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ABSTRACT
In this paper, we study the problem of decentralized learning in
sensor networks in which local learners estimate and reach consensus
to the quantity of interest inferred globally while communicating
only with their immediate neighbours. The main challenge lies in
reducing the communication cost in the network, which involves inter-
node synchronisation and data exchange. To address this issue, a
novel asynchronous broadcast-based decentralized learning algorithm
is proposed. Furthermore, we prove that the iterates generated by
the developed decentralized method converge to a consensual optimal
solution (model). Numerical results demonstrate that it is a promising
approach for decentralized learning in sensor networks.

The execution model on a decentralized sensor network and the workflow
of asynchronous computing.
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1. Introduction

In recent years much attention has been paid to the fully distributed (decentralized) consensus
optimization problem, especially in applications like distributed machine learning, multi-agent opti-
mization, etc. When big data is generated in a distributed fashion over a sensor network, decentralized
computing is considered to tackle the learning(estimation) problem since it will be very costly and
sometimes infeasible to gather all the raw data in the sensor network due to bandwidth and energy
limitation. In this scenario, data processing is highly preferred to be done in the network and close to
where the data is generated. Decentralized optimization is seen as a scalable approach to solve the
aformentioned problem of big data computing in sensor networks by leveraging the computational
capacity of all the nodes. In addition, it can balance the communication load among the nodes and
preserve the privacy of each node.
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The problem in this paper has a general form as follows. Consider an undirected connected network
G = (V , E) where V denotes the node set and E is the edge set. The size of network is m = |V|
(cardinality of the set V) and two nodes i, j are called neighbours if (i, j) ∈ E . Now each node (sensor or
agent) i privately holds an objective Fi : Rn → R, which describes the data and acquisition process at
node i. The goal is to find the global consensus solution x ∈ R

n to minimise the optimization problem
as follows.

min
x∈Rn

{
F(x) :=

m∑
i=1

Fi(x)

}
. (1)

In general, solving (1) in (wireless) sensor networks requires careful algorithm design. Broadcasting
is usually preferred in sensor networks since communication is more energy and time consuming than
computation. In addition, broadcasting can improve the consensus speed by diffusing information to
more nodes with the same amount of cost. However, huge amount of coordination is required for this
dynamic network if a synchronous algorithm is used. In contrast, an asynchronous method such that
each node can decide its action independently would be more appropriate in this situation.

1.1. Relatedwork

A number of synchronous methods have been proposed in the past years, see, for example [1–
11], and the references therein. If we want to apply the aforementioned algorithms into sensor
networks, synchronisation among neighbouring nodes is inevitably required. Furthermore, for each
node, it has to wait for its slowest neighbour in order to perform its own update. Distributed
optimization methods for asynchronous models have been designed in [12–14]. Wei [12] and Iutzeler
[13] leverage alternating direction method of multipliers for the computation part, and in each
iteration, one node needs to randomly wake up one of its neighbours to exchange information.
However, the communication schemes in these works are based on unicast, which is much less
preferable than broadcast communication, especially in real-world wireless sensor network scenario.
Work [14] proposes an asynchronousmodel for distributed optimization, while in its model each node
maintains a partial vector of the global variable. It is different from our goal of decentralized consensus
such that each node contains an estimate of the global common interest. The first broadcast-based
distributed/decentralized consensus method was proposed in [15] for consensus average problem
without objective. However, the generated consensus solution can not guarantee to be the true
average. Inspired by the push-sum algorithm in [16], several works have been done recently to
overcome the issue [17,18]. In [17], Iutzeler applies the push-sum algorithm into the broadcast gossip
model in [15], and develops an algorithm that requires the node to broadcast a pair of variables
(instead of only the solution variable) in the communication stage. This method enjoys not only the
similar convergence speed as the broadcast gossip in [15], but also the guarantee of converging to the
true average. While the broadcast-based works above are developed for consensus average problem,
it is essential to investigate problems with ‘real’ objective functions. Nedic [19] first fills this gap by
considering general decentralized convex optimization under the asynchronous broadcast setting. It
adopted the asynchronous broadcast model in [15] and developed a gradient-based update rule for
its computation.

1.2. Motivation and contribution

There are two important motivations and contributions of this paper. One is adopting the broadcast-
based communication, which is a preferred advantage with wireless networks. One transmission
can be received by all neighbours, hence the transmitter does not need to send to neighbours one
after another. It saves the energy and speeds up the convergence (since more nodes would be
performing update in one round). Another is asynchronous execution, which enables local nodes
to take actions independent of other nodes. Each node then does not need to wait for its slowest
neighbour for update, which is required in synchronous algorithms (the synchronisation is very costly
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and even infeasible in somenetworks). These settings are realistic for a class of practical sensor network
applications. To our best knowledge, we are among the first to propose them.

