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Toward an understanding of the nonlinear nature of atmospheric 
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A.M. Feigin, I. B. Konovalov, and Y. I. Molkov 
Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod 

Abstract. We present the essential dynmnic model of the •nesospheric photochemical system 
(PCS) •'md suggest a step-by-step procedure for elaborating such a model of an arbitrary atmos- 
pheric PCS. The model demonstrates the same possibilities of nonlinear dynamic behavior and 
qualitatively the same dynamic characteristics as the corresponding original model, but is much 
simpler than the latter. We show the adequacy of the essential model compared with the original 
one in bifurcation diagrams, equilibrimn states, and such new characteristics as correlation 
dimension and minirotan embedding dimension of a chaotic attractor. The model can be used 
both for identi•ing and studying the mechanisms of the nonlinear dynmnic behavior of the 
mesaspheric PCS, as well as for solving a number of problems aimed at revealing nonlinear 
photochemical phenomena in the actual mesasphere. 

1. Introduction 

1.1. Nonlinear Phenomena in Atmospheric Photochemical 
Models 

Atmospheric photochemical systems (PCSs) determining 
the behavior of the minor constituents of the atmosphere are 
essentially nonlinear. It is well known that nonlinear systems 
can possess a number of qualitative dynamic properties which 
are impossible in linear systems. Among these are such non- 
trivial properties as the existence of multiple equilibrium 
states, self-oscillations, and chaos. Thus, there are good rea- 
sons for believing that atmospheric PCSs can also possess 
similar properties. Indeed, there are some papers which dis- 
cuss the existence of the •nultiple equilibrium states in models 
of tropospheric [ld/hite and Dietz, 1984' K'asting and ,4cker- 
man, 1985' Kleinman 1991, 1994' Stewart, 1993], strata- 
spheric [Prather et al., 1979; Fox et al., 1982], and mesa- 
spheric [Fang and Brasseur, 1994] photochemical systems. 
Aladrortich and Hess [ 1994], Krol [ 1995], Stewart [ 1995], 
and Poppe and LustjaM [1996] discuss the presence of self- 
oscillations in a tropospheric PCS model. The presence of self- 
oscillations in a model of the Antarctic strataspheric PCS and 
their role in the ozone hole phenomenon are considered by 
Konovalov [ 1993 ], Konovalov and Feigin [ 1995], and Feigin 
and Konovalov [ 1995, 1996]. Fichtelmann and Sonnemann 
[1992] report the presence of multiperiodic and chaotic re- 
gimes in a model of the mesaspheric PCS, which are thor- 
oughly analyzed by Sonnemann and Fichte&iann [1997]. We 
have grounds to assume that the listed nonlinear properties not 
only are inherent for photochemical models under investiga- 
tion, but also may be manifested in the real atmosphere. These 
grounds are discussed in the following subsection. 
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1.2. Relevancy of the Model Results to the Real Atmosphere 

It is well known that a number of significant atmospheric 
phenomena (such as cyclones/anticyclones, circmnpolar vor- 
texes, sudden stratospheric warming, etc.) exist due to basic 
hydrodynamic nonlinearities, which are reflected in the model 
equations describing those phenomena. In contrast, the possi- 
bility that basic chemical nonlinearities associated with two- 
and three-molecule and heterogeneous reactions may cause 
photochemical nonlinear phenomena significantly aftbering 
the composition of the atmosphere is not taken into account in 
the majority of studies. The tradition to neglect the potential 
role of nonlinearities in the atmospheric PCSs is grounded in 
the long-standing experience of elaboration and verification of 
the atmospheric models. However, it has not been proven that 
nonlinear dynamic phenomena (similar to that well-known in 
nonatmospheric chemistry (see, tbr example, review by FieM 
and Burger [1985]) are impossible in atmospheric PCSs. 
Though the current state of l•mwledge about the nonlinear dy- 
namic properties of the atmospheric PCS does not allow un- 
ambiguous conclusions regarding the role of nonlinear photo- 
chemical phenomena in the real atmosphere (in fkct, the nec- 
essary investigations are only now beginning), we can point to 
two recent studies arguing that photochemical nonlinear phe- 
nomena indeed take place under real atmospheric conditions. 
Kleinman [1994] has clearly demonstrated that the multista- 
bility revealed in models of the tropospheric PCS [White and 
Dietz, 1984; Fasting and Acker•nan, 1985] is the reason for 
observed strong seasonal variations in the chemical composi- 
tion of the troposphere. Feigin and Konovalov [1996] adduce 
serious arguments in •2vor of a significant role of a nonlinear 
self-oscillating regime in the process of the Antarctic ozone 
hole formation. 

It should also be emphasized that even if some atmospheric 
PCSs do not manitbst any nonlinear dynamic phenomena at 
present, changes of some atmospheric parameters may cause 
bifurcations (that is, abrupt changes in the system's behavior 
under small, smooth changes of the system parameters), which 
lead to the existence of the nonlinear phenomena in the future. 
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In the mentioned cases of the tropospheric and Antarctic 
stratospheric PCSs, for example, the changes of atmospheric 
parameters leading to bifurcations are anthropogenic in origin 
and associated with increasing emissions of nitrogen oxides 
and man-made halogens into the atmosphere, respectively. 

We consider the results of the previously mentioned studies 
as evidence that the possible appearance of the nonlinear phe- 
nomena in real atmospheric PCSs cannot be neglected without 
special study. 

1.3. The Role of Studies on the Nonlinear Nature of 

Atmospheric PCSs 

In our opinion, the possibility of strong changes in the 
composition of the atmosphere associated with nonlinear phe- 
nomena dictates the necessity, and usefulness of special inves- 
tigations of the atmospheric PCSs with the purpose of reveal- 
ing any possible nonlinear phenomena which may be mani- 
fested under a variety of conditions both at present and in the 
future. We believe that such investigations would help (1) to 
def'me how, •vhen, and where the possible geophysical phe- 
nomena caused by photochemical nonlinearities can be ob- 
served (possibly, some nonlinear phenomena taking place in 
the actual atmosphere have not yet been observed because 
their observations require special conditions or special meth- 
ods which could be determined by these investigations), and 
(2) to increase the reliability of the conclusions of studies on 
prediction of future changes in atmospheric composition. Ex- 
amples of predictive studies are rather numerous (see, for ex- 
ample, Worhl Meteorological Organization (I•I/7910) [1995, 
and retErences therein]). The possibility of incorrect predic- 
tions principally exists because these studies take into account 
rather restricted ranges of parameter values and initial condi- 
tions. Ho•vever, bifurcations could occur under some distinct 
combinations of parameter values. The realization of such 
combinations can be either a result of some perturbations not 
taken into account in the employed models or an unexpected 
deviation of the parameters' trends from the assumed values. 
Of course, special attention should be devoted to PCSs dem- 
onstrating chemical instabilities. An example of such PCS is 
the Antarctic stratospheric PCS [Feigin and Konovalov, 
1996]. A problem concerning the possible future recovery of 
the Antarctic ozone hole has been raised recently by Hoffmann 
et al. [1997]. For their predictions the authors have taken into 
account possible trends only of stratospheric chlorine. How- 
ever, because of the complex structure of the Antarctic PCS 
state space, revealed by Feigin and Konovalov [1996], even 
small trends of other parameters of the stratosphere, for exam- 
ple, methane concentration, can lead to transition of the Ant- 
arctic PCS to another state which may diftbr from both the 
present and past states and may be associated with signifi- 
cantly different ozone concentrations. To insure more accurate 
predictions, the boundaries between qualitatively different re- 
gimes in the space of parameters of the Antarctic PCS should 
be deternfined and analyzed together with possible parameter 
trends. 

