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Abstract 

The dynamics of 2an-kink solutions to the perturbed sine-Gordon equation (PSGE), propagating with velocity c near unity 
is investigated. Using qualitative methods of differential equation theory and based on numerical simulations, we find that the 
dependence of the propagation velocity c on the bias parameter y has a spiral-like form in the (c, 7) -plane in the neighborhood 
c = 1 for all types of 2nn-kink solutions for appropriate values of the loss parameters in the PSGE. We find numerically that the 
y-coordinates of the focal points, A”, of these “spirals” have a scaling property. So, it is possible to estimate the lower boundary 
of the parameter region where the 2nn-kink solutions to the PSGE can exist. The phase space structure at the points A’ for the 
corresponding ODE system is also investigated. The form of 2am-kink solutions in the neighborhood of the points A’ is explained 
and the dynamics is discussed. A certain combination of the dissipative parameters of the PSGE is shown to be essential. The 
dependence of the height of the zero field step of the long Josephson junction modeled by the PSGE is also obtained. 

1. Introduction quency, and subscripts denote partial derivatives. The 
loss parameters, cy and /3, are positive, and the bias 

The propagation of magnetic flux quanta (fluxons) 
on long Josephson tunnel junctions (LJJ) is important 
for understanding the non-linear dynamics of those sys- 
tems as well as for applications of LJJs in electronic 
systems [ l-31. The one-dimensional LJJ can be mod- 
eled by the perturbed sine-Gordon equation (PSGE) 
which in normalized form may be written as [ 41: 

parameter, y, typically lies in the interval 0 < y < 1. 
2rr-kink solutions to the unperturbed sine-Gordon 

equation were found by Perring and Skyrme [ 5].2rrn- 
kink solutions to Eq. ( 1) on the infinite and finite inter- 
val were obtained in Refs. [4] and [ 61, respectively, 
and named bunched solitons. Such bunched solitons 
have been studied numerically [7-l 1 ] , experimentally 
[8],andanalytically [lO,ll]. 

Here, cp(x, t) , is the quantum mechanical phase differ- 
ence [ 21, x is distance along the junction normalized 
to the Josephson penetration depth, t is the time nor- 
malized to the inverse of the Josephson plasma fre- 

2. Travelling wave solutions and phase space 

In the present paper we study travelling wave solu- 
tions (27rn-kinks, IZ 2 1) to Eq. ( 1) on the interval 
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$44 t> =rptn t (2) 

with & ct-x, where c (c > 0) is the propagation 
velocity. Inserting Eq. (2) in Eq. ( 1) we obtain the 
ODE system 

/3ci= -(l-c2)z+~cy+sin p-y, (3) 

where the dot denotes differentiation with respect to .$. 
Special attention will be devoted to bunched solitons 
with propagation velocity, c, close to unity. The Eqs. 
(3) were also investigated in detail in Refs. [ 12,131. 

As mentioned, we shall analyze Eq. ( 1) for an 
unbounded medium, when (Y, /3 are positive and 
0 < y < 1. In this case Eq. ( 1) has two groups of equi- 
librium states: stable 07 (q= ppl + 27rn) and unstable 
oi(q=7~-~4D1-!-27rn),wherecp,=arcsiny,n=0, +l, 
+ 2, . . . . 2n( i -j) -kink solutions “connect” states 0; 
and o’i (type I kinks) or states 0: and 82 (type II kinks), 
(i, j are integer, i > j) . As states 0; are unstable, we will 
pay more attention to 27~( i -j)-kink solutions of type 
I. 

In the phase space G = S * X R2 of Eqs. (3) there exist 
alternating saddle equilibrium points of two types: sad- 
dle-foci or saddles 0; ( cp = ‘pl + 2m, y = z = 0) with 
unstable one-dimensional separatrices, Wl;, and stable 
two-dimensional separatrices, Wi, as well as saddle- 
foci or saddles 0; ( rp = T - pol + 27~2, y = z = 0) with 
stable one-dimensional separatrices, W;, and unstable 
two-dimensional separatrices, W;. 