In this work, we modify Nedic’s algorithm [19] in order to fit the nature of applications in sensor
networks.Wepropose a suitable scheme,which ismore communication efficient thanNedic’smethod.
Our algorithm has higher complexity than Nedic’s algorithm in the first several iterations but it is
not the main concern here since the computation time in general is much less comparing to the
communication time. We also analyse and prove the convergence of the proposed decentralized
consensus algorithm in terms of objective function and disagreements between nodes. Simulation
results demonstrate that the proposed algorithm converges faster than the benchmark in terms of
number of communication rounds (total execution time).

1.3. Notations and Assumptions

Notation: Let x ∈ R
n be a column vector in problem (1), and xi ∈ R

n be the local copy held privately by
node i for every i ∈ V . Without further remark, vectors are all column vectors. Subscript k is outer iteration
number, which is also the number of communication.E( · ) denotes the expectation operator.

Each sensor node is assumed to have its local clock that ticks at a user-customised Poisson rate for
unit time, which is independent of the clocks of the other nodes. Each node broadcasts its current
estimate to its neighbours at each tick of its local clock. During broadcasting, each sensor receives
neighbours’ information subject to link failures. For example, when node i broadcasts, its neighbour
j will receive i’s iterate with probability pij . It is equivalent to consider a virtual global clock existing
in the network for the algorithm analysis. Since the Poisson clock of each node (suppose rate = 1)
is independent of each other, it is same as a global clock with Poisson rate m. We can then analyse
the problem given that in each global iteration only one node broadcasts its value. There are several
additional assumptions adopted in this paper as follows.

Assumption 1: The network G = (V , E) is connected. The link failure between node i and j is
independent of other links and identically distributed. The probability of a successful connection between
node i and j is denoted as pij .

Assumption 2: The solution set of (1) is nonempty. The private local objective function Fi , i ∈ V is
differentiable and convex.

Assumption 3: The gradient of function Fi is bounded such that ‖∇Fi‖ ≤ G, where G > 0 is some
positive number.

Note that the settings above are common for analysis in asynchronous models [15,19,20].

2. Algorithm design

2.1. Proposed algorithm

In this section, we first describe the asynchronous broadcast-based algorithm. Assume in iteration k
(according to the virtual global Poisson clock), one node ik is randomly chosen from V and broadcasts
its most recent value xikk−1 to a subset Jk of its neighbours N(ik). Then each node i ∈ Jk performs the
following computation using its own Fi :

xik = argmin
x∈Rn

{
1

2αi,k
‖x − (θxikk−1 + (1− θ)xik−1)‖2 + Fi(x)

}
(2)

where θ ∈ (0, 1) (e.g. θ = 1
2 ) is the weight factor and Fi is the objective function at node i. For nodes

i �∈ Jk and node ik , there is no update performed. The step size αi,k is set to 1/�k(i), where �k(i) is
the number of updates performed at node i up to iteration k (same as the one in [19]). Initially, we set
Jk = N(ik), which indicates reliable broadcast communication. With iterations we construct Jk such
that it consists only nodes j where the broadcast from ik successfully arrives at j with probability pij .
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Figure 1. Network model and asynchronous computing. Left: The model of an example decentralized sensor network. Right:
Asynchronous computing model.

An optimal solution of (1) should be consensual and optimised at the same time. Hence, two
important measures must be considered for analysing our algorithm. The measures should be vs.
iteration number k, which corresponds to the number of broadcast rounds in the entire network. The
two metrics considered in this paper are described as follows.

• Optimal value of objective function:

m∑
i=1

Fi(x̄k), where x̄k = 1
m

m∑
i=1

xik .

It determines whether the objective function of the averaged solution reaches the optimal
objective value.
• Disagreement among the nodes in the network:

m∑
i=1
‖xik − x̄k‖2.

It measures how close every node in the network reaches the consensus solution.

Remark 1: We realise that a trade-off between communication cost and computation effort exists
in the problem of decentralized learning. That is, for any decentralized algorithm, if we prefer to have
less communication rounds to achieve the desirable result, the computational complexity in each
update round should be higher. It is reasonable to see that if the update stage can be done more
completely and then it should provide a better estimate, which can speed up the convergence of the
network after broadcasting. The rationale of proposing communication-efficient algorithm for sensor
networks is expressed as follows. First, the cost of communication is very high in practice (e.g. Ref.
[21]). Especially in sensor networks, we are highly constrained by the physical bandwidth and energy
consumption. It is known that the energy consumption of 1-bit radio communication is equal to that of
1 million computation operations. Moreover, the communication step is much more time-consuming
than the computation step. Thus, reducing the total communication rounds is the key for speeding up
decentralized learning in terms of total execution time.