1.4. Essential Dynamic Models and Their Purposes 

Obviously, any investigation of dynamic system properties 
under a variety of conditions assumes the use of a model of 
that system. Thus, the crucial question is which model to use. 
When an investigation concerns the photochemistry of the at- 
mosphere, a natural tendency would be to use a complete 

photochemical model. However, such models are constructed 
with the purpose of achieving the best quantitative agreement 
with observations and, as a rule, are rather bulky and involve 
too many dynamic variables (here, concentrations of chemical 
species) and parameters. As a result, numerical calculations 
give a small probability of revealing the regions of parameter 
values where the particular PCS e,',d'fibits nontrivial dynamic 
properties. We have suggested another way: to use special 
models [Feigin and Konovalov, 1996, p. 26,023], 'which 
combine simplici,ty with a good correspondence to observed 
processes', and which we have introduced as the basic mod- 
els. The good correspondence to the observed processes as- 
sumes, first of all, qualitative correspondence of the dynamic 
behavior of the model to the behavior of the real atmospheric 
PCS. In this paper we develop this approach and, in particular, 
we present the general procedure to elaborate this type of 
model t?om the corresponding complete photochemical model. 
(,We thus implicitly assume that complete photochemical 
models can adequately describe the behavior of the real PCSs.) 
Using the suggested procedure, one obtains a model which 
satisfies the following basic requirements: (1) the greatest 
possible simplicity, (,2) the lowest order of the system of dif- 
ferential equations involved in the model, and (3) a consis- 
tency betxveen qualitative dynamic properties of the simplified 
and the original complete models of the atmospheric PCS. 
Following from the fact that the discussed models should pre- 
sent just the essence, that is, the minimum number of actual 
photochemical processes which carry the essential qualitative 
features of the dynamic behavior of the considered atmos- 
pheric PCSs, hereinafter we refer to these simplified models as 
'essential dynamic models'. Note that simplified photochemi- 
cal models have been already used, in particular, for studying 
the dynamics of the tropospheric PCS [Stewart, 1995; Poppe 
and Lustreid, 1996]. We would like to emphasize that the es- 
sential dynamic model is not only a simplified model, but 
meets the above three requirements also. 

The essential dynamic model seems to be very useful not 
simply for solving the problem of the existence of nontrivial 
dynamic properties in the considered PCS, but, especially, for 
understanding the causes and mechanisms determining the 
existence of these properties. Understanding of the reasons for 
the existence of the nontrivial dynamic properties leads to, 
particularly, an identification of both the most important 
chemical processes determining these properties and critical 
(bifurcation) parameters. Consequently, this understanding 
promotes investigations aimed at predicting the ways and 
conditions under which the nontrivial dynamic properties may 
manifest themselves in the real atmosphere. 

1.5. Objectives of the Paper 

This paper deals with a twotbld task. On the one hand, as 
mentioned above, the paper suggests a procedure of obtaining 
the essential dynamic model. As an example we use the pho- 
tochemical dynamic model of the mesospheric PCS analogous 
to the model used by Fichtehnann and Sbnnemann [ 1992] and 
Sonnemann amt Fichtelmann [1997] (referred below as to FS 
and SF, respectively). The main advantage of this model is 
that it demonstrates a rich assortment of nontrivial dynamic 
regimes (FS, SF). This provides an opportunity to compare the 
essential and original models over a large number of charac- 
teristics and thus to show more clearly the validity and poten- 
tial of the suggested procedure. 
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On the other hand, we consider our study as a contribution considered species. Namely, these processes should be com- 
to the understanding of the nonlinear nature of the real meso- pared with any additional processes which are not included in 
spheric PCS. Our interest in this region of the atmosphere has the original model with the purpose of estimating the impact 
arisen from studying FS, who have revealed that the zero- of those additional processes on the dynamic behavior of the 
dimensional dynamic model of the mesospheric PCS enforced mesospheric PCS. 
by the diumal variations of the photolysis rates possesses a 
rich assorm•ent of subham•onic oscillations and exhibits 
chaos. In connection with our statements above about the in- 

convenience of a complete model for investigations of nonlin- 
ear dynamic properties, it seems natural that FS have used for 
their stud) r a rather simplified model. However, using the sim- 
plified model poses the question of whether these properties 
are an artithct of the simplified treatment or are inherent prop- 
erties of the real mesospheric ['CS. This question is discussed 
briefly by FS and SF, and according to this discussion it ap- 
pears that an unambiguous resolution cannot be given at pres- 
ent. Evidently, to solve this question, further investigations 
using both theoretical and experimental approaches should be 
done. Taking into account that those investigations may reveal 
a qualitatively new and m•usual geophysical phenomenon, 
and, in any case, may significantly advance the understanding 
of the physics and chemistry of the mesopause region, we be- 
lieve that such investigations deserve to be carried out. 

The successful resolution of the posed question implies, in 
particular, an understanding of the impact on the discussed 
nonlinear phenomena of different processes, both chemical 
and nonchemical in origin, which are present in the real meso- 
sphere, but not taken into account in the simplified photo- 
chemical models. In parallel with, or even prior to, studying 
these [rotors within the tYamework of more complex models, it 
appears to be extremely useful to understand the mechanisms 
of the impact of these [rotors and to estimate their associated 
possible changes in the dynamic behavior. By doing so, one 
gets the opportunity to foresee the results of numerical calcu- 
lations, as well as to define conditions when changes caused 
by different [hctors can either be negligible or provide desir- 
able effects. This would finally lead to an increase in the de- 
gree of reliabili½' of the results obtained by means of complex 
models and allow one to make the studies more comprehen- 
sive. 

We see only one method to achieve this desired under- 
standing. This method requires the determination of the 
mechanisms [br the appearance of nonlinear effects in the cho- 
sen model of the mesospheric PCS and a further analysis of 
how and to what degree a factor of interest perturbs or changes 
those mechanisms. We consider the elaboration of the essen- 

tial dynamic model of the mesospheric PCS presented in this 
paper as a necessary first step in the suggested method. We 
note, for example, that in our recently finished study (I. B. 
Konovalov and A.M. Feigin, manus6ript in preparation) the 
essential dynamic model is used as an instrument for revealing 
both chemical and dynamical mechanisms for the appearance 
of nonlinear dynamic phenomena found by FS. Also, using the 
essential dynamic model, we have made estimations of the 
impact of the eddy diffusion which show that the subharmonic 
oscillations can be retained, at least when the value of the 
eddy diffusion is assumed to be at or less than 105 cm 2s 'l. 

Even without a further analysis of the mechanisms for the 
appearance of nonlinear eff'ects, the essential dynamic model 
itself presents the assemblage of the most significant chemical 
processes responsible tbr the appearance of nonlinear phe- 
nomena in the considered model and shows, in the simplest 
manner, how these processes contribute to the evolution of the 

The original model of mesospheric PCS and its dynamic 
properties are discussed in section 2. Particularly, in this sec- 
tion we determine characteristics unaccustomed in aeronomy 
such as correlation and minimum embedding dimensions of a 
chaotic attractor. [n section 3 we describe the procedure of 
elaborating the essential dynamic model and compare the dy- 
namic properties of the original and essential dynamic models 
of the mesospheric PC S. 