The homoclinic trajectories, i.e. the trajectories that 
are biasymptotic (t+ + ~0) relative to these points, 
may exist in the phase space G. By virtue of the cylin- 
dricity of G, a homoclinic trajectory may, in the general 
case, envelope a cylinder an arbitrary number of times, 
n, before it is closed. For IZ = 1, this trajectory (we shall 
denote it a one-loop separatrix or one-humped soliton 
solution) corresponds to an ordinary 2n-kink solution 
to Eq. ( 1) . For n > 1, this trajectory (we shall denote 
it an n-loop separatrix or n-humped soliton solution) 
corresponds to an 2mn-kink solution to Eq. ( 1). The 
2nn-kinks will be monotonic in the case of a saddle 
equilibrium point of Eqs. (3), or will have an oscillat- 
ing tail if the equilibrium point is a saddle-focus. 

Existence of multi-humped soliton solutions to Eqs. 
(3) (and, consequently, 2vn-kink solutions to Eq. ( 1) 
with n> 1) is analytically proven in Ref. [lo] and the 
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Fig. 1. Dependence of the propagation velocity, c, of the 2nn-kink 

solutions to the Eq. ( 1) on y (a = 0.05, p = 0.02). 

dependence of the velocity, c, on the bias, y, for such 
solutions was studied analytically and numerically by 
computer simulation. We show this dependence in Fig. 

1 ([lOI). 
Since it is difficult to show the image of the cylin- 

drical phase space G we will unroll it in order to obtain 
the phase space G” = R3. The n-loop separatrix (hom- 
oclinic trajectory) of the point O1 in G will then cor- 
respond to a heteroclinic trajectory Oy-, 0; in G*. 
Such solutions of Eqs. (3) correspond to 2nn-kink 
solutions (of type I) to Eq. ( 1). The dependence, c on 
y, for such solutions in the (c, 7) -plane is depicted in 
Fig. 1 and denoted by ll”. Similarly, the n-loop separ- 
atrix (homoclinic trajectory) of the point O2 in G will 
correspond to a heteroclinic trajectory 0; -+ 0; in G*. 
Such solutions of Eqs. (3) correspond to 2nn-kink 
solutions (of type II) to Eq. ( 1) . The dependence, c 
on y, for such solutions in the (c, y)-plane is also 
depicted in Fig. 1 and denoted by P”. 

In Fig. 1 only part of the bifurcation sets { rr) and 
{P} is depicted. We now define flC (Pi) as the part of 
1T’ (P' ) , where the corresponding equilibrium point is 
a saddle-focus with a positive saddle value. In the case, 
where multi-humped soliton solutions exist, the bifur- 
cation set in the neighborhood of fl,, PA contains, 
besides flk, Pi, an infinite number of other elements 
and there is a nontrivial hyperbolic set in the phase 
space [ 14-161. In particular, there exists a countabli: 
set of bifurcation surfaces that corresponds to the n- 
loop separatrices with n > 1, i.e. to 2nn-kink solutions 
toEq. (1). 
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Fig. 2. Part of the bifurcation set {IQ in the neighborhood of A’: (a) 

qualitatively, (b) numerically, a = 0.05, p = 0.02. 

This nontrivial bifurcation set occurs, if D’ goes 
through the region where the conditions: 

-(1-~~)*c~c*-4(1-~*)~K-4c~~~~~ 

- 18( 1 -c2)a~c*K+27~%*K2>0 

and 

a=Ai+Re A,>0 

are fulfilled. Here, K = cos cp, and hi are the roots of the 
characteristic equation for the equilibrium point 0,: 

,&h3-(1-~*)h2-~~h-K=0, A,>O. 

In this case the equilibrium point 0, is saddle-focus 
with positive saddle value, cr. 

Let us investigate more closely the structure of the 
bifurcation set, which corresponds to heteroclinic tra- 
jectoriesO~-+O~(n=1,2,...)intheregionc-l(see 
also Refs. [ 12,131) . For this purpose we numerically 
simulate Eqs. (3) using an algorithm, based on the 
analysis of the mutual arrangement of a one-dimen- 
sional unstable separatrix and a family of contactless 
surfaces in phase space G [ 171. 

It was found, that all elements of the bifurcation set 
in the (c, y) -plane in the neighborhood c = 1 look like 
spirals with foci in the points Ai (c = 1, y = y) (j = 1, 
2, . . .), (see Figs. 2-5). In Fig. 1 one can see, that in 
the (c, Y)-plane all the elements (except IT’) outside 
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Fig. 3. Part of the bifurcation set {II} in the neighborhood of A* 

(cr=O.O5, p=O.O2). (a), (b) and (c) show differentscales. 
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Fig. 4. The @‘-line. (a) Overview, (b) the part of the lower branch 

of I$’ in the neighborhood of A2’ ( a= 0.005, j3 = 0.027). 

the neighborhood c = 1 have a parabolic shape. These 
elements initiate and terminate in the points A’ and A’, 
respectively. Moreover, there are two variants: (a): 
i #j (for example, @, fl, @) , and (b) : i =j (I?, 
@). See Figs. 1 and 4. 

