which are part of the PCS, are theX
i

A
jparameters determining the character of the evolution of the system, and t stands for time. The

functions on the right-hand side of eqn. (1) describe the sources and sinks of the corre-f
i
(XŠ , AŠ )

sponding chemical components ; and are the nonlinear functions of the arguments The localf
i

XŠ .
character of the function means that model (1) includes only chemical (and photochemical)f

i
(XŠ )

reactions proceeding in the atmosphere. Such box models are usually part of complex models
describing more or less adequately the interrelated atmospheric processes (chemical processes,
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heat and mass transfer, radiation transfer) characterised by deÐnite temporal and spatial scales as
a whole.

One of the main features of atmospheric PCSs is their nonstationarity. Conditions, that are
external relative to photochemical processes, vary in the course of time for di†erent reasons, both
of natural and anthropogenic nature. Correspondingly, mathematical models of atmospheric
PCSs of the form (1) are nonautonomous ; the control parameters entering these models are func-
tions of time.

1.4.

The essential inÑuence exerted by processes of a non-chemical nature upon variations of concen-
trations of chemical components signiÐcantly impedes clariÐcation of the role of NDPs of
““chemical ÏÏ origin in the observed phenomena. Nevertheless, today we are in a position to speak
about possible manifestations of a multistable box model of a boundary layer PCS and multi-
stability induced bifurcations of the birth/disappearance of a pair of ““additional ÏÏ equilibrium
states in the change of the so-called regimes with high and low concentration of (a family ofNO

xodd nitrogen) in the boundary layer of the troposphere.3,4¤ Another phenomenon that may be
caused by NDSs of a mesospheric PCS is multiple ampliÐcation of the so-called quasi-2-day oscil-
lations of di†erent characteristics (zonal and meridional wind amplitudes, temperature, etc.) that
occur in the upper mesosphere and thermosphere in the summer season.” The corresponding
bifurcation of period doubling of a limit cycle, that corresponds to ““conventional ÏÏ oscillations of
concentrations of chemical components with a period of one day, occurs with variation of control
parameters, such as water vapour concentration, coefficient of vertical eddy di†usion and tem-
perature.6h9

Of special interest is manifestation of NDPs of a polar lower stratospheric PCS in formation of
an Antarctic ozone hole. This phenomenon Ðrst revealed in 198510 could not be explained within
the scope of the known models and, consequently, had not been predicted by them (cf. e.g., ref. 11).
It did not take much time to understand that the cause of the error was neglect of heterogeneous
chemical reactions with participation of particles of polar stratospheric clouds.12,13 One of the
properties of these reactions, that is most important in terms of construction of an adequate
prognosis, is a special type of nonlinearity which they introduce into equations of chemical
kinetics. It was shown recently1,2 that the inÑuence of heterogeneous reactions on the phase space
structure of a polar lower stratospheric PCS increased as one of the control parameters
(concentration of inorganic chlorine) increased and resulted in a sequence of unpredicted bifur-
cations in the behaviour of Antarctic PCS in the 1980s. Note that, in the course of formation of an
ozone hole, the evolution of a given PCS depends weakly on processes of non-chemical origin, so
that the box model of the form (1) reproduces the key quantitative characteristics of the phenome-
non to a satisfactory accuracy. Therefore, we have strong arguments to believe that NDSs of the
polar lower stratospheric PCS played a decisive role in the appearance of the Antarctic ozone hole
and can cardinally a†ect its future evolution.

1.5.

The above allows us, Ðrstly, to speak about the need to investigate NDPs of atmospheric PCSs in
constructing a prognosis of evolution of di†erent atmospheric phenomena. Secondly, the use for
this purpose of ““Ðrst principle ÏÏ models is fraught with prognostic error that is possible even in
modelling future behaviour of ““ long-livedÏÏ systems in nature that demonstrate stable evolution.

We propose a basically new method of constructing mathematical models of di†erent systems
existing in nature, intended for investigation of their NDPs and long-range prognosis of their

¤ The rate of emission into the atmosphere of free radicals is the control parameter whose seasonal variations
may lead to these bifurcations. Study of this phenomenon is of practical importance : the two mentioned
regimes correspond to essentially di†erent (by two orders of magnitude and more) boundary ozone concentra-
tions, increased values of which are the cause of exacerbation of many diseases in humans, lead to decreased
productivity of crop and forest reproductivity, and so on.
” A fairly detailed analysis of experimental data was given in ref. 5 for more than 20 years of observations.
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qualitative behaviour. The method is based on analysis of the observed time series and is most
e†ective for systems demonstrating nonstationary chaotic dynamics. This behaviour is typical, in
particular, for various systems determining the occurrence of paramount processes in the EarthÏs
atmosphere and hydrosphere (evolution of the ozone layer,14 behaviour of the concentrations of
chemical components within the boundary layer,15 large-scale variations of surface temperature of
the tropical PaciÐc Ocean (the El phenomenon)16,17). Note that even today the scope of realNin8 o
systems demonstrating chaotic dynamics ranges from the above enumerated atmospheric and
atmosphericÈoceanic processes to diverse systems in living organisms18,19 and tectonic activity20
and has a tendency to expand as modern methods of nonlinear dynamical analysis are applied to
new data bases of di†erent nature.

We will address the case when a chaotic time series (TS) only is available, and there is no
additional information about the dynamic system that generated it. As was said above, our goal is
to construct a model that would be adequate in its NDPs to the observed system. In other words,
it must not only reproduce the observed evolution of the system but also allow us to predict
qualitative changes in the systemÏs behaviour (bifurcations). We will refer to such models as prog-
nostic ones. We will also suppose that no bifurcations occur in the course of the observed time
series and the system demonstrates only oneÈchaoticÈtype of behaviour.

Because the change in the type of behaviour of the system is a consequence of the variation of
control parameters, the time series generated by such a system is nonstationary. Obviously, non-
stationarity of the observed TS can be revealed only if the corresponding process is characterised
by at least two, strongly di†ering timescales.° This lays the basis for two hypotheses that are
natural in terms of physics.