2. The Original Photochemical Model of the 
Mesospheric Photochemical System and 
Its Basic Dynamic Properties 

2.1. Description of the Original Photochemical Model 

As an orighml photochemical model for elaborating the es- 
sential dynamical model of mesospheric PCS we use a model 
similar to the one investigated by FS. The list of reactions and 
reaction rate coefficients calculated tbr mesopause conditions 
(an altitude of about 82 km) according to Atkinson et al. 
[1989] is given in Table 1. The model simulates the behavior 
of five minor constituents: O, H, 03, OH, and HC)2. The con- 
centrations of these constituents are denoted below as x•, x2, 

x3, x4, and x.s, respectively. The model includes the following 
set of ditl•rential equations describing dynamics of the photo- 
chemical system: 

d Xl 
dt 

- -(a0+2a • • x• +a •0x3+a4x4+a 5Xs)X 1 +a• X2X5 

2 oS(t)x3+2ass(t) -{-a I 5x4 -{-a I (1) 

d X2 
dt 

dx3 

d X4 

d 2:5 

• = -(ao+a,2x3+(a,+a2+al•)xs)x2+a•x•x4+a?s(t)r (2) 

• = -(a•0xl+a12x2+a13x4+a10s(t))x3+aoxl (3) 

I = -(a4x• +2a • •x•+a3xs+a • 3x3)x4 

+a•x•xs+a •2x2x3+2a •4x2xs+a?s(t)r (4) 

• = -(a•x• +a3x4+(a•+a2+a•)x2)xs+a6x2+al3x3x• (5) 

Here a•-a•0 stand tar rate coefficients of the reactions 
(R1)-(R16) respectively; r denotes a mixing ratio of H20 (in 
ppmv), which is a control parameter in the model, since we 
consider changes in dynamics of the system when this pa- 
rameter changes while all other parameters of the model re- 
main unchanged. The values of r for each calculation are given 
below. In the real mesosphere the mixing ratio of H20 varies 
significantly, approxitnately in the range from about 1 to 10 
ppmv [Grossmann et al., 1985; Peter et al., 1988; Bevilacqua 
et al., 1996; &trainers et al., 1996]. The function s(t) parame- 
terizes diurnal variations of photolysis rates. Here we assume 
that s(t) is a stepwise function defined as follows: 

s(t)= 1, te [Tn;Tn+T/2], 

and s(t)=0, te [Tn+T/2;T(n+ 1)], n=l,2 .... (6) 
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Table 1. Reactions and Their Rate Coefficients Taken Into 

Account in the Original Model 

Reaction Reaction rates 

(RI) H+HO2->H20+O 2.40 x10 '12 
(R2) H+ HO2-• H2+O2 5.6x 10 '12 
(R3) OH+HO2---->H20+O2 1.80x10 'it 
(R4) OH+O->H+O2 4.15x 10 'll 
(R5) HO2+ O->OH +02 8.64 x 10 '• 
(R6) H+O2+ M---> HO2+ M 3.83x 10 -4 
(R7) H20+hv->H+OH 8.50x 102 
(R8) 02+ hv--->20 2.43x105 
(R9) 0+02+ M-> O3+ M 5.90x 10 '6 
(R10) O+O3-•202 1.48x 1046 
(R11 ) O+O+M-•O2+M 2.00x 10 '18 
(R12) H+O3-•OH+O2 1.16x 10 'll 
(R13) OH+O3->HO2+O2 1.11 x 10 'la 
(R14) H+ HO2->2OH 7.20x 10 'l• 
(R15) OH+OH-->H20+O 1.18x 1043 
(R16) O3+hv->O2+O 1.00x 10 '2 
The rate coefficients of bimolecular reactions are given in units of 

cm3s '•. The rate coefficients of termolecular reactions are calculated 
for conditions typical for the mesopause (concentration of air mole- 
cules (M)=l.7x10 TM cm '3, temperature t=189 K); the rate coefficients 
of (R6) and (R9) are given in units of s 'l, the rate coefficient of reac- 
tion (R11) is given in units of cm3s 'l. The' photolysis rate coefficients 
(R7)• and (RS) are given in units of cm'3s 4, and that of (R16) in units 
ofs' . 

Thus, we assume that the photolysis rates are constant 
during the whole daytime, then drop to zero at sunset, and re- 
turn to the constant value again at sunrise. The real depend- 
ence of the photolysis rates on time is smoother; nevertheless, 
it is much closer to dependence (6) than, for example, to a si- 
nusoidal variation. Test calculations show that using a 
smoother function s(t) instead of (6) does not cause qualitative 
changes in the system behavior. We have assumed that the 
transition between extreme values of s(t) (0 and 1) takes time 
of the order of 104 s (or less). The same result has been ob- 
tained by FS. Note that the stepwise specification of s(t) al- 
lows us to present the evolution of the system (1)-(5) with 
time-dependent parameters as sequential time intervals, dur- 
ing each of which the system parameters do not depend on 
time. As a result, we can reduce the analysis of the behavior 
and dynamic properties of the nonautonomous (time- 
dependent) system to the analysis of' those of' two autonomous 
(time-independent) subsystems corresponding to day and 
night conditions. Within the framework of this description the 
nonautonomous character of the system is tbcused on the sun- 
set and sunrise moments. For clarity we assume here that the 
durations of a day and a night are equal. 

2.2. Dynamic Properties of the System (1)-(6) for the 
Original Model 

2.2.1. Bifurcation diagram. The dynamic properties of a 
system are traditionally presented by a bifurcation diagram, 
which is referred to as a dependence of dynamic variable val- 
ues (here, the concentrations of the chemical components) 
chosen in a der'mite way on a value of a control parameter. 
When the response of a system to periodic external forcing is 
considered, the most informative diagram is formed by the 
variable values taken in subsequent moments of time sepa- 
rated by the period T of external forcing. In that case the sin- 
gle-valued dependence of the corresponding variables on a 

control parameter corresponds to the simplest 'stable' re- 
sponse of the system to periodic forcing; that is, the system 
e,xhibits periodic oscillations with period T. As the control pa- 
rameter changes, the qualitative changes in the dynamic be- 
havior of a system called bifurcations can occur. The presence 
of bifurcations corresponding to changes of a solution perio- 
dicity is reflected in the bifurcation diagram as a nonunique- 
ness; that is, several variable values correspond to the same 
parameter value. For example, the two-valued dependence cor- 
responds to the double-periodic solution, that is, the solution 
with a minimum period equal to 2T. If a certain value of the 
control parameter corresponds to an 'infinite number of vari- 
able values, then there are some grounds to believe that this 
value of the control parameter corresponds to a chaotic be- 
havior of the system. Note that both multiple-periodic and 
chaotic behaviors are referred to in this paper as nonlinear dy- 
namic behaviors, because the possibility of such behaviors 
arises from the nonlineari ,ty of the system. 

The bifurcation diagram of the set (1)-(5) is presented in 
Figure l a. The diagram demonstrates the dependence of the 
night-end concentration of atomic oxygen (Xl) on the H20 
mixing ratio (r). To obtain this diagram, we made the se- 
quence of calculations with both increasing and decreasing 
values of r. As the initial values for the dynamic process with 
given r, we use the night-end values found in the dynamic 
process with the previous value of r. The calculations are per- 
•brmed using a fifth-order Runge-Kutta method with a relative 
precision of 10'?s. To avoid transients, the Errst 100 periods 
are neglected; the next 100 periods form the bifurcation dia- 
gram. The r step used tbr bifurcation diagram formation is 
equal 10 '3 ppmv. As shown in Figure l a, when the H20 mix- 
ing ratio is either small enough (r<rl=l.5 ppmv) or large 
enough (r>r2=5.3 ppmv) the bifurcation diagram is single- 
valued; that is, the variations of the chemical species have a 1- 
day period. Figures 2a and 3a show examples of diurnal 
variations of the atomic oxygen (solid curve) and atomic hy- 
drogen (dashed curve) concentrations calculated for low (r=l 
ppmv) and high (r=7 ppmv) values of the H20 mixing ratio, 
respectively. The asterisks and circles along the abscissa mark 
the moments corresponding to sunrise and sunset, respec- 
tively. A typical tEature of the simulated diurnal variations of 
the chemical species is an increase in concentrations of both 
the atomic oxygen and all the hydrogen compounds during the 
daytime and their decrease during the nighttime. The reason 
for this is that the main source of the hydrogen compounds 
and atomic ox3,gen is the photolysis of the H20 (reaction (R7)) 
and 02 (reaction (R8)), respectively, which is absent during 
the nighttime. For intermediate values of the H20 mixing ratio 
(r•<r<r2) we find different multiperiodic regimes and three re- 
gions of chaotic behavior, which can be seen in Figure l a. An 
example of a double-periodic solution (with r=4.3 ppmv) is 
presented in Figure 4a. It should be mentioned that the bifur- 
cation diagram also reflects an interesting effect, that two dif- 
ferent dynamic regimes can correspond to the same value of 
the control parameter. In particular, from Figure l a and, much 
more clearly from Figure l c , where the abscissa scale is 
stretched, it follows that near the left boundary of the region of 
nonlinear dynamic behavior (r•r•) the single-periodic regime 
coexists with a triple-periodic regime and, with increasing r, a 
six-periodic regime. For greater r, we obtain successively (1) a 
double-periodic regime coexisting with six- to twelve-periodic 
regimes (the accuracy of our calculations does not allow us to 
resolve subharmonics of a higher order) and a chaotic regime, 
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Figure 1. Bifurcation diagrams for (a) the original and (b) the essential dynamic models, and enlarged pro- 
jections of corresponding pieces of (c) Figure l a and (d) Figure lb. 