The elements of the bifurcation set {P} in the (c, 
7) -plane have an analogous behavior. They also initiate 
and terminate by spiral-like parts with foci in the same 
point Aj, as the respective elements from {m. This 
occurs for the following reasons: Eqs. (3) are reversi- 
ble when c = 1 [ 18,191 (i.e. invariant to the transfor- 
mation: cp + n - cp, c-+ - t, z -+ - z) . Consequently, 
if there exists a trajectory connecting the points 0’: and 

07, then, at the same values of the parameters, there 
also exists a trajectory, connecting the points 0; and 
OTn. 

So, according to the properties of the spirals, corre- 
sponding bifurcation set elements (i.e. with the same 
indices) intersect on the (c, y) -plane at c = 1 an infinite 
number of times. For example, Fig. 5 shows intersec- 
tions of 17l and Pi in the neighborhood of the point A’. 

3. The bifurcation structure 

In order to understand why the bifurcation lines cor- 
responding to n-loop separatrices with different n con- 
verge to a single point A’ (e.g. to A’: n = 1, 2; to A2: 
n = 2,3,4; toA3: n = 3,4; and so on), we shall consider 
the phase space G” of Eqs. (3) for parameters corre- 
sponding to point A’. In Fig. 6 the structure of G* for 
i = 1 is shown. 

The ‘ ‘intersection’ ’ of the unstable one-dimensional 
separatrix, WY, of the equilibrium state, Oy, and the 
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Fig. 5. Intersections of fl and P’ in the neighborhood of A’. 

Fig. 6. Phase space G* of Eqs. (3) for parameter values correspond- 

ing to A'. 
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stable one-dimensional separatrix, IV:, of the equilib- 
rium state, O:, yields in G* the heteroclinic trajectory 
1: Oy-+O: (w;nw,=l).The “intersection”ofthe 
stable two-dimensional separatrix, W i, of the equilib- 
rium state, O:, and the unstable two-dimensional separ- 
atrix, W;, of the equilibrium state, Oi, yields a 
trajectory ml: O:+O: (W;f~W;=rn,). Thus the 
“intersection” of the stable two-dimensional separa- 
trix, W i, of the equilibrium state, O:, and the unstable 
two-dimensional separatrix, W!& of the equilibrium 
state, O& yields a trajectory m,: Ob+ 0: 
( W i fl W; = mz) (for simplification no new index for 
W is introduced, because for a cylindrical phase space 
G such an index is meaningless). Let us consider the 
shapes of the one-loop separatrix and two-loop separ- 
atrix, corresponding to parameters of the p-line and 
the G-line, respectiveIy, in the vicinity of the point A'. 
In this case the one-loop separatrix first enters (in G) 
in the neighborhood of the Z-trajectory, and then con- 

tinues in the neighborhood of the m,-trajectory (see 
Figs. 6 and 7a). Similarly the two-loop separatrix enters 
in the neighborhood of the Z-trajectory, and continues 
in the neighborhood of the m,-trajectory (remember, 
that the I-, ml- and m&rajectories exist for point A’ 
parameters only). So, the one-loop separatrix in the 
neighborhood of A’ may be described schematically as 
O(: -+ 0: -+ 0:) and the two-loop separatrix correspond- 
ing to the G-line - as 07 -+ 0: + 0:. Similarly the two- 
loop separatrix, corresponding to the IZa-line in (c, 
r) -plane, may be described schematically as 
0: + 0: -+ 0; + 0: + 0: (the p-line is only shown 
qualitatively in Fig. 2a, because it lies very close to 
n’) . In the neighborhood of the point A2 this scheme 
looks as follows (see Fig. 7b) : for g: 0: --) 0% -+ O:, 

for I$: O~+Of-+O:, for IT: O~-+O~-+O:+ 
04 -+ o;“, etc. One may construct the phase space struc- 
ture for parameters of Eqs. (3) on the bifurcation set 
in a neighborhood of the other points, Ai, by replacing 
Oi, with Ui>l and adding between Oy,z and 0ril;i the 
appropriate number of points, Of,* (k= 1, . . ., j) (see 
Fig. 7). 