Hypothesis 1. The observed nonstationary time series is generated by a weakly nonautonomous
““ fast ÏÏ dynamical subsystem, the parameters of which vary slowly on characteristic timescales of
the evolution of its dynamical variables.

Hypothesis 2. Evolution of a ““ slowÏÏ subsystem, interaction with which is the cause of nonauto-
nomy of the ““ fast ÏÏ subsystem, remains unchanged in the not too remote future of the ““ slowÏÏ
subsystem. By the ““not too remote future ÏÏ of the slow subsystem we mean a time interval of the
order of several lengths of the observed TS during which changes of the parameters of the fast
subsystem are relatively small.

Interpretation of nonstationarity of TS as nonautonomy of the observed DS (hypothesis 1) is
meaningful when the time dependence of parameters of the system is known. The second hypothe-
sis allows one to reconstruct the trends of parameters of a fast subsystem over a sufficiently
extended time interval.

Productivity of this approach was Ðrst demonstrated in ref. 24 and 25, where an algorithm
based on the hypotheses formulated above was proposed for construction of prognostic models of
systems demonstrating low-dimensional chaotic dynamics. The potential of this algorithm was
illustrated by means of computer models. A computer modelled nonstationary chaotic series was
used to construct a prognostic model that was employed for constructing prognosis of bifur-
cations of the ““observedÏÏ system. The algorithm allowed us to predict correctly a sequence of
bifurcations and determine other characteristics of prognosis for times much greater than the
length of the initial series.

In Section 2 of this paper we propose a much more universal algorithm that enables one to
create prognostic models for both low- and high-dimensional dynamical systems. In Section 3 the
new algorithm is used for construction of the prognostic model of a mesospheric PCS employing a
nonstationary chaotic time series generated by a computer model of the system. We also consider
criteria for choosing technical parameters of a prognostic model. In the concluding section, results
of the present research are formulated and possible further development of the proposed approach
and its application to analysis of real time series is discussed.

° Several methods for revealing nonstationarity of TS were proposed (see, e.g., ref. 21È23). Still another is part
of the algorithm that will be described in this paper.
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2. Algorithm of constructing a prognostic model by observed time series

2.1.

The proposed algorithm can be represented as the following step-by-step procedure :
(1) The phase space of the observed system is reconstructed.
(2) A prognostic model is elaborated in the form of a discrete time map written in an analytic

form.
(3) A covariance matrix of parameters of the prognostic model is found, and parameter trends

and their covariance matrix are extrapolated to the ““ future ÏÏ (outside the scope of the initial TS).
(4) A bifurcation prognosis is constructed : a bifurcation sequence is predicted and the time

dependence of the probability to reveal the predicted regimes of the systemÏs behaviour is deter-
mined.

Methods of phase space reconstruction have been discussed in many papers (see, for instance,
ref. 26 and the literature cited therein). Therefore, in Section 2.2 we will restrict ourselves to a brief
consideration of the Ðrst step of the procedure and to some comments on its features within the
framework of the proposed algorithm. The next step will be quite novel, which distinguishes the
proposed algorithm from that proposed earlier24,25 for elaboration of prognostic models of low-
dimensional DSs. This step will be addressed in more detail in Section 2.3. Steps 3 and 4 do not
di†er ““ ideologically ÏÏ from the corresponding steps of the ““ low-dimensional ÏÏ algorithm. Neverthe-
less, bearing in mind the key importance of these steps in construction of bifurcation prognosis
and aiming at giving the reader a complete picture of the proposed approach we will address in
more detail the most signiÐcant aspects of the corresponding operations in Sections 2.4 and 2.5.

2.2.

In this work, as in ref. 24 and 25, the model of the observed DS is constructed in the form of a
discrete time map. In conformity with the choice of a discrete model, the vector of state in the
reconstructed phase space at the time instant is speciÐed by co-ordinates with delays :27t

k
YŠ (t

k
)\ My(t

k
), y(t

k
] *t), . . . , y(t

k
] (dE [ 1)*t)N, (2)

where y(t) is the initial time series, is the dimension of phase space (minimal embeddingdEdimension), and *t is the delay time determined, for example, from the condition of the Ðrst
minimum of the mutual information function.28 The value of was calculated by the ““ falsedEneighbours ÏÏ method.26,29

Further, in the reconstructed phase space we chose the Poincare section for which we used the
zero of the second co-ordinate As a result, a new data seriesy

k
(2)\ y(t

k
] *t)\ 0. MXŠ

j
\ YŠ (t

j
)N

j/1J
(where are the instants at which the reconstructed phase trajectory intersects the Poincaret

jsection in a deÐnite direction) was obtained from the initial TS. It is worthy of note that canMXŠ
j
N

be determined to a Ðnite accuracy that depends on the discretization scale of the initial TS.

2.3.

The model was constructed in the form of a certain function f (.) approximating the discrete time
map:

x
j
\ f (x

j~1, . . . , x
j~N

; t
j~1 ; k– ) ] m

j
, (3)

f (x
j~1, . . . , x

j~N
; t

j~1 ; k– )\ f0(xj~1, . . . , x
j~N

; k– 0) ] b– Æ t
j~1 Æ f –1(xj~1, . . . , x

j~N
; k– ). (4)

Here, N is the order of mapping, is the error of approximation, and ½m
j

k– \ Mk– 0 , k– 1, b– N
is a set of parameters of the model. The evolution operator was written in the form (4)RKM0`M1`BL

employing the hypotheses 1 and 2 formulated in Section 1.5. Namely, the slow dependence on
time t of parameters of the observed DS and small relative variation of their values over the time
interval of about several lengths of the initial TS allowed us to describe nonautonomy as a time-
dependent correction to the autonomous part of the model In other words, slow-[b– Æ t Æ f –1(.)] f0(.).ness of the dependence of evolution operator on time means the possibility of its Taylor series
expansion in time with a restricted number of terms. In this work we took into account only the
linear terms of the expansion. Apparently, this approximation is equivalent to reconstruction of
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nonautonomy of the observed DS in the form of a linear time dependence only of those param-
eters that enter the model linearly, which is clearly seen in eqn. (4).Ò