To summarise, our proposed algorithm can be expressed in a formal way:

(1) Initialization: Each node is equipped with a local Poisson clock (rate 1), which is independent
of other clocks. Set the weight factor θ .

(2) Communication: Assume the local clock of node i ticks (only one tick at the same time in the
whole network). Node i broadcasts its estimate xi to its neighbours. The neighbours receive the
information with probability pij , j ∈ N(i).
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(3) Update: The neighbours who receive node i’s broadcast will perform update as follows.

xj ← argmin
x∈Rn

{
1
2αj
‖x − (θxi + (1− θ)xj)‖2 + Fj(x)

}
;

αj denotes the step size defined in previous. It is set to 1/�k(i), where �k(i) is the number of
updates performed at node i up to iteration k. Node i and the other nodes who do not receive
node i’s iterate keep unchanged.

(4) Repeat: The network stays silent until next local clock ticks and repeats steps 2–3.

Figure 1 illustrates the execution model on a decentralized sensor network and also the workflow
of asynchronous computing. In this example, there are four nodes in the network and the dash line
between a pair of two nodes implies that a communication link exists between the nodes (through
broadcast communication) with connection probability pij (=pji) if (i, j) is a pair a neighbours. In the
right figure, it shows that the local clock in node 2 first ticks and the global iteration number k increase
by 1 to k = 1. Node 2will broadcast its current value to its neighbours and the neighbours who receive
the value update their estimates according to the rule shown above. In the next, node 1 is activated
(iteration number k = 2) and do the same thing as node 2 in the previous round. The process will keep
running in an asynchronous manner.

2.2. Algorithm interpretation

In below, we describe the differences and improvements of the proposed method over Nedic’s [19].
Assuming nodes i ∈ Jk receive the estimate xikk−1 (ik is the index of the node selected at iteration k),
Nedic’s update rule can be expressed as follows.

yik = θxikk−1 + (1− θ)xik−1
xik = yik − αi,k∇Fi(yik). (3)

To better analyse the algorithm, we equivalently convert (3) into its compact form:

xik = argmin
x∈Rn

{
1

2αi,k
‖x − yik‖2 + 〈∇Fi(yik), x〉

}

= argmin
x∈Rn

{ 1
2αi,k
‖x − (θxikk−1 + (1− θ)xik−1)‖2 + 〈∇Fi(yik), x〉

}
. (4)

Comparing (4) with our update rule (2) in the proposed algorithm, we can see that the difference is
on the second term within the argmin function. In fact, the inner product item in (4) is a linearization
of Fi(x) at point yik . The effect is that in each round of update, Nedic’s algorithm performs an
approximation to the solution of the local minimization problem. Instead, our designed method
solves the local optimization problem ‘completely’ in each update round. According to the trade-
off (between computation complexity and communication cost) we observe (refer to Remark 1), our
proposed algorithm is thus expected to outperform Nedic’s in terms of communication cost and
total execution time, which are considered to be the main metrics evaluating decentralized learning
algorithms in sensor networks.

Remark 2: In local nodes, if gradient (sub-gradient)-based methods are used (like Nedic’s), the
convergence rate (in terms of communication rounds) would depend on the Lipschitz constant (while
our proposed algorithm does not) which could be very large (larger Lipschitz constant in general
implies slower convergence rate). Also in our proposed method, as the local estimate becomes more
accurate with neighbours’ information, the computation in each node would becomemuch faster.

Remark 3: We claim that the proposed algorithm is suitable for the scenario that when the sensors
maymove randomly, in which case the neighbours of each sensor nodemay change randomly. In fact,
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our algorithm is designed for sensor networks using broadcast communications. Each sensor node
does not need to know its neighbour list. In each round, one node broadcasts its current estimate
and the nodes who successfully receive the value will be considered as its neighbours. Thus, in the
proposed algorithm and settings, the neighbours of each sensor node may change at each iteration
and the network topology is indeed random along iterations.

3. Convergence analysis

In this section,we analyse the convergencebehaviour of the proposed algorithm in termsof consensus
and optimal solution measure. We follow the idea in [19] to derive the analysis of our developed
scheme.