Let us investigate the shape of the n-humped soliton 
solutions to Eqs. (3) (and, consequently, the profile of 
the 2rrn-kink solutions to Eq. ( 1) ) in the neighborhood 
of the point Ai. Let j=2. The bifurcation lines in the 
(c, y)-plane, corresponding to 2-, 3-, 4-humped soliton 
solutions converge towards this point. Their profiles 
are depicted in Fig. 8 (see also Refs. [ 12,131) . In the 
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Fig. 7. Heteroclinic trajectories to Eqs. (3) in the phase space G* 

(qualitatively). (a) Trajectories e, f, g are l-, 2-, 2-100~ separatrix 

solution for the parameters of ZI1, fl, L@, respectively, in the neigh- 

borhood of the point A’. (b) Trajectories e, m:, rn: corresponding 

to parameters of the point A2. 7:. T$, q4 are 2-, 3-, 4-100~ separatrix 

solutions for the parameters of II& fl, @, respectively, in the neigh- 

borhood of the point A’. 

neighborhood of the point Aj a multi-loop separatrix 
“remembers” its “own” structure in Aj. So, in G*, a 
separatrix occurs “near” 1 and ml or m2, which exist 
for parameter values corresponding to the point Aj in 

the (c, y)-plane. Let VT<0 = Irp(0, y(Q, z(0 ] be a 
2-100~ separatrix, corresponding to @. For tincreasing 
from --to, ~7; emerges from O? (rp=~i, y=O, z=O), 
goes to the neighborhood of the point 0; ( rp = 5rr - rp, , 

y= 0, z=O), slows down its motion (the more the 
closer the parameters of the a-line lie to the A2 para- 
meters, @ being a saddle or saddle-focus eqmlibrium 
point), then returns to 0: as c--+ + cf. A 3-100~ separ- 
atrix, n:(c), corresponding to the parameters of the 
@-line in the neighborhood of A*, also emerges from 
Oi, also goes to the neighborhood of the point Oz, also 
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Fig. 8. Shape of the 2m-kink solutions to Eq. (1) (n=2, 3, 4) 

corresponding to the T$-, $-, @solutions to Eqs. (3)) respectively, 

in the neighborhood of the point A’. 

slows down its motion, and then approaches 0: as 

E+ +a. Thus this 3-100~ separatrix looks like a 
2rr(2+1)-kinksolutiontoEq. (l).The ~~(0 (a4- 
loop separatrix, corresponding to p-line) “consists’ ’ 
of two 2-100~ separatrices similar to 77:. Its behavior in 

the region Oy -+ 0: is similar to r$, but it “misses” 

0: and has a structure close to VT, which “connects” 

the equilibrium states 0: -+ 0: (because G is cylindri- 

cal). Thus the form of this solution looks like a 
2rr (2 + 2) -kink. 

It is clear, that an infinite number of solutions in the 
form of multi-loop separatrices appears from the point 
A’. For example, 2n{2+ (2+ l)}-, 27r{ (2+ 1) +2}-, 
2rr{(2+1)+(2+1)}-, 2n{(2+2)+(2+2)}- etc. 
kink solutions. Thus an infinite number of 2rrn-kink 
solutions with n > 1 initiates and/or terminates at this 
point and other equivalent points, Aj. The lines corre- 
sponding to these solutions lie in the (c, 7) -plane close 
to I& where the saddle value of the equilibrium state 

Oi is positive [ 14-161. Note, that the elements of the 
bifurcation set {m are situated, not according to loop 
number (as one can see, e.g., in Refs. [2,3] ), but 
mixed. The bifurcation set {P} has a similar complex 
structure as {n}. 