A nontrivial issue is a choice of the form of functions and For the algorithm to allowf0(.) f –1(.).for construction of prognostic models of various high-dimensional DSs, these functions must
enable one to approximate nearly any single-valued function of an arbitrary number of variables
with an arbitrary preset accuracy. Such universality is inherent in artiÐcial neural networks30 that
allow one to increase approximation accuracy by a simple increase in the number of neurons,
while the form of the function remains unchanged. Still another property of a neural network
(NN) is its dissipativity outside the ““ learning regionÏÏ (the region of variation of the arguments of
the function within the scope of the initial TS), thus providing global stability of the obtained
models.p

In this research we chose as and functions a perceptron, i.e., the simplest three-layerf0(.) f –1(.)NN,30 in which the linearly entering parameters were sought in the form of linear functions of
time :

f (x
j~1, . . . , x

j~N
; t

j~1 ; k– )\ ;
i/1

m
(a

i
] t

j~1bi
)tanh

A
;
k/1

N
w

ki
x
j~k

] c
i

B
. (5)

Here, m is the number of neurons in the hidden layer of the network and k \ Ma, b, w, c) ½ R(N`3)m
is the complete set of model parameters. In eqn. (5) the number of NN inputs is chosen to be equal
to the order of the mapping.

As soon as the speciÐc form of the discrete time map has been chosen, construction of a model
reduces to Ðnding optimal values of its parameters. The slowness of the time dependence of the
evolution operator, that was used in writing a prognostic model in the forms (3) and (4), enables us
to employ the corresponding perturbation theory and optimise parameter values in two stages. At
the Ðrst stage, we seek the values of the parameters that would provide the minimum ofv8 ,w8 ,c8
““autonomousÏÏ r.m.s error.**

s
a
2\

TC
x
j
[ ;

i/1

m
v
i
tanh

A
;
k/1

N
w

ki
x
j~k

] c
i

BD2U
j
, (6)

where has the meaning of an average for the corresponding subscript. At the second stage, theS.T
jvalues of parameters are Ðxed and the values of parameters corresponding to thew\ w8 ,c\ c8 a6 ,b6

minimum of ““nonautonomousÏÏ r.m.s. error are found :

s
n
2\

TC
x
j
[ ;

i/1

m
(a

i
] t

j
b
i
)tanh

A
;
k/1

N
w8

ki
x
j~k

] c8
i

BD2U
j
. (7)

The resulting model may be interpreted as an autonomous DS

x
j
\ ;

i/1

m
v6
i
(t)tanh

A
;
k/1

N
w8

ki
x
j~k

] c8
i

B
] m

j
, v6

i
(t) \ a6

i
] b6

i
t, (8)

the qualitative behaviour of which is determined by a single control parameter, namely, time t.

2.4.

The model constructed in Section 2.3 reproduces not only the topological structure of the
observed attractor, but slow variations of this structure also. This makes it possible to investigate
future NDSs of the observed system by constructing bifurcation prognosis, i.e. analyse the depen-

Ò Linear approximation is insufficient when quantitative characteristics of the observed attractor, that vary
due to the systemÏs nonautonomy, reach their extreme values within the initial TS. Such a situation occurs, for
example, in construction of a prognostic model of a mesospheric PCS by a TS corresponding to the so-called
““external ÏÏ chaotic attractor of the given system (see ref. 24 and 25, as well as Section 3.1).
p Problems encountered when using NNs will be considered in Sections 3.1 and 3.4.
** Note that the search of the ““best ÏÏ approximation of the data series by minimising the errorsMx

j
\ y(t

j
)N

j/1J
(6) and (7) corresponds to the use of the method of least squares, which imposes restrictions on the application
of the algorithm to analysis of noisy TS. This issue will be addressed in Section 4.3.
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dence of qualitative behaviour of model (8) with time. It is quite obvious that results of such
analysis depend signiÐcantly on errors inevitable in constructing a prognostic model that are
characterised by a random quantity entering into eqn. (8). The cause of such errors is, Ðrstly,m

jnon-zero accuracy of reconstruction of the phase trajectory and the corresponding point map with
respect to Ðnite and discrete TS. Secondly, error may be due to incomplete correspondence of the
operator, describing evolution of the prognostic model, to the analogous operator of the DS that
generated the initial TS. The most dangerous consequence of the above-mentioned errors in con-
structing the prognosis of qualitative behaviour of the DS by the prognostic model (8) is the error
in seeking values of the parameters a and b controlling changes in the behaviour of the model in
the course of time. Available information about the observed DS (i.e., the initial time series) does
not allow one to determine the magnitude of this error accurately. Nevertheless, reasonable physi-
cal assumptions can give an upper estimate of this error.

Assume that there exists a set of parameters (a*, b*N for which a prognostic model describes the
observed DS exactly, and the di†erences between the model and the modelled system, character-
ised in eqn. (8) by a random quantity are generated exclusively by error in determining thesem

j
,

parameters. Assume also that is normally distributed white noise with zero mean. Then, param-m
jeters Ma, bN are normally distributed random quantities with average values minimising the(a6 , b6 N

““nonautonomousÏÏ error (7), with b*N, and with the covariance matricesMa6 , b6 N\ Ma*, Caa , Cab ,
determined from expansion of this error near the minimum:Cba , Cbb

s
n
2(a, b)B s

n
2(a6 , b6 )(1] J~1((a [ a6 )T(Caa~1)(a [ a6 ) ] (a [ a6 )T(Cab~1)(b [ b6 )

] (b [ b6 )T(Cba~1)(a [ a6 )] (b [ b6 )T(Cbb~1)(b [ b6 ))). (9)

2.5.