Before conducting the analysis, we can rewrite the proposed algorithm (2) in a form that similar to
Nedic’s method as follows.

yik = θxikk−1 + (1− θ)xik−1
xik = yik − αi,k∇Fi(xik). (5)

Note that the second equation of (5) comes from the first-order optimality condition of Equation (2):

xik − yik
αi,k

+ ∇Fi(xik) = 0. (6)

A compact form for all k and i ∈ V can be expressed as:

yik =
m∑
j=1

[
Wk
]
i,j x

j
k−1

xik = yik −
[
yik − αi,k∇Fi(xik)

]
I(i ∈ Jk)− yik I(i ∈ Jk) (7)

where I( · ) is the indicator function and matrixWk is defined as:

[
Wk
]
i,i = 1− θ for i ∈ Jk ,

[
Wk
]
i,i = 1 otherwise[

Wk
]
i,ik
= θ for i ∈ Jk ,

[
Wk
]
i,j = 0 otherwise. (8)

In addition, three lemmas which would be used later are described here.

Lemma 3.1: [[22]: Lemma 11] Assume σk , ϕk ,ωk , and εk are nonnegative random variables and assume
the following hold

E
(
σk+1|	k

) ≤ (1+ ωk
)
σk − ϕk + εk almost surely,

∞∑
k=0

ωk <∞ almost surely,
∞∑
k=0

εk <∞ almost surely

where E
(
σk+1|	k

)
represents the conditional expectation given all the past history of σk , ϕk , ωk , and εk

up to iteration k. Then it concludes that

σk → σ almost surely,
∞∑
k=0

ϕk <∞ almost surely

where σ ≥ 0 is some random variable.
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Lemma 3.2: [[19]: Lemma 2] The random matrix Wk − 1
m11TWk is independent and has identical

distribution with each other.

μ :=μ

(
E

[(
Wk − 1

m
11TWk

)T (
Wk − 1

m
11TWk

)])
< 1 (9)

whereμ(A) denotes the largest eigenvalue of a symmetric matrixA.

Lemma 3.3: [[19]] The upperbounds of step size αi,k are obtained as follows when k is large enough
(k > k̃(m, q))

αi,k ≤ 2
kδi

, α2
i,k ≤

4m2

k2p2∗
,
∣∣αi,k − 1/kδi

∣∣ ≤ 2

k
3
2−qp2∗

(10)

where δi is the total probability that node i updates. p∗ denotes the minimum among all pij ’s. q ∈
(
0, 12

)
is

some constant. k̃(m, q) is an integer determined by the number of nodesm and q.

The main convergence results of our proposed decentralized learning algorithm are presented in
the following two theorems. The proofs are provided in Appendices 1 and 2, respectively.

Theorem 3.4: Let
{
xik
}
,∀i ∈ V , k ≥ 0 be the sequence generated by the algorithm in (2) and given that

all the assumptions are satisfied. Then we can have:

∞∑
k=1

1
k
‖xik−1 − x̄k−1‖ <∞, and lim

k→∞
‖xik − x̄k‖ = 0 almost surely. (11)

Note that Theorem 3.4 implies that the disagreement between each node’s solution to the average
of all the nodes’ converges to zero almost surely. It indicates that all the nodes’ solutions reach to
consensus almost surely, which guarantees that all the nodes (learning individually) converge to a
single model.

Theorem 3.5: Let
{
xik
}
,∀i ∈ V , k ≥ 0 be the sequence generated by the algorithm in (2) and given that

all the assumptions are satisfied. Then the sequences converge to a same optimal point almost surely for
any node i.

Theorem3.5 shows the convergence of each node’s solution xik to the same optimal point. It implies
that the consensual model learned by all the nodes is optimal with respect to problem in (1).

Notice that the two theorems above correspond to the measures of optimal value of objective
function and node consensus defined in Section 2.1, respectively.

4. Experiment results

In this section, we investigate the performance of the proposed learning algorithm with two typical
objective functions: regularized least-squares and logistic regression. Sensor networks are generated
randomly with certain average node degrees (with 100 nodes in total). We exam the quantitative
performance of the decentralized algorithms in terms of average objective value and node consensus
described in section 2.1. Considering that Nedic’s algorithm is the only work having the identical
practical settings as ours, we compare our proposed method with Nedic’s algorithm as a benchmark.

Indecentralized regularized least-squares, theprivateobjective functionofnode i is Fi(x) = 1
2‖Aix−

bi‖22 + λi‖x‖22, where the regularisation parameter λi is set to 1/100, Ai and bi (same dimension for
each i) are data points available in node i. In this scenario, the size of Ai is 400 × 32, 768 and the
dimension of bi is set accordingly.