(2) four- and eight-periodic regimes coexisting with the cha- 
otic regime, and, finally, (3) two different coexisting chaotic 
regimes. This behavior is known as a hysteresis et2•ct because 
the changes of the control parameter in opposite directions 
(either increasing or decreasing) are accompanied by different 
sequences of the bifurcations. The last feature of the bifurca- 
tion diagram that we note is the character of bifurcation for 
r=r] (that is, at the left boundary of the multiperiodic region) in 
the case of decreasing magnitude of r. A return of the system 
from multiperiodic to single-periodic regime follo•vs a reverse 
succession of period doubling. As r decreases from r=r3=_l.7 to 
r=r]_=l.6 (see Figure l c), we first obtain a change-over from 
the chaotic regime to a twelve-periodic regime, and, further, to 
a six-, a three-, and finally, a one-periodic regime. An irregu- 
lar vertical dotted line on the left side of the bifurcation dia- 
gram, confining the region of the multiperiodic regimes, is a 
reflection of a very long (much longer than 100 periods) tran- 
sitional process. We would like to emphasize that the time in- 
terval equal to 100 periods used t;3r formation of the bifurca- 
tion diagram was t:bund to be long enough to suppress the 
transition processes tbr all other regimes reflected in the bifur- 
cation diagram. 

period cascade; (3) have the immediate neighborhood of the 
triple-periodic and chaotic regimes in the bifurcation diagram, 
and (4) demonstrate the hysteresis effect. Naturally, because of 
a significant diftbrence between the parameter values involved 
in the models, full coincidence of the dynamic properties could 
not be expected. In particular, the bifurcation diagram of our 
system has (1) slightly different regions of magnitudes r, cor- 
responding to the multiperiodic and chaotic behavior, (2) more 
chaotic bands, and (3) specific succession of the dynamic re- 
gimes when r is both increasing and decreasing in the band 
t•om r= 1.5 to r=2.1. 

2.2.2. Correlation dimension. As we have mentioned 

above, the considered system can e 'xhibit chaotic behavior. It 
is 'known that the chaotic behavior of the system allows us to 
define some invariant characteristics for this system which do 
not depend on a particular dynamic process (see, for example, 
the review by ,4barbanel [1997]). These characteristics can be 
used for classification and comparison of various dynamic 
systems. Furthermore, they provide valuable inforrnation for 
simplifying the given dynamic system. For the mesospheric 
PCS we consider two such characteristics: a fractal dimension, 

or more specifically a correlation dimension, and a minimum 
It is very important that most significant dynamic properties embedding dimension, which are discussed in this and the 

of the set (1)-(5) are similar to those of the system investigated next sections, respectively. 
by FS and SF. Both systems (1) possess an identical set of the An arbitrary chaotic phase trajectory fills a definite region 
possible forms of dynamic behavior, (2)exhibit a doubling- of the phase space, called a chaotic, or strange attractor. 
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nition [Moon, 1987] and, in particular, a correlation dimen- 
sion. A correlation dimension (v) is defined by the equation 

log(C()) 
' 

where C(e) is 'known as the correlation integral and is def'med 
by 

C(g)= lira N 2 j• •9 6-- N --->m • 1 , -- 

Here 0(x) is the Heaviside function, which is equal to either 0 
for x < 0, or 1 tbr x>0 112'- •¾.., denotes the distance between 
the points •¾, and• of the chaotic attractor, and N is the num- 
ber of points. It is clear that the magnitude of the correlation 
integral is proportional to the number of attractor points that 
are separated by a distance which does not exceed ,. A value 
of s is chosen so that log(C(s)) is a linear function of log(,). A 
detailed discdssion of the correlation dimension can be found 

in original papers by Grassberger and Procaccia [1983a,b]. 
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Figure 2. Diumal variations of the atomic oxygen (xl) (solid 
line) and atomic hydrogen (x2) (dashed line) in a 1-day period 
regime with r=l ppmv tbr (a) the original and (b) the essential 
dynamic models. The asterisks and circles along the abscissa 
mark the moments corresponding to sunrise and sunset, re- 
spectively. 

(Recall that the phase space of the dynamical system refers to 
an imaging space, whose coordinates are dynamic variables, 
that is, concentrations of the chemical species in our case. A 
phase trajectory is a curve tbrmed in the phase space by points 
corresponding to consecutive instantaneous states of the sys- 
tem during a given dynamic process.) A fractal dimension of 
the chaotic attractor is a characteristic of the geometric shape 
of the attractor and relates to the way points of the attractor are 
distributed in the phase space. Generally, the fractal dimen- 
sion d satisfies the tbllowing relation 

where s is small. Here N(s) is a characteristic of the number of 
attractor points inside a cube with edge length s. There are 
several types of fractal dimension according to the N(,) deft- 
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Figure ]. The same as in ••½ 2, b•t w•th r=? ppmv. 



FEIGIN ET AL.' N(-)NLINEARITIES IN ATMOSPHERIC PHOTOCHEMIS•Y 25,453 

• O' ,E 1 • 
v 

r-- 08 - • 1 

ß 07 - • 1 

10 6- 
_ 

- 

, I , I , ! , I , L 

t " /" "• 

•1 I I 
I I 

I I I I I I 
I i, 

I I 

& I 

I 

50 100 150 200 250 

time (hours) 

, I , I , I , I J . 
_ 

0'ø2_ b 

,• 10 •- 
,? 

o 0 % •' 1 
e- : 
0 - 

:,• - 

m 0 7 - 
• - 

r-- = : 
I• , - 

0 10 , , • i 

i i I i Iii 
10 ',, ,' , 

I I I I 

, 

0 50 100 150 200 250 

time (hours) 

Figure 4. The same as in FJgure 2, but œor a 2-day periodic 
reg•e with r =4.3 ppmv. 

the same magnitudes of the correlation dimension for two 
other regions of chaotic behavior shown in Figure l a. These 
two regions are separated more clearly in Figure l c, where the 
abscissa scale is stretched. The calculations of the correlation 

dimension for these regions •vere carried out for r=1.75 and 
r= 1.85 (,ppmv). 