First, let us detach from the set ( D} the subset { Tr” } . 
Let this subset { KP} consist of the elements called U1 
and ny (n = 2,3, . . .) in Fig. 1. The common properties 
of the UT-line in the (c, Y)-plane and the solutions, 
corresponding to the points of these lines are the fol- 
lowing: (a) in the neighborhood of c = 1 the branches 
Q (n = 2, 3, . . . ) initiate and terminate by spiral-like 
parts with the foci in the points A”- ’ and A” (see Figs. 
2-4) : (b) all of the branches UT (n = 2,3, . . . ) outside 
of the neighborhood of c = 1 have a parabolic form (see 
Fig. 1) ; (c) the shape of the 2nn-kinks, corresponding 
to lJ’ with the parameters from the upper part of this 
‘ ‘parabola” looks like the 2n{ ( n - 1) f 1 }-kink solu- 
tion (see, e.g., Figs. 8 (n = 3) and 9a (n = 2) ) , while 
those with parameters from the lower part of this 
“parabola” look like the 2rrn-kink solution (see Fig. 
8 (n = 2) ) . The branch D1 does not have parabolic 
form. It initiates in the point (c = 0, y= 0) and termi- 
nates by a spiral-like part with focus in the point A’. 
We count it in the subset { l7* }, because the 2rr-kink 
solutions corresponding to the parameters of H1, have 
similar properties with respect to stability as the 2rn- 

kink solutions from the lower part of fly branch. 
All 2nn-kink solutions corresponding to the ele- 

ments of the set (J7) not included in { KP } are unstable. 
In the neighborhood of c = 1 only those 2Tn-kink solu- 
tions corresponding to parameters from the lower part 
of the branches fli (i = 2,3, . . .) and the line fl before 
the first turning point of these “spirals”, are stable. The 
2nn-kink solutions, which correspond to parameters 
from the lower part of the branches fli (i = 2, 3, . . .> 
and line Jl’ after the first turning point of these “spi- 
rals”, as well as the ones from the upper part of these 
branches, are unstable (see Fig. 10). (Similar results 
for 2T-kinks corresponding to the p-branch in the 
neighborhood of c = 1 were obtained in Ref. [ 131.) 

With the help of numerical simulation we studied It is easy to understand this instability of the 2m- 

the stability of the 2nn-kink solutions to Eq. (1) for kink solutions. In the neighborhood of the point A’ the 

the unbounded medium, corresponding to n-loop separ- n-loop separatrices are situated near O2 for a rather 

atrices of Eqs. (3) in the neighborhood of the points large E interval. So, appropriate 2rrn-kinks in Eq. ( 1) 

A’. Since the bifurcation set is very complicated and the have a part near the space equilibrium state 0: (see Fig. 

appropriate spiral-like part has a rather big decrement, 
it is difficult to study this problem in all details. But the 
main properties are as follows. 

4. The neighbourhood Of Ai 
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Fig. 9. Evolution of the initial distributions in the form of the 2mAink solutions to Eq. (1). a= 0.05, p = 0.02 for different values of 7. (a) 

~~0.71; (b) ~~0.677; (c) yEO.59. 

8). As already mentioned, this state is unstable. Con- 

sequently, such solutions, corresponding to the n-loop 
separatrices with the parameters from the neighbor- 
hood of Aj, are unstable. 

There are at least two different ways of destroying 
of the 2rrn-kink solutions to Eq. ( 1)) corresponding to 
the parameters of the dashed lines in Fig. 10. The initial 
conditions for Eq. ( 1) in the form of 2rrn-kinks can 

evolve into several 2rm,-kinks (ni + n2 + . . . + nj = n, 
j < n) , which disperse as time increases (Fig. 9a: n = 2, 
n,=n,=l; Fig. 9c: n=4, n,=n,=2). The unstable 
2nn-kink solution, can also evolve to the 2rrn-kink 
solution, corresponding to the lower branch of fl in 

region c < 1 (if it exists at the same parameter values 

of cy, p, y) (see Fig. 9b, n = 2). This evolution is 
schematically indicated by arrows in Fig. 10. 

All solutions of Eq. ( 1) in the form of 2rn-kinks, 
corresponding to n-loop separatrices with parameters 
of the bifurcation set {P} (or 2rn-kinks of type II) are 

unstable, since the space equilibrium states of Eq. ( 1) 
which are “connected” by such 2mn-kinks, are 

unstable. 
Let us study more closely the set of points Ai (j = 1, 

2, . . . ) , which are the foci of the spiral-like parts of the 
way: let 9 be the y-coordinate of the point A’ (c = 1, 
r=f) inthe (c, y)-plane;let q (i=l,2, . ..) betbe 
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b 

c= 1 

Fig. 10. Part of the bifurcation set (m to Eqs. (3) corresponding to 

the stable (solid) and unstable (dashed) 2m-kink solutions to Eq. 