The last step is investigation of future NDPs of the observed DS, i.e., construction of the prognosis
of bifurcations of its qualitative behaviour. Within the framework of the proposed algorithm it is
sufficient to study the dependence of qualitative behaviour of the prognostic model (8) on the
single control parameter t. This dependence is speciÐed by a random, normally distributed set of
parameters v(t) with an average

v6 (t)\ a6 ] b6 t, (10)

and a covariance matrix

C
vv

(t)\ Caa ] t(Cab ] Cba) ] t2Cbb . (11)

The random spread of parameter trend v(t) means that the predicted bifurcations must be con-
sidered as random events, and the instants of the bifurcation transitions as random values. Conse-
quently, prognosis of bifurcations is expected to give answers to the following questions : What is
the probability with which the predicted bifurcations will occur up to a deÐnite instant of time?
What is the mathematical expectation of the instant of a speciÐc bifurcation transition? What is
the accuracy of prediction of an average instant of a speciÐc bifurcation? What is the probability
to reveal the type of the systemÏs behaviour of interest to us at a given instant of time?

We use the Monte Carlo method to Ðnd answers to the formulated questions. Consider a set of
““II ÏÏ supplementary to the trends constructed in the parameter space of the model so that thev6 (t)
sets of parameters speciÐed by them at an arbitrary time instant t should be described by a normal
probability distribution characterised by the found dependences and On having con-v6 (t) C

vv
(t).

structed a bifurcation diagram (BD) corresponding to each supplementary trend we obtain an
ensemble of bifurcation instants for each predicted bifurcation transition. To answer the questions
posed above, it is sufficient to Ðnd the time dependence of the probability density of the instants of
all the predicted bifurcations. For this we divide the entire timescale into sufficiently small inter-
vals and record how often elements of each of the obtained ensembles fall within these inter-dt

ivals ; this quantity is denoted by The time dependence of the probability density of thev
b
i .

b-bifurcation, (t), is deÐned asr
b

r
b
\

v
b
i

dt
i
%

, b \ 1, . . . , B. (12)
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Here, B is the total number of predicted bifurcations.
Knowledge of (t) gives answers to the Ðrst three of the four questions formulated above if wer

bdetermine in a standard manner the dependence on slow time of the integral probability of theU
bcorresponding bifurcation :

U
b
(t*)\

P
T

tR
r

b
(t)dt, t* [ T (13)

and calculate the mathematical expectation of the bifurcation instant and the corresponding dis-
persion.

In addition, analysis of the whole set of functions allows us to determine the probabilityr
b

(t
s
)

with which the ““k ÏÏ-th type of behaviour of the system can be revealed at a given instant of timeP
kt* :

P
k
(t*)\ P

k
`(t*)(1[ P

k
~(t*)). (14)

Here,

P
k
`,~(t*)\

P
T

tRr
k
`,~(t)dt, t* [ T (15)

and the functions (t) and are the sums of probability densities of all possible bifurcations ofr
k
` r

k
~

the transition to and from the regime (type of behaviour), respectively. In eqn. (13) and (15) T
denotes the boundary of the observed TS.

3. Construction of prognostic model of a mesospheric PCS
3.1.

In this section we demonstrate the proposed algorithm taking as a data source a system describing
the behaviour of minor chemical constituents of the EarthÏs atmosphere in the mesopause region
(heights of 70 to 90 km).6,7 For the convenience of the reader, we present below a brief description
of this system and its NDPs described earlier in ref. 7 and 31.

The system includes Ðve Ðrst-order nonlinear di†erential equations under periodic external
forcing :

dx1
dt

\ [(a9 ] 2a11x1] a10 x3] a4 x4 ] a5 x5)x1] a1x2 x5] a15 x42] a16 s(t)x3] 2a8 s(t)

dx2
dt

\ [(a6 ] a12 x3] (a1] a2 ] a14)x5)x2] a4 x1x4 ] a7 s(t)r

dx3
dt

\ [(a10 x1 ] a12 x2 ] a13 x4 ] a16 s(t))x3] a9 x1 (16)

dx4
dt

\ [(a4 x1 ] 2a15 x4] a3 x5 ] a13 x3)x4 ] a5x1x5 ] a12 x2 x3 ] 2a14 x2x5] a7 s(t)r

dx5
dt

\ [(a5 x1 ] a3 x4 ] (a1 ] a2] a14)x2)x5 ] a6x2] a13 x3 x4 .

These are equations of chemical kinetics for 16 chemical reactions (including photolysis reactions)
running in the mesosphere. The system contains Ðve chemical species (O, H, HO, whoseO3 , HO2)concentrations are dynamical variables denoted, respectively, by . . . , The dynamics of thesex1, x5 .
species is determined by the magnitudes of the coefficients É É É (constants of the reactions)a1 a16and has a characteristic timescale of one day or less under mesospheric conditions. The concentra-
tions of the other reagents participating in the reaction are much higher than those of the above
Ðve species and are supposed to be constant. Periodic external forcing is due to daily variations of
exposure to light as a result of sunrise and sunset and is manifested by periodic modulation of
photodissociation rates of the molecules of ozone, one of the dynamical variables of system (16),
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oxygen, the concentration of which is assumed to be constant, and water vapour, whose relative
concentration ““r ÏÏ¤¤ is one of the control parameters of the system. This modulation enters into
system (16) in the form of the periodic function s(t) that reaches its maximum at middaysmax \ 1
and minimum at midnight.”” By virtue of such nonautonomy, the phase space of systemsmin\ 0
(16) has dimension six.

The variable (the concentration of atomic oxygen [O]) is the dynamical variable whose timex1series ““was observedÏÏ, although this choice is not of fundamental importance. Fig. 1(a) displays a
BD where the concentration of atomic oxygen at the instant of sunrise is on the vertical axis, and
the magnitude of relative concentration of water vapour ““r ÏÏ, that is the control parameter of the
system, is on the horizontal axis. Clearly, the system possesses a wide set of dynamic regimes that
are realised depending on the value of the control parameter. If several values of [O] correspond
to some value of r, then a regime with a period of the same number of days is realised. The ““darkÏÏ
regions in the BD are for those intervals of parameter values in which the system behaves chaoti-
cally.