The value of the correlation dimension which we obtain 

implies that the chaotic attractor in the considered six- 
dimensional phase space fom•s a two-dimensional surface. 
Consequently, if we consider a 'stroboscopic' section of the 
attractor in five-dimensional phase space, that is, the attractor 
points corresponding to a definite moment of a day, we find 
that this section has a linear fractal structure. Indeed, it is easy 
to understand that a chaotic attractor of the system with peri- 
odically changing parameters is evenly 'smeared out' over the 
time axis, so the fi'actal dimension of the 'stroboscopic' sec- 
tion should be less by a unit than the one for the full attractor. 
The structure of the projection of the attractor 'stroboscopic' 
section on the plane (x•-x2) for the moments corresponding to 
the end of the night is shown in the Figure 6a. In other words, 
the points on Figure 6a depict values of atomic oxygen and 
atomic hydrogen as they appeared in the chaotic dynamic 
process at the end of the night. 
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Note that fractal dimensions and, particularly, the correlation 
dimension give an estimate tbr the minimum number of cou- 
pled equations which are necessary, to describe the behavior of 
the system. The correlation dimension is •¾equently used in in- 
vestigations of various dynamic systems [Abarbanel, 1997]. 
In particular, this characteristic was applied to study the dy- 
namic behavior of atmospheric ozone [Yang et aL, 1994] and 
to the comparison of models describing dynamics of the tro- 
posphere [&rudermeyer and I/allis, 1993]. For the 
nonautonomous system (1)-(5) we calculate the correlation 
dimension of the chaotic attractor considered in the six- 

dimensional phase space which includes time as one of the 
coordinates. Figure 5a shows the calculated dependence of 
log(C(a)) on log(a) for the value r=2.8 ppmv corresponding to 
the rioe4htmost chaotic region in Figure l a. The region in Figure 
5a where the above values are proportional is marked by a 
solid straight line. The slope of that line gives the value of the 
correlation dimension: v=1.93_+0.02. Our calculations yield 
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Figure 5. Dependencies of the correlation integral C(•) loga- 
rithm on log(,) (see section 2.2.2) for (a) the original and (b) 
the essential dynamic models. 
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Figure 6. The structure of the projection of the attractor 
'stroboscopic' section on the plane (x]-x2) for the moment cor- 
responding to the end of the night (a) for the original model 
and (b) for the essential dynamic model. 

The rather small value of the correlation dimension which 

we obtain allows us to infer that only three coupled equations 
are necessary to simulate the observed dynamic behavior of 
the system (1)-(5). Indeed, it is known that systems of dimen- 
sion less than three can not exhibit deterministic chaotic be- 

havior. This means that the minimum number of coupled 
equations in the system with periodically changing parameters 
is two, as the third equation can simply correspond to the time 
periodic dependence of the parameter values (see, for example, 
Moon [ 1987]). 

2.2.3. Minimum embedding dimension. The minimum 
embedding dimension is discussed in detail, for example, by 
Abarbanel [1997]. As thr as we 'know, this characteristic has 
not yet been used for studying the atmosphere. A minimum 
embedding dimension (dE) can be def'med as the minimum 
number of coordinates of an arbitrary. phase subspace where 

the phase trajectory belonging to the chaotic attractor does not 
have any overlaps. This definition assumes, in particular, that 
the value of the minimum embedding dimension is always an 
integer. In other words, once d•. is determined, we obtain im- 
mediately the minimum dimension of a system which can de- 
scribe the considered chaotic motion. To calculate dE we use a 
so-called 'false neighbor' method [Kennel et al., 1992]. False 
neighbors are points belonging to the chaotic attractor which 
are close in the phase subspace of a relatively low dimension, 
but well separated in the phase subspace of a higher dimen- 
sion. The minimum embedding dimension is equal to the di- 
mensionality of the phase subspace where the number of false 
neighbors is negligible. The procedure of calculating dE can be 
briefly described as tbllows [Abarbanel, 1997]. 

Using the time series of the observed variable x(t) (x] in 
our case), a phase portrait can be reconstructed with delay co- 
ordinates, that is, a point on the attractor is given by a data 
vector yk={X(tk), x(tk+l:) .... x(tk+(d-1)'c)}, where d is a pre- 
sumed dimension of the phase space and 'c is an almost arbi- 
trary chosen delay time. Then the nearest neighbor (in the 
Euclidean sense) to this point is to be found and will be a 
vector y,={x(t,), x(t.+z) .... x(t,+(d-1)z)}. In going from the d 
to d+l dimension the additional component of the vector Yk is 
x(tk+d'c), and that of the vector Yn is x(tn+dz). Comparing the 
distance between Yk and Yn in a space of dimension d with 
distance in the dimension d+l (this should be done for all 
available pairs Yk and y,), we can establish the true and false 
neighbors. The dit•brence between these distances relative to 
the distance in dimension d is expected to be rather small for 
the true neighbors, while this value for those vectors whose 
neighborhood in dimension d is just a result of a projection 
from a higher dimension, that is, for the false neighbors, is ex- 
pected to be much greater. The procedure is quite insensitive 
to the concrete reasonable value of the threshold used to sepa- 
rate the true and false neighbors. A definite threshold value is 
chosen according to recommendations of Kennel et al. [1992]. 
It is expected that the percentage of false neighbors will drop 
from nearly 100% in dimension one to almost zero when the 
true dimension value, d•., is reached. 

The results of calculations for the system (1)-(5) presented 
in Figure 7a show that d•.=3. This value is in complete agree- 
ment with the result for the correlation dimension from section 

2.2.2. 

2.2.4. Equilibrium state. As mentioned above, the dy- 
nantic process simulated for the time-dependent (nonauto- 
nomous) system with regard to the stepwise character of (6) 
can be presented as successive dynamic processes described 
by the time-independent (autonomous) systems corresponding 
to the daytime and nighttime situations. The traditional 
method of investigating the dynamic properties of nonlinear 
systems is based on studying the structure of the phase space 
of the system [Andronov et al., 1966]. All qualitative peculi- 
arities of the behavior of the system are reflected in its phase 
space structure. For example, self-oscillations correspond to a 
limit cycle in the phase space, and the monotonic transition 
from the arbitrary initial state to the same equilibrium corre- 
sponds to the only equilibrium state of a stable node type in 
the phase space of the system. The numerical investigation of 
the phase space of the system tbr the daytime conditions 
shows that the structure of the system phase space is deter- 
mined by a single equilibrium state. So, in this case the quali- 
tative peculiarities of the system behavior are completely de- 
termined by the type of the equilibrium state, which in turn is 
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Both numerical and analytic considerations show that all 
phase trajectories in the phase space of the system corre- 
sponding to the nighttime conditions converge to the equilib- 
rium state of the degenerate stable node type, where xi,2,4=0 
and x3 and x5 are arbitrary constants determined by the initial 
conditions of the nighttime evolution. The fact that the equilib- 
rium states are stable and unique in both the daytime and 
nighttime subsystems unambiguously testifies that both sub- 
systems are stable and that the complicated dynamics of the 
original nonautonomous system cannot be attributed to insta- 
bility of the autonomous subsystems. 
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Figure 7. The dependencies of the false neighbor numbers on 
the embedding dimension for (a) the original and (b) the es- 
sential dynamic models. 
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determined by the eigenvalues (the roots of the characteristic 
equations of the linearized system). In our case the set of 
equations is of the fifth order and has five different eigenval- 
ues. Numerical investigations reveal that we have the equilib- 
rium state of the stable focus-node type. The stable focus be- 
havior of the phase trajectories corresponding to the damping 
oscillations of the variables is determined by the pair of com- 
plex conjugate eigenvalues X1,2=Re(,)+ilm(X), Re(X) and 
Im(X),•0, where i is an imaginary unit. The stable node be- 
havior of the phase trajectories corresponding to the exponen- 
tial monotonic approach of the system to the equilibrium state 
is determined by the three real eigenvalues. The magnitudes of 
the eigenvalues corresponding to the node type are much 
greater than those corresponding to the focus type. Because of 
this, the process of adjustment of the system to the equilibrium 
can be arbitrarily divided into two successive stages. During 
the first stage the fast responses with typical times of 10•-102 s 
corresponding to the real eigenvalues drive the system to a 
quasi-equilibrium state. After that, in the second stage the 
slow motions with typical times of 104-105 s corresponding to 
the complex eigenvalues take place. So, the system behavior 
visible at the longest timescales corresponds mostly to the 
'focus' behavior of the phase trajectories. Figure 8a shows the 
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Figure 8. Dependencies on the parameter r of the character- 
istic damping time of perturbations in the vicimty of the equi- 
librium state (solid line) and of the period of oscillations about 
the equilibrium state (dashed line) for (a) the original and (b) 
the essential dynamic models. 
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2.3. Remarks About Suitability of the Chosen Original 
Model 

Note that the previously mentioned specific tasks of our 
study (see section 1.5) have determined our using as an origi- 
nal model not a complete photochemical model, as suggested 
in section 1.4 for the most general case, but an already simpli- 
fied model, described in section 2.1, analogous to that used by 
FS and SF. As shown below, this model is yet a subject for 
further significant simplification from both the chemical and 
mathematical points of view. Due to this, the chosen original 
'model is well suited to the first task of our study. 