In decentralized logistic regression, the local objective function (of node i) Fi is set to Fi(x) =∑pi
j=1

(
log

[
1+ exp

((
aji

)T
x

)]
− bji

(
aji

)T
x

)
where pi = 5, n = 200,

(
aji

)T
represents j-th row of Ai

and bji is the j-th entry of bi . We generate Ai ∈ R
pi×n,∀i randomly except the first columns are set to 1.

Binary vector bi ∈ R
pi is generated randomly.
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(a) (b)

(c) (d)

Figure 2. Comparison of convergence speed. Application in decentralized regularized least-squares (a-b). Decentralized logistic
regression problem (c-d).

4.1. Comparison of convergence speed

We conduct the experiment using a randomly generated communication network, such that each
senor is assumed to have 10 neighbours on averagewithin its communication range. From Figure 2we
can see that the proposed algorithm (blue) converges faster than Nedic’s (green) in terms of objective
function value and consensusmeasure. This is consistent with our anlaysis before. We observe that the
improvement of proposed algorithm over the benchmark is more significant in the plot of the average
objective value. In fact, this effect is favored in system-level design since in realistic scenario, wemight
take the average of all the available solutions (from working nodes) rather than randomly select one
node. Thus the performance in term of average objective value is more important than the consensus
measure for real system. Notice that the y-axis in the figures are all in log-scale, hence the difference
between the two methods is in fact much larger than the difference seen in normal linear scale.

4.2. Performance under unreliable links

In Figure 3, we study the performance of the proposed algorithm under link failures. Reliable link (pij =
1), less reliable link with connection probability pij = 0.8 and 0.6 are considered, respectively. Notice
that, the convergence of the proposed algorithm is guaranteed. When the connection probability is
lower, it is equivalent to the scenario that some nodes may have fewer number of neighbours at some
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(a) (b)

(c) (d)

Figure 3. Effect of link failure in convergence behaviour. Application in decentralized regularized least-squares (a-b). Decentralized
logistic regression problem (c-d).

Figure 4. Influence of network connectivity ratio. Ratio1 (blue): average node degree = 5, Ratio2 (green): average node degree =
10, Ratio3 (red): average node degree = 15. Total number of nodes in the network is 100.



10 L. ZHAO ET AL.

Figure 5. Illustration of seismic tomography and the new decentralized sensor network. Left: Principle of travel-time seismic
tomography. Right: Real-time decentralized volcano tomography.

Figure 6. Ground truth of the magmamodel.

iterations. Hence, it can cause slower convergence since fewer number of nodes will get updated. As
long as the network is connected and the connection probability is greater than zero (in Assumption
1), the information of each node will eventually be distributed to all the nodes in the network. Thus,
all the nodes can reach consensus eventually and the convergence can be obtained. It is clear that
the convergence is faster if the link is more reliable since in each communication round, more nodes
receive the broadcast andperformupdates. This speeds up the convergence of the network as awhole.
More interestingly, the curves with link failures are kind of ‘close’ to the onewith perfect link especially
in the plot of the average objective value. This demonstrates the robustness of the developedmethod
under unreliable links.

4.3. Influence of network connectivity ratio

Nowwe investigate the effect of changing network connectivity ratio, which is defined as the number
of edges divided by the number of all possible ones. Without loss of generality, here we adopt the
regularized least-square objective function. Note that in our proposed decentralized algorithm, we
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are supposed to obtain faster convergence speed when each node has higher number of neighbours.
Higher neighbour count means more nodes would receive the information after one broadcast of
certain node. It accelerates information diffusion among all the nodes in the network and thus help
all the nodes reach consensus faster. From Figure 4 we find that the higher the connectivity ratio is,
the faster the convergence is in terms of average objective value and the consensus. Note that Ratio2
(node degree= 10) is our default setting and it shows close performance to Ratio3 (node degree= 15).
We conclude that the developed scheme still works in very sparse networks, which can be leveraged
to cover large-scale region in sensor network applications. Note that the experiments on the influence
of network connectivity ratio are conducted as empirical study of the proposed algorithm. We will
analyse the theoretical justification as our future work.

4.4. Additional results for the application of seismic imaging

We also test our proposed algorithm in seismic imaging, which is an important application of sensor
networks [11,23,24]. Figure 5 shows the architecture of seismic tomography in sensor networks. Note
that traditional seismic tomography problem can be formulated as regularized least-square problem,
thus we adopt the same settings of decentralized regularized least-square problem as before. We use
a 3-D synthetic model with resolution 32