One can see that the system has three regions of chaotic behaviour in the considered range of
variation of the control parameter. Of particular interest are two of them that are realised at
relatively small values of r ½ [1.5 ; 2.1]. The corresponding fragment is magniÐed to scale on the
abscissa in Fig. 1(b). It is clearly seen that the two regions of chaotic behaviour partially overlap.
This feature is a consequence of the bistable behaviour of the system accompanied by hysteresis
with the variation of the control parameter. As the control parameter changes from the left to the
right within the limits of Fig. 1(b), a sequence of bifurcations takes place. First, the motion with a

Fig. 1 (a) Bifurcation diagram of system (16) ; (b) fragment of bifurcation diagram with the scale extended
along the abscissa axis. Logarithm of atomic oxygen concentration at sunrise, normalised to x1* \ 1.13 ] 109
cm~3 along the vertical axis ; value of relative concentration of water vapour r along the horizontal axis.

¤¤ Given below in ppm units (particles per million) deÐned as the number of molecules of water vapour per
million molecules of air.
”” Detailed consideration of system (16) (values of coefficients ranges of variation of control parametera1Èa16 ,
““r ÏÏ, form of function s(t)), and its nonlinear-dynamical properties can be found in ref. 31 and 32.
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period of one day loses stability (at r B 1.65) and period doubling occurs (a stable regime with a
period of two days is born). Then follows a cascade of such doublings, and the dynamics becomes
chaotic at r B 1.8. We will call the resulting chaotic set an ““ internal attractor ÏÏ. Finally, for
r B 1.87, this motion disappears and the system jumps into an absolutely di†erent regime of
behaviour.

With a reverse change of parameter, we start at r \ 2.1 from stable motion with a period of
three days which doubles at r B 2, quadruples at r B 1.9, and then a transition to a chaotic regime
through a cascade of doublings occurs. The obtained chaotic set will be referred to as an ““external
attractor ÏÏ. As is clear from Fig. 6(b), this attractor consists of three regions and, with a period of
external forcing of one day, the map jumps successively from one region into another. With a
further decrease of the control parameter, an inverse cascade of doublings is initiated at r B 1.7, a
regime with a three-day period is, again, realised at r B 1.63 and vanishes at r B 1.58, and the
system passes to a stable one-day regime. Thus, catastrophic bifurcations occur in the system both
with an increase and a decrease of parameter r.

3.2.

In this paper we use chaotic evolution of a mesospheric photochemical system (MPCS)
““observedÏÏ within the basin of internal attractor for construction of prognostic models for the
given dynamical system.°°

So, we generate a TS of variable having duration T \ 1500 days within the limits of whichx1parameter r decreases (linearly in time) from 1.855 to 1.82 (Fig. 2(a)), and make use of the algo-
rithm described in Section 2.

First, we reconstruct the attractor in phase space and establish that (i) the minimal embedding
dimension of system (16) is equal to 3 ; and (ii) the correlation dimension of the attractor is 1.9.ÒÒ

We take as the Poincare section the surface and record the intersections of this sectionx5 1 \ 0
by the phase trajectory from the side of (local minima of variable Such a section in thex5 1 \ 0 x1).expanded phase space corresponds to the instant of sunrise. A Ðrst-order discrete time map corre-
sponding to the chosen Poincare section is given in Fig. 2(b). This discrete time map is multi-
valued (Fig. 2(b)) due to the presence of an ““additional ÏÏ branch in the left-hand side of the map.
Since in ref. 24 and 25 we used the low-dimensional algorithm, the constructed prognostic model
neglected the multivalued nature of the map. The high-dimensional algorithm described in Section
2 permits one to construct a model in the form of a higher-order discrete time map, thus avoiding
rough approximation of the observed data.

The prognostic model was constructed in the form of the NN (8) (number of inputs being
N \ 2) approximating the second-order discrete time map extracted from the initial TS. The total
number of model parameters was k \ Ma, b, w, cN\ (N ] 3) m\ 5m, of which 2m parameters

determine the behaviour of the model outside the scope of the initial TS. The numberMa
i
, b

i
Ni/1m

of neurons m is a technical parameter of the model ; its inÑuence on the characteristics of prog-
nosis of qualitative behaviour of the system will be discussed in Section 3.3.

In line with the general algorithm, the NN was learnt in two stages. At the Ðrst stage, the values
of the parameters minimising the autonomous error (6) were sought ; at the second stageMv8 ,w8 ,c8 N

were Ðxed, and the values of the parameters minimising the nonautonomous error (7)Mw8 ,c8 N Ma6 ,b6 N
were found. The minimum of the Ðrst error was sought by V ariable Metric Methods in Multidi-
mensions (also called quasi-Newton methods),33 and the minimum of the second one by the Singu-
lar V alue Decomposition (SV D) Method.33 At the Ðrst stage we had to take into account that a
complicated nonlinear dependence of the NN (8) on parameters Mw, cN may result in the existence
of many local minima of the error (6). For construction of a model that would be maximally
sensitive to a change of dynamical variables within the range of values corresponding to the initial
TS, the ““observedÏÏ series was normalised to provide after which theMx

j
N Sx

j
T
j
\ 0, Sx

j
2T

j
\ 1,

right-hand side of (6) was supplemented by the factor (1 ] j(4m)~1 ;
i/1m (v

i
2] w1i2 ] w2i2 ] c

i
2)),

°° No speciÐc problems arise when a prognostic model is constructed by the time series generated by two
other chaotic attractors given in Fig. 1(a) and (b).
ÒÒ The cause of such low values of the dimensions of system (16) was discussed in detail in ref. 31 and 32.

114 Faraday Discuss., 2001, 120, 105È123

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

01
. D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

ve
rs

ity
 -

 P
ur

du
e 

U
ni

ve
rs

ity
 a

t I
nd

ia
na

po
lis

 o
n 

14
/0

5/
20

15
 1

8:
22

:2
1.