The chosen original model is also well suited to the second 
specific task of our study formulated in section 1.5, conceming 
the investigation of nonlinear efIEcts revealed by FS, since our 
original model demonstrates those effects. In principle, there is 
a possibility that if the essential dynamic model were elabo- 
rated from the more complete photochemical model taken with 
the same parameter values, it would differ from the essential 
model presented below. However, our consideration of the 
processes involved in the original model, in connection with 
general notions regarding photochemistry of the mesosphere 
as they are described, in particular, in the book of Brasscur 
and Solomon [1984], shows that our original model includes 
all processes of the mesopause region which provide a major 
contribution to the dynamics of the species involved in the 
model. Thus, we consider the mentioned possibility as rather 
unlikely. 

At the same time, it is possible that the presented essential 
dynamic model may require some corrections in situations 
when a significantly different set of parameters is considered 
(see also related remarks in section 3.1.3). It should be noted 
also that our study concems the basic dynamic properties of 
the photochemistry itself} that is, taken separately from the 
other atmospheric processes. Other atmospheric factors can be 
analyzed on the basis of the essential dynamic model as sug- 
gested in section 1.5. 

3. Essential Dynamic Model of the Mesospheric 
Photochemical System 

3.1. The Procedure of Elaboration of the Essential Dynamic 
Model for a Photochemical System 

3.1.1. Preliminary remarks. The equations of the essen- 
tial model can be obtained using the conceptually standard 
approximate procedures which are used for elaboration of 
adequate mathematical models of various dynamic systems. 
These procedures are the successive asymptotic expansion of 
the right-hand sides of the equations in terms of small pa- 
rameter/parameters and separation of the variables according 
to their characteristic times. The question of the correctness of 
the asymptotic expansion in the noted procedures has been 
considered first by Andronov and Pontryagin [1937]. In par- 
ticular, they introduced the important notion of the rough dy- 
namic system [see also Debaggis, 1952], that is, the system 
whose dynamic behavior does not change qualitatively under 
f'mite changes of the fight-hand (nondifferential) sides of the 
set of differential equations describing an evolution of vari- 
ables. The validity of this procedure is proved by means of a 
series of theorems (see, for example, Andronov et al. [1973]). 
The main theorem is one stating the continuous dependence of 
the solution on changes of both the right-hand parts and initial 
conditions. A derailed description of various definitive meth- 

ods of an asymptotic expansion for a system with one degree 
of freedom can be found in the work by Nayteh [1981]. 

The second procedure connected with a successive separa- 
tion of variables according to their characteristic times has 
been suggested first by Feigin [1955] for description of the so- 
called discontinuous oscillations in some radio-technical sys- 
tems. This procedure leads to the maximum decrease of the 
order of the set of differential equations that still retains its 
ability to describe adequately the processes investigated. An- 
dronov et al. [1966] suggest various examples of using this 
technique for mechanical and radio-technical systems. Haken 
[1978] uses a particular case of this procedure, which is 
named by the author as the method of an adiabatic approxi- 
mation, for analysis of a number of various systems of differ- 
ent nature, and, in particular, for chemical systems. 

We discuss in this paper an application of these procedures 
to the case of the dynamic system describing the evolution of 
chemically reacting components. To be correctly simplified, 
such systems, generally, require simultaneous application of 
both of the above noted procedures. Although we are sure that 
neglecting some small factors in the right-hand parts of the 
corresponding equations precedes any application of the vari- 
able separation procedure to any real system, we have not yet 
succeeded in finding any publications describing such com- 
bined application. Below we suggest a step-by-step procedure 
that combines the two particular procedures discussed above 
in their application to the specific case of atmospheric photo- 
chemical systems. It should be noted that in this paper we 
limit the description of the procedure to the most typical situa- 
tions in atmospheric photochemistry. The suggested procedure 
may be advanced for possible specific situations without any 
principal problems. 

3.1.2. Step-by-step procedure. The procedure assumes 
the following successive steps. 

1. The considered system is first converted into dimension- 
less form. The source system can be written as 

d xi '•J•(xl .... xn, O, i=1 2 .... n, (7) 
dt ' ' ' 

where xi is the concentration of the reagent i andf•(x• ..... Xn, t) 
is a function describing chemical sources and sinks of the rea- 
gent i. 

dzi 
r•-•- t =g,o(Z• .... Zn, O+;6'•g•(Z• .... Z• O+36.2g,2(Z• .... Z• 0 + .... 

(8) 
Here zi=xi/xc,, where xc• is a characteristic value of the variable 

x•;/4•, /4.2 .... are dimensionless small parameters, such that 
/4:•+•<</&, g,•<< 1, i= 1 .... n. The functions gv(z• .... Zn, t) have 
a magnitude of the order of unity. The quantities r• represent 
typical times of changing values of variables z•. Here, these 
times are estimated within the flamework of a separately con- 
sidered equation for the reagent i. The last is important, as 
below we show that the typical time of the variable change 
with evolution of the whole system can significantly differ 
from •. 

2. We next simplify the set of equations. In the majority of 
cases, but not always, to preserve the relationship of the dy- 
namic properties of the simplified model and those of the 
original model, it is necessary to take into account only the 
greatest terms in (8), having assumed/•j=0 for all i andj. As a 
result, we obtain the set of the following equations: 
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d zi 
r• • = g,o(Z, .... z,• t) (9) 

Below we refer to these equations as the zero-order equa- 
tions. 

3. We then separate variables z• into three groups according 
to values of their typical times r•. Let us study the dynamics 
with typical timescale rs. Then, the variables with r•>>rs are 
considered to be the parameters of the system, so we assume 
for the corresponding variables z,=const. The variables with 
r,<<rs are considered to be fast and are supposed to be in a 
state of instantaneous equilibrium. Values of the fast variables 
are found from the set of algebraic equations obtained from 
equations (9) for z, under the condition dz,/dt=0. For the slow 
variables, tbr which r•-rs, we consider (9), in whose right-hand 
sides we substitute the values of the fast variables as functions 

of the slow ones, obtained from the derived set of algebraic 
equations. In doing so, we arrive at the desired simplified 
equations adequately describing the original system dynamics 
with typical times 

4. The zero-order approximation is insufficient in the case 
where the set of algebraic equations for the fast variables is 
underdetemGned because some of the equations are linearly 
dependent. Consequently, the solution of this set of equations 
depends on one or several constants. For a dimensional form 
of equations these constants are equal to the sum of concen- 
trations of a minimum number of linearly dependent fast com- 
ponents with integer (positive or negative) weight factors. 
Specifying the constants as xf and numbering them by index j 
we can write 

m 

x•= Z a•xi•, (10) 
k:l 

where m is the number of linearly dependent equations for the 
fast variables which determine the constant/constants, ik are 

indexes of variables in the original system, and ak are weight 
factors, which must satisfy the condition 

m -•gi,o = 0 (1 1) k:l 

Note that usuallya•=l. Obviously, the magnitudes of x4 can 
be considered as constants during the time r < r•q, where iq is 
the index of the slowest of the m fast components. So, values 
xj can vary at timescales greater than riq. A temporal evolution 
of x/• is described by the equations derived from the original 
dimensionless set of equations (8) as the result of summing m 
equations for concentrations of the corresponding components 
z,• with the weight factors aO:c,•r,a '• (see (10) and (11)). In (8) 
one has to take into account the terms proportional to/•i•, since 
the greatest terms are canceled due to the linear dependence of 
the zero-order approximation equations. The equations for a 
dimensionless value zj=x4/xcj, where 

m 

xc•= 
k=l 

is a characteristic value of x4, are 

dz• 
r••-- = g•(z, .... z•, t). (12) 