( 1) (qualitatively). The arrow a illustrates the evolution of the 2an- 

kink with n = 2, depicted in Fig. 7b. 

maximum of yi (k= 1, 2, . ..). where {A”,, are the y- 
coordinates of the points { BL} . Here Bh are the inter- 
section points of the lower part of the branches ni, and 
the line c = 1 in the (c, r) -plane (see Fig. 10). Thus, 
{lower part of the n’,}n(c=l}={Bh (c=l, 
r=jk)}, q=max{jk}, i, k=l, 2, . . . . According to 
Figs. 1-4 and 10, the following inequalities hold: 
~‘>y’>~>J>...>T>~> . . . . 

We shall investigate the main properties of the sets 
{ -j} and { q}. We emphasize that from the mathemat- 

ical point of view the set { v} is important, because the 
bifurcation of co-dimension two takes place at para- 
meters of the points A’ in phase space, G, of Eqs. (3) 
(see Fig. 6). Also from the physical point of view the 
set { q] is important. On the LJJ, there are no travelling 

wave solutions, which can propagate with velocity 
c > 1. Thus stable 2mz-kinks require y < q, where 7 is 

the maximum of the bias y. Thus, q is the height of the 
appropriate ZFS for the LJJ. 

It is easily seen that Eqs. (3) for c = 1 is invariant 
under the transformation: @ & = D& CY + a, = Da, 
P+P,,=D3P, ‘p-+‘pn=q, y+y,,=D-‘y, z-+z,= 
D-*z, (D = constant > 0). It thus follows, that for all 
a@, pi-j which satisfy the condition (pi/ @)“’ 
( &la?) - ’ = D, = constant, the y-coordinates of the 
intersections of all appropriate elements of the sets {n} 

and {P} with the line c = 1 for different (Y, p are equal. 
Thus, for 2nn-kinks, which can propagate with velocity 
c = 1 along the LJJ, the quantity ME p 1’3cy- ’ is essen- 
tial. In Fig. 11 the dependence of T on M is shown. 

From the analysis of the parameter region in which 
the equilibrium state 0, is a saddle-focus with a positive 
saddle value and from the analysis of the results, 
depicted in Fig. 11, we see, that if M> M* = 1.324, 
2nn-kink solutions to Eq. ( 1) with n > 1 exist. If 
M < M*, only the 2n-kink solution to Eq. ( 1) exists. 
In last case the bifurcation sets {n) and {P} consist of 
only one element n’ and P’, respectively. For M < M* 
the p-lines in the (c, y)-plane are depicted in Fig. 12. 
These lines initiate at the point (c = 0, y = 0) and ter- 
minate on the straight line y= 1. If M’ GM < M* 
(where M’ = 1.232) a part of p extends into the region 
c> 1 (Fig. 12, lines 3-5). If O-CM-CM’, the Q-line 
does not intersect the straight line c = 1 (Fig. 12, line 
1) . For such M the maximum value of c for n’, cm=, 
decreases with increasing (Y or with decreasing p and 
satisfies the inequality c* <c_< 1 (where c* = 
?-(y2+&“*, r== 1.193). The value of c* is obtained 
from the properties of Tricomi’s curve [ 20,2 11. This 
curve corresponds to the existence of the connection of 
separatrices in the phase space of the dynamic system, 
which describes, in particular, a physical pendulum 
under constant torque in a viscous medium (see, e.g., 
Ref. [ 221) . Thus, for 0 <M < M’ the maximum prop- 
agation velocity of 2rr-kinks to LJJ is less than unity. 

5. The sets { y} and {q} 

In order to study the properties of the sets { yj} and 
{q} (i=l, 2, . ..) we introduce 6(i) and 8(i) in the 
following way 

i= 1, 2, . . . . 

In Fig. 13 the dependence 6 upon i for the first 12 points 
A’ is depicted. 

The value of j (i = 1,2, . . . ) can be obtained not as 
the focus of the spiral-like parts of the {m, but in a 
simpler way. As follows from Fig. 6, we have bifur- 
cation of co-dimension 2 in the points A’. Generally, it 
is rather complicated to obtain a bifurcation set of this 
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type, because in N-dimensional parameter space the 
dimension of this bifurcation is N- 2. But in the present 
situation, this task becomes easier since the c-coordi- 
nate of A’ is known. Thus it is necessary to vary only 
one parameter. The algorithm of finding yj may there- 
fore be the following: let us construct, in G, the plane 
D { rp= cp”, y, z E W) between Oy and 06; then, by 
numerical simulation of Eqs. (3), we determine the 
points L,,,: Wl; fl D = L,, Wq fl D = L,. Introducing the 
function d( 7) = 1 L,L, 1, we get d(f) = 0. 