 
View Article Online

http://dx.doi.org/10.1039/b102985c


Fig. 2 (a) ““ObservedÏÏ TS employed for construction of prognostic model. Logarithm of atomic oxygen con-
centration, normalised to cm~3 along the vertical axis ; time along the lower horizontal axisx1* \ 1.13 ] 109
and current value of r along the upper horizontal axis ; (b) Ðrst-order discrete time map reconstructed by the
given TS.

where j is the technical parameter of order unity, and the minimum of the autonomous error
corrected in this manner was sought.pp

Further, steps 3 and 4 of the general algorithm were accomplished. Namely, the error (7) was
expanded into series (9) and the covariance matrix of parameters Ma, bN characterising(

Cba Cbb
Caa Cab )

nonautonomy of the prognostic model was calculated.
Still further, the time dependence of qualitative behaviour of the prognostic model was investi-

gated. For this, 1000 trends of parameters v(t)\ a ] b t were speciÐed so that, at each time
instant, distribution of these parameters should be normal, with the average (10) and the covari-
ance matrix (11). Analysis of changes in the behaviour of the model in the ““ future ÏÏ*** determined
by each trend, allows one to set up a statistical ensemble of bifurcation instants for each of the

pp Note that for this procedure means minimisation of (6) with minimal norm of the values of param-j @ 1
eters Mv

i
, w1i , w2i , ciNi/1m .

*** Apparently, the ““ future ÏÏ is conventional here because the proposed alogirithm allows for analysis of the
changes in the modelÏs behaviour in both directions of the time axis.
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bifurcation transitions found and calculate the probability characteristics (12)È(14) of the predicted
bifurcations and regimes of behaviour.

3.3.

Before we pass to discussion of the results of the considered research, consider an important issue
of choosing a technical parameter of model (8), namely, the number of neurons m. Since the order
of the discrete time map N (the number of inputs of the NN) is deÐned by the dimension of the
reconstructed phase space of the observed system (the minimal embedding dimension), m deter-
mines completely the total number of prognostic model parameters k \ Ma, b, w, cN\ (N ] 3) m.
Therefore, we will actually speak about the optimal number of parameters of the model.

On the one hand, for the model to guarantee sufficiently accurate reproduction of the observed
evolution of the system, the number of parameters must not be too small : the reproduction error
is obviously a monotonically decreasing function of the number of parameters. This statement is
illustrated in Fig. 3(a) and (b), where the monotonically decreasing autonomous (6) and nonauto-
nomous (7) errors, normalised to dispersion of the observed signal, are plotted vs. the number of
neurons m.

Fig. 3 Least r.m.s. error plotted vs. the number of neurons in the hidden layer of NN (8) : (a) for autonomous
error (6) ; (b) for nonautonomous error (7).
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Our task, however, is not pinpoint accuracy of reproducing the observed evolution, but prog-
nosis of changes in the qualitative behaviour of the observed system. The informativity of such a
prognosis within the scope of the algorithm under consideration is determined by the probability
characteristics (12)È(14). Clearly, the prognosis is the more informative the more accurately the
bifurcation instants are predicted and the greater the probability of revealing the most probable
regime of behaviour at the time instant of interest. Both these characteristics depend signiÐcantly
on ““arrangement ÏÏ of m-dimensional space of nonautonomous parameters of the model Mv

i
N
i/1m \

An increase in m means an increase in the dimension of this space and, generallyMa
i
] tb

i
N
i/1m .

speaking, the complication of its structure. The resulting number of qualitatively di†erent regimes
of behaviour co-existing in time for di†erent trends v(t), forming a statistical ensemble of bifur-
cation instants, can increase too. Therefore, it should be expected that a too large number of
parameters will result in deterioration of the characteristics of prognosis.

So, we can conjecture that there exists an optimal range of the number of model parameters
that provides the most informative prognosis of qualitative behaviour of observed DS with the aid

Fig. 4 (a) Fragment of bifurcation diagram of system (16) from Fig. 1. Prognosis of qualitative behaviour of
mesospheric PCS constructed using model (8) : (b), (d) bifurcation diagrams corresponding to average trend
(10) with the number of neurons m\ 3 and m\ 4, respectively ; (c), (e) time dependence of the probability to
reveal di†erent regimes : ““ regimeÏÏ of catastrophe (A) ; oscillatory regimes with a period of four (B), two (C) and
one (D) days for m\ 3 and m\ 4, respectively.
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Fig. 5 The same as in Fig. 4 but for m\ 5 (b) and (c) and m\ 6 (d) and (e).

of a prognostic model of the given form. The lower limit of this range (i.e., the minimal needed
number of parameters) can be found in a standard manner by analysing the dependence of the
quality of reproduction of the observed behaviour of a DS on the number of parameters of the
model. For example, for the situation under consideration, analysis of Fig. 3(a) and (b) leads
straightforwardly to the conclusion that the number of neurons in the NN (8) must be not less
than three : mP 3. As to the upper limit of the range, we do not Ðnd it possible to make any
conclusions before we construct the prognosis ; moreover, it is necessary to compare the character-
istics of the prognoses constructed using a di†erent number of parameters (di†erent number of
neurons in the hidden layer of the NN in the model (8) of interest to us). It is also worthy of note
that the informativity of the prognosis using a ““goodÏÏ prognostic model must depend sufficiently
weakly on the number of parameters, if this number falls within the optimal range.

To conclude this section we would like to note the following circumstance. Representation of
the evolution operator in the form of the expansion (4) in time explicitly entering this expression
means that the proposed algorithm can be employed as long as the nonautonomous part of the
operator is of the order of its autonomous part or less. Our calculations verify that, for models
with m ½ [3 ; 10], the applicability limit of the algorithm is a time interval having duration of
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about four lengths of the initial TS T ½ [7000 ; 8500] calculated from its centre (moment t \ 7750).
Thus, we can expect to obtain a correct prognosis over the time interval 1750 B
\t \ B13 750.¤¤¤

3.4.