Clearly, the typical time r4 of z4 changes is of the order of 
r,q/fi•q•. The new variables also should be separated in accor- 
dance with their typical times (see item 3). If some of these 
new variables are relatively fast (when r,.q <<r4<<r,), then we 

have to solve the set of corresponding algebraic equations for 
these variables. It is possible that again some equations for x• 
are linearly dependent. In this case, consideration of the equa- 
tions which include the terms proportional to/,t•2 is required. 
These equations can be obtained using a procedure analogous 
to the one described in item 4. Such an iterative procedure 
should be continued until all newly der'reed variables are either 
(1) fast and linearly independent (r4<<rs), (2) slow (r4•r,), or 
(3) parameters (r•>>r,). The desired essential dynamic model 
includes all simplified equations for the slow variables. 

3.1.3. Some concluding remarks. We make three obser- 
vations concerning the above suggested procedure. 

1. Note that the validity and possible application of the 
above suggested procedure do not depend on the number of 
species or chemical processes involved in the zero- 
dimensional photochemical models which are subjects of sim- 
plification. Indeed, neither the combined procedure nor the 
separate procedures assume any restrictions on complexity or 
number of degrees of freedom of the system to be simplified. 
Our choice of a comparatively simple version of the original 
model is discussed in the introduction. 

2. The suggested procedure may require a special correc- 
tion, if fast variables perpetually oscillate and the amplitude of 
their oscillation is comparable with their equilibrium values. 
In dissipative systems (in particular, chemical ones), such os- 
cillations can be either self-oscillations (examples of self- 
oscillations in the atmospheric PCSs models are discussed, in 
particular, by Krol [1995], Stewart [1995], and Feigin and 
Konovalov [1996]) or forced oscillations, discussed, in par- 
ticular, in this paper. It should be emphasized that in the case 
of forced oscillations, no correction is necessary for the typical 
atmospheric photochemistry situation where the characteristic 
times of the fast variables are much less than the period of os- 
cillations. In particular, such a situation takes place in the case 
of diurnal variations of atomic oxygen in the stratosphere, 
which indeed exhibits very strong oscillations, but does not 
stray far from equilibrium (either daytime or nighttime) during 
a major part of its diurnal course. In the opposite situation 
(when the characteristic times of fast variables are much 
greater than the period of oscillations), a correction is also not 
necessary because the amplitude of the oscillations cannot be 
significant under such conditions. A special consideration is 
indeed necessary in the intermediate situation, which appears 
to be rather rare in the atmosphere. An example of such a 
situation is shown to take place in the case of the diurnal 
variations of N20• [Brasscur and Solomon, 1984]. Note that 
different methods of handling fast oscillations in the equations 
for slow variables have been well studied in classical me- 

chanics [Landau and Lidghits, 1973]. It should be particularly 
emphasized that an analysis of oscillations themselves does 
not require any correction of procedure; an example of such an 
analysis is given in this paper. Note also that the basic ideas of 
the suggested procedure, such as an asymptotic expansion of 
the right-hand sides of the differential equations and a separa- 
tion of variables according to their characteristic times, are, no 
doubt, completely applicable for an analysis of the specific 
cases mentioned. 

3. The suggested procedure assumes a priori estimation of 
characteristic values of reagent concentrations. Those values 
are used to convert the system to dimensionless form (see item 
1 of subsection 3.1.2). The estimation can be carded out based 
on either observed data or model results. Naturally, the ob- 
tained characteristic values depend on values of the control pa- 



25,458 FEIGIN ET AL.' N(-)NLINEARITIES IN ATMOSPHERIC PH(-)TOCHEMISTRY 

rameters. Indeed, changes of the parameters may lead to 
quantitative changes of the characteristic values due to 
changes in the terms of equations containing the parameters. 
Especially strong changes of the characteristic values may oc- 
cur when the corresponding changes of parameters cause bi- 
furcations. Correspondingly, each given essential dynamic 
model adequately describes the dynamical properties of the 
original model for some limited region of the control parame- 
ters' values, which includes the control parameters' values 
used for estimation of characteristic variable values. Determi- 

nation of the limits of applicability of an essential dynamic 
model can be done by directly comparing the dynamic proper- 
ties of the essential and original models using, fu'st of all, their 
bifurcation diagrams. An example of such a determination is 
given below in section 3.3. 

3.2. Application of the General Procedure to Elaborating the 
Essential Dynamic Model of the Mesospheric PCS 

Following the procedure described above, we find for the 
mesospheric PCS that according to the zero-order equations, 
the only slow variable is x• and the other variables are fast. 
However, the zero-order approximation equations for variables 
x2, x4, and x5 turn out to be linearly dependent. Thus, we have 
to consider equations of the higher approximation for the 
newly defined variable x•=x2+x4+x5 (see (10)). A solution of 
the corresponding set of zero-order algebraic equations for x2, 
x4, and x• (it is enough to take any two of the three available 
equations) shows that x4,5<<x2, and, consequently x2•xf The 
last approximate equality means that the equation for xf actu- 
ally determines the dynamics of x2 when the fast dynamics of 
both x4 and x5 are taken into account. The typical time of x2 (or 
xf) according to (12) is shown to be 104 s. Thus, the variable 
x2, which is a fast variable according to the zero-order equa- 
tions, turns out, under a correct consideration, to be as slow as 
x•. Finally, the essential dynamic model of the mesospheric 
PCS describing dynamic processes with the typical timescales 
of 104-10 • s includes two equations for the slow variables x• 
and x2 : 

dx• 
= 3) 

dt 

d x2 = _j•22/x12.0.x;22/Xrl+ys(t)r. (14) 
dt 

Here s(t) is a stepwise function determined according to (6), 
a=2ao,/a=a9, (5=2a8, fl=2a3ao2/(asa4), o=2ao(al+a2)/as, y=2a?. 

We would like to emphasize again that (13) and (14) in- 
volve fast dynamics of the fast variables x3, x4, and xs. These 
fast variables are connected with the slow ones via the fol- 

lowing expressions: x4•a6x2/(a4)cl), xs•aox2/(as)cl), x3=a9xl/a16 
(daytime), and x3--const (nighttime). 

A definite value of x3 at nighttime cannot be found in the 
framework of the essential model, and, in fact, is not signifi- 
cant for the evolution of both x• and x2. As a consequence, the 
rather strong reactions (R12) and (R 16), which significantly 
influence ozone concentration, do not contribute to the evolu- 
tion of the essential model, and thus, to that of the original 
model. It should be noted that the overall result of a 'chemical' 

simplification of the original model is that the essential model 
incorporates only nine reactions (R1)-(R9) of 16 considered in 
the original one. 