One can see that the &dependence has the asymptote 
6 = 6*. We have also observed, that the ratio, S(i) and 
8(i), for the values of M we have investigated, are close 
to each other. The difference between them is less than 
0.1% and does not increase with increasing i or M. 
Thus the limit, lim,, +m s”(i) = 8*, exists too and 

6* = 6”. So, it is possible to use 8 instead of 6. This is 
important, because the set { q} is more easily obtained 
than the set { y}. As follows from the asymptotic 
behavior of the 6(i) and 8(i), the sets (_i} and (q} 
approximate a scaling law. 

In Fig. 14 the dependence 6* (and, consequently, 
6”“) on M is depicted. It is impossible by the method 
used in this paper, to obtain the exact value of S*. So, 
we have approximated it by 80’) (j N 10.. .30, depend- 
ing on value of M). One can see that S* increases 
monotonically with increasing M. It is easily under- 
stood that 6*(M) < 1 even when M tends to infinity. 
Using the results, shown in Figs. 11 and 14 we can 
estimate the height of the nth ZFS of the for n + ~0 (Fig. 
11, dashed line). 

6. Conclusion 

The 2Tn-kink solutions (n > 1) to PSGE with prop- 
agation velocity close to unity are investigated analyt- 
ically and numerically. The PSGE in the form of Eq. 
( 1) models, in particular, the LJJ. These solutions to 
Eq. ( 1) correspond to fluxons in the LJJ. By introduc- 
ing a moving frame coordinate, & the PSGE reduces 
into the corresponding ODE-system given by Eqs. (3). 
The n-loop separatrix solutions to this ODE correspond 
to 2Tn-kink solution to the PSGE and, consequently, 
to the tluxons on the LJJ. Thus, by analytic and numer- 
ical exploration of the ODE we investigate the shape 
and the dynamics of kink solutions for different para- 
meters in the PSGE. By numerical simulations of the 

PSGE, the stability of these solutions is also studied. 
The quantity M = p 1’3a- ’ is essential for the PSGE, 

and, consequently, for the LJJ. If M < M* = 1.324 only 
the 27rn-kinks with n = 1, can propagate along the LJJ. 
The dependence of the propagation velocity c of these 
solutions on the bias y has a simple monotonic form. 
If M> M*, the 2Pn-kinks with n > 1 can propagate 
along the LJJ. The dependence of the propagation 
velocity c of these solutions on the bias y has a very 
complex form. It consist of an infinite number of 
branches. The branches corresponding to 2Tn-kinks 
with different n are situated in the (c, 7) -plane not in 
order of n but they are mixed. All these branches have 
a spiral-like part in the neighborhood of the straight 
line c = 1 (in agreement with Ref. [ 131) . 

The dependence of the heights of the ZFSs on the 
LJJ parameters is also investigated. It is found, that if 
M<M’= 1.232, the height is constant and equals unity 
(in the normalized variables of the LJJ) . If M > M’, the 
height depends only on the number of the ZFS and on 
the parameters a and /3, only through the quantity M. 
It is also seen that the dependence of the ZFS heights, 
corresponding to propagation of 2rrn-kinks, on n, 
approximately obeys a scaling law. The value of the 
scaling parameter 8” depends only on the quantity M. 
Thus, it is possible to estimate the value of the height 
of the nth ZFS in the limit n + ~0. 

The calculations described here may in principle be 
compared to already published measurements of the 
ZFS in Josephson junctions. However almost all of 
those measurements are done on the so called overlap 
junctions, for which the solitons will have collisions 
with the boundaries and with each other. The finite 
length effects and the collisions are of course not 
included in our analysis. Another experimental system 
more suitable for a comparison between theory and 
experiment is the annular junction (corresponding to 
periodic boundary conditions), in which bunching may 
take place, and collisions may be avoided. The first 
published measurements [ 23,241 and subsequent more 
detailed measurements [ 8,9] show at least a qualitative 
agreement with the present analysis. 
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