We investigated prognoses of bifurcations constructed using model (8) with the number of neurons
m ½ [1 ; 10]. As was to be expected, for m\ 1, 2 the model does not reproduce even the observed
evolution of the system. The most informative was prognosis for m\ 5, 6. For a greater number of
neurons, prognosis informativity decreases.

In Fig. 4(b) and (d), 5(b) and (d) and 6(b) we present the bifurcation diagrams corresponding to
the average trend (10) for m\ 3È7, respectively. Time dependences of the probability to reveal
di†erent predicted regimes of behaviour, determined by the expression (14), are shown on the
panel below each diagram (Fig. 4(c) and (e), 5(c) and (e) and 6(c)). This characteristic allows one to
judge the accuracy of prediction of bifurcation transition instants as well as the maximal probabil-
ity of the regime most probable at the current time instant. We remind the reader that all the
results given here were obtained exclusively on the basis of analysis of the TS that represented
variations of one dynamical variable (concentration of atomic oxygen) over the time interval T ½
[7000 ; 8500] days (see Fig. 2(a)) without any other information about the system (16) that gener-
ated it. For estimation of the quality of prognosis, correct bifurcation diagrams obtained by direct
computation of the system (16) and describing variations of qualitative behaviour of this system
over the entire time interval are shown on the upper panel of each Ðgure (Fig. 4(a), 5(a) and 6(a)).
Finally, the bifurcation diagram corresponding to the average trend and time dependences of the
probability of predicted regimes plotted for the same initial TS (see Fig. 2(a)) but using a low-
dimensional algorithm24,25 are given for comparison in Fig. 6(d) and (e).

Prognoses for di†erent values of parameter m will be compared by analysing the time depen-
dence of the probabilities of the predicted regimes, Being the most typical ““ representatives ÏÏP

k
(t).

of the corresponding statistical ensembles, the bifurcation diagrams for the average trend (10) may,
however, reproduce local features of the structure of the space of parameters of prognostic model,
that are not typical of the statistical ensemble as a whole. For example, in Fig. 4(d) one can see
that no bifurcations are predicted in the ““ future ÏÏ t [ 8500 prognosticated within the limits of this
panel for a model with m\ 4, whereas statistical analysis shows (see Fig. 4(e)) that a catastrophic
bifurcation will occur by the time instant t \ 11 000 with probability as a result ofP=^ 0.62,
which the chaotic attractor that generated the initial TS will disappear.

As noted above, comparison of the time dependences of the regime probabilities depicted in Fig.
4(c) and (e), 5(c) and (e) and 6(c) shows that the most informative are prognoses made employing
models with m\ 5 and m\ 6. Indeed, one can see in Fig. 5(c) and (e) that the maximal probabil-
ities of all predicted regimes are equal to unity in this case. An exception is a catastrophic
““ regimeÏÏ, the most remote into the ““past ÏÏ (t \ 7500), to which the model passes when a single-
periodic regime breaks up. Comparison with the correct bifurcation diagram (Fig. 5(a)) reveals
that this regime, unlike all the others, was predicted erroneously ; the observed system has no such
regime. However, it should be taken into consideration that the probability of this ““ false ÏÏ regime
is rather small at the boundary of the prognosis interval (for t B 1750) : for m\ 5 andP=B 0.2

for m\ 6.P=B 0.3
Models with a larger or smaller number of neurons predict much worse the catastrophic regime

that actually occurs in the future for t [ 8800. Note that the corresponding catastrophic bifur-
cation is a natural restriction of the interval of prognosis into the ““ future ÏÏ. Moreover, in good
agreement with what was said in Section 3.3, models with a large number of neurons provide a
better accuracy of prediction of the instants of nearest bifurcations in the ““past ÏÏ, and a model
with m\ 3 gives the most accurate prognosis of the bifurcation of the birth of a single-periodic
regime, that is the most remote into the past, which is not prognosticated at all by models with

¤¤¤ It is the upper estimate of the prognosis interval. The interval of prognosis may be, for example, shortened
as a result of a catastrophic bifurcation, when the system passes to the earlier unattainable region of phase
space.

Faraday Discuss., 2001, 120, 105È123 119

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

01
. D

ow
nl

oa
de

d 
by

 I
nd

ia
na

 U
ni

ve
rs

ity
 -

 P
ur

du
e 

U
ni

ve
rs

ity
 a

t I
nd

ia
na

po
lis

 o
n 

14
/0

5/
20

15
 1

8:
22

:2
1.

 
View Article Online

http://dx.doi.org/10.1039/b102985c


Fig. 6 The same as in Fig. 4 but for m\ 7 (b) and (c) and calculated using low-dimensional algorithm24,25 (d)
and (e).

mP 7. Nevertheless, we can conclude that the informativity of the prognosis constructed with the
aid of model (8) depends weakly on the number of parameters for m ½ [3 ; 7].

Let us make some conclusions from the results presented in Fig. 4È6 :
(1) The prognostic model (8) with the optimal number of neurons m\ 5 and m\ 6 predicted

correctly all the bifurcation transitions within the prognosis interval, with the maximal probabil-
ities of all regimes of behaviour predicted over this interval being equal to unity.

(2) The ““ future ÏÏ catastropheÈthe nearest bifurcation to the boundaries of the initial TSÈis
predicted worse than other bifurcations that are more remote in time. This result has two causes.
Firstly, dissipativity of a NN that provides global stability of the prognostic model decreases
sensitivity of the model outside the ““ learning regionÏÏ (the region of variation of the arguments of a
discrete time map within the initial TS). Secondly, it is exactly the situation that occurs for the
internal attractor of a mesospheric PCS: the characteristic size of the attractor grows with
approaching catastrophe. Consequently, model (8) prognosticates the future worse than the past,
recession into which results in a decreased range of variation of dynamical variables.