Applying the procedure described above to the particular 
case of our system, we choose the typical variable values to be 

close to equilibrium values in the daytime system for r=2.8 
ß ̂ 10 -3 0 8 ppmv: Xc•,• i u cm , Xc2• 1 cm '3, x½• 108 cm '3, x½4• 107 cm '3, 

Xcs•l 06 cm '3. However, as follows, in particular, from the re- 
sults of numerical calculations presented in Figures 3a and 4a, 
the system can go far from its daytime equilibrium state dur- 
ing its diurnal variations. Such a strong variation of chemical 
components can change relations between the typical times of 
the components and result in the necessity to correct the 
model. Our estimations show that the approximations used for 
obtaining the simplified equations become quantitatively in- 
correct only during deep •drops' of the variable magnitudes at 
the end of the nighttime evolution. A special investigation re- 
veals that the dynamic behavior of the essential model dtmng 
these drops does not differ qualitatively from that of the origi- 
nal model. Moreover, a duration of the nighttime 'drops' 
smaller than 1 hour is negligible compared to the duration of a 
day (24 hours). Inasmuch as the elaborated essential model is 
intended to reproduce the qualitative dynamic properties of the 
original system, we assume that the equations obtained with 
the above characteristic values of variables can be used for an 

approximate description of the evolution of the whole system. 
The validity of this assumption, within certain limits, is sup- 
ported by a comparison of the dynamic properties of the origi- 
nal system with those of the simplified one (section 3.3). 

Note also that the mentioned possibility that the sum of 
certain component concentrations may vary much slower than 
each of these components separately is well known in the 
chemistry, of the atmosphere and provides grounds for the 
method of chemical families [Turco and written, 1974; Bras- 
seur and Solomon, 1984], which is widely used in modeling 
of atmospheric processes. This is related to the presence of fast 
chemical reactions in which the components involved in the 
chemical family are interconverted, while their total concen- 
tration is not changed. In our essential system such fast reac- 
tions are (R4), (R5), and (R6). The changes in the total con- 
centration of the chemical family members are determined by 
the other reactions, which are much slower. In our system, 
those are, first of all, (R1), (R2), and (R3), which determine 
the changes in the total concentration of the components OH, 
H, and HO2, which form the so-called 'odd hydrogen' family. 
Previously, we have suggested a more general procedure pre- 
senting a •nonchemical' method, which allows one to obtain 
the simplified equations, based on the following reasons: (1) 
The method of chemical families does not provide a maximum 
possible simplification of the sets of equations of chemical ki- 
netics. (2) The definition of the chemical families is based on a 
priori knowledge of peculiarities of the chemical processes in- 
volved in the system, and we have not succeeded in finding a 
description of a consistent and justified procedure to extract 
chemical families from an assemblage of chemical reagents in 
an arbitrary chemical system. Alternatively, we see that the 
chemical families which may significantly simplify the con- 
sideration of the system dynamics under a given timescale 
emerge naturally in the asymptotical procedure described 
above. (3) Since our objective is to create a set of simplified 
equations which possesses the same dynamic properties as the 
whole system, it seems reasonable to follow the approach used 
for that in other branches of physics. 

3.3. Dynamic Properties of the Essential Dynamic Model 

We study the same dynamic characteristics and properties 
for the essential model as for the original one. These charac- 
teristics and properties are described in section 2.2 and are 
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presented in Figures 1-8, with Figures l a-8a corresponding to 
the original model and Figures l b-8b corresponding to the es- 
sential model. In addition, the stretched pieces of bifurcation 
diagrams for the original and essential models are presented in 
Figures 1 c and 1 d, respectively. 

In particular, Figure lb presents the bifurcation diagram 
(see section 2.2.1) for the essential model. Comparing Figure 
l a and Figure lb, we can see that the region of the nonlinear 
dynamic behavior of the original model (1.5 ppmv<r<5.4 
ppmv) is close to that of the essential model (1.8 ppmv<r<5.9 
ppmv). The main dynamic regimes follow changes of the pa- 
rameter r in the same sequence for both the original and es- 
sential models for both increasing and decreasing magnitudes 
of 'r' (see also Figures 2- 4). Qualitative differences in dy- 
namical properties take place only within two narrow regions 
of values of the parameter r. For decreasing values of r, the 
difference takes place for the regions r•<r<r3 (Figure l c) and 
r'• <r< r'3 (Figure l d). In particular, in the essential model, 
there is a cascade of period doubling near the left boundary of 
the pointed region. The cascade leads to the extremely narrow 
region of chaotic behavior. In the original model, however, the 
sequence of the dynamic regimes near the boundary value r=r• 
is different. The transition from the chaotic regime to the pe- 
riod 1 oscillations goes consequently through the reverse cas- 
cade of period doubling and the period 3 regime. For increas- 
ing values of r, qualitative differences of the bifurcation dia- 
grams are significantly smaller: There is a region (r'4 <r< r'3 ) 
of period 4 oscillations in the diagram of the essential model 
which is absent in the diagram of the original one. 

A general reason for the differences between the essential 
and original models is discussed in section 3.1.3, item 3: The 
noted difference indicates that the presented essential model is 
not valid for control parameter values taken from the rather 
narrow region near the left boundary and that a special version 
of the essential model should be elaborated with the purpose 
of an adequate description of that region. The elaboration of 
that model, of course, can be achieved by using the previously 
suggested procedure and characteristic values of variables ap- 
propriate to the region of interest. We expect that the required 
special version of the essential model will be only slightly 
different from the model (13)-(14) discussed above. 

The correlation dimension (see section 2.2.2 and Figure 5 ) 
of the essential model is found to be 1.23_-+O.02. This value is 

smaller than that for the original model (1.93_+0.02). However, 
both values correspond to the linear structure of the chaotic 
attractor 'stroboscopic' section shown in Figure 6. The mira- 
mum embedding dimensions (see section 2.2.3) for both the 
original and essential models are exactly equal. This fact is 
additional evidence of a qualitative similarity of the both mod- 
els. 

A study of the equilibrium state (see section 2.2.4) for the 
essential model can be done analytically. The single equilib- 
rium state in the daytime subsystem is determined by the fol- 
lowing relations: 

2 C•x2o • c• X.,o + X2o + , x20 = -- (15) 
= 2 ( 537C 

The eigenvalues of the system linearized near the equilib- 
rium state are given by 

czyr 15: 13152 +1-1 (16) •,1,2 =--•-- l+i 2 : ß Trc•x•'o Trc• X•o 

It is easy to see that the eigenvalues correspond to either the 
stable node or the stable focus types of the equilibrium state. 
For conditions considered in this paper the equilibrium state is 
of the focus type. The results in Figure 8 point to, at least, a 
qualitative agreement between the equilibrium state properties 
for the essential and original models. 

The comparison between the dynamic properties and char- 
acteristics of the original and essential models confirms our 
guess that the model whose dynamic behavior is described by 
(13)-(14), can indeed be considered as the essential dynamic 
model of the mesospheric photochemical system. 

4. Conclusions 

In this paper we have attempted to elaborate and investigate 
the essential dynamic model of the mesospheric photochemi- 
cal system (PCS). As the original model we have used a 
model which is similar to that investigated by Fichtelmann 
and Sonnemann [1992] and Sonnemann and Fichtelmann 
[1997] and possesses a rich assortment of scenarios of dy- 
namic behavior. We have suggested a general way to reduce 
the original model of an arbitrary atmospheric PCS to the es- 
sential model using a step-by-step procedure. Possessing 
qualitatively the same dynamic properties and characteristics 
as the original model, the elaborated essential dynamic model 
is much simpler. In particular, the essential dynamic model of 
the mesospheric PCS includes a set of only two ordinary dif- 
ferential equations (ODEs) and nine chemical reactions, while 
the original model includes set of five ODEs and 16 chemical 
reactions. We have demonstrated the similarity of the essential 
and original models in their bifurcation diagrams, correlation 
dimensions, and minimum embedding dimensions, as well as 
equilibrium state characteristics. We believe that the elabora- 
tion of the essential model of' an atmospheric PCS is the first 
step necessary for studying the possibilities and mechanisms 
of the PC$ nonlinear dynamic behavior. The suggested proce- 
dure of obtaining the essential model and the model itself can 
be used for identifying and studying the mechanisms of non- 
linear dynamic behavior of the mesospheric PCSs and for 
solving a number of problems aimed at revealing nonlinear 
photochemical phenomena in the actual mesosphere. 
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