(3) The prognosis constructed employing a low-dimensional algorithm24,25 shown in Fig. 6(d)
and (e) predicts bifurcations and regimes of behaviour in the past much worse than the NN (8),
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but it is better in predicting the future catastrophe. The cause of a poor prognosis of the ““past ÏÏ is
insufficiently accurate reproduction of the observed behaviour of the DS, which is due primarily to
the use of evolution operator in the form of a Ðrst-order discrete time map. However, the form of
this functionÈthe Ðfth degree polynomialÈprovides a more informative prognosis of the ““ future ÏÏ
bifurcation that is very near in time. Clearly, the use of polynomial functions of many variables in
a ““pure ÏÏ form for construction of prognostic models of high-dimensional DSs is hardly promising
because of the inevitable global instability of such models. However, hybrid models that combine,
for instance, a NN as an autonomous component of the prognostic model (3),(4) and a system of
multidimensional polynomials orthogonalised on the observed attractor as a nonautonomous
component may be an optimal solution for modelling some high-dimensional DSs.

4. Conclusion

4.1.

We proposed an algorithm for constructing prognostic models of systems demonstrating complex
(high-dimensional) dynamic behaviour. The basis for this algorithm is an investigation of a NDPs
of the system exclusively by analysing the TS that represents variations of one dynamical variable,
without any additional information about the system that generated this TS. Prognostic models
are intended for prediction of qualitative behaviour of observed DS and its bifurcations. The
algorithm essentially broadens the scope of the general approach to analysis of nonstationary TS
recently proposed by the authors.24,25

The algorithm was used for analysis of the TS generated by a computer model of a mesospheric
photochemical system. We employed the TS calculated for slow change in the control parameter
of the system, namely, relative concentration of water vapour. The duration of the ““observedÏÏ
series was restricted so that the system demonstrated only oneÈchaoticÈtype of behaviour,
without any bifurcations.

The constructed prognostic model enabled us to make a correct prognosis of bifurcation
sequences and calculate probabilities to reveal at the time instant of interest predicted regimes of
the systemÏs behaviour for times much greater than the length of the initial TS.

4.2.

Of basic importance for application of the developed approach is prediction of bifurcations of the
more complex behaviour to the simpler one : the dimension of attractors arising in the phase space
of a DS as a result of bifurcations must not exceed the dimension of the attractor corresponding
to the initial TS. It is quite obvious, for example, that the described general procedure does not
allow for prediction of a cascade of period doubling bifurcations for the case when the initial TS
contains information about the type of behaviour that is simplest for such a cascade. We empha-
sise that the proposed algorithm enables one to overcome windows of regular behaviour between
chaotic attractors, but use of the most complex type of behaviour is decisive for construction of a
prognostic model.

4.3.

The assumption that the noise is additive and dynamical, to which corresponds additive allowance
for the random component in eqn. (3), imposes signiÐcant restrictions in terms of the applicability
of the algorithm proposed in this research to analysis of real data bases. The assumption of
additivity imposes purely quantitative restrictions on the degree of noise of the analysed TS.
Whereas the dynamical noise enabled us to use the simplest way for optimising parameters of the
modelÈthe method of least squares. This permitted us to write cost functions (errors) in the form
(6), (7), to Ðnd covariance matrices of the parameters characterising nonautonomy of the system
from eqn. (9), and to use for these parameters a normal distribution function. It is clear, however,
that a stochastic component of the actual TS nearly always contains the so-called measurement
noise. Under these conditions, the method of least squares gives a systematic error in seeking
optimal values of parameters.34 Then, the procedure of Ðnding a distribution function of the
parameters of a prognostic model based on this method also becomes incorrect. One of the ways
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to solve this problem is to employ the method of total least squares.35 The corresponding modiÐ-
cation of the algorithm is being undertaken at present, and we expect that it will enable us to use
the elaborated approach for construction of prognostic models of real atmospheric processes on
the basis of observed TS.

4.4.

Consider, in conclusion, possible practical applications of the prognostic models. We take as an
example the construction of a prognostic model of a system determining ozone layer evolution in
middle and low latitudes. The analysis of satellite measurements of ozone abundance in an atmo-
sphere in ref. 14 showed that the corresponding time series is generated by a chaotic (strange)
attractor, which makes this dynamic system an appropriate candidate for construction of a prog-
nostic model.

The prognostic model is expected to provide the following opportunities :
First, reconstruction of nonautonomy of the considered system and, consequently, Ðnding non-

stationary characteristics of the ozone layer.
Second, prediction of bifurcations, i.e., of qualitative changes in ozone evolution caused by

nonstationarity.
Third, veriÐcation of the available ““Ðrst principles ÏÏ models by which the future state of the

ozone layer is estimated at present. We mean comparison of NDPs of the prognostic model and of
the ““Ðrst principles ÏÏ model. Note that the system under consideration is typical for the EarthÏs
atmosphere in the sense that direct analysis of the NDPs of the ““Ðrst principles ÏÏ model is nearly
impossible because of a high order of this system. Therefore, for veriÐcation we will Ðrst have to
construct the so-called essential (or basic) dynamical model possessing the minimal possible
number of degrees of freedom and, at the same time, retaining the NDPs of the complete ““Ðrst
principles ÏÏ model. The general algorithm of constructing dynamical models was Ðrst described in
ref. 31 and was used successfully for construction of essential dynamical models of the polar lower
stratospheric1 and mesospheric31 PCSs.””” Discrepancy between the NDPs of the essential and
prognostic models will indicate that the essential and, hence, the complete ““Ðrst principles ÏÏ model
must be corrected.

Finally, comparison of the veriÐed ““Ðrst principles ÏÏ model with the prognostic model will allow
one to set a correspondence between dynamical variables and nonautonomous parameters of the
prognostic model and real physical and chemical characteristics of the ozone layer. This will
enable one (i) to identify the ““principal ÏÏ dynamical variables that determine ozone layer evolu-
tion ; (ii) to ascertain the trends of which parameters may lead the system to the revealed bifur-
cations and (iii) estimate the bifurcation instants and their quantitative consequences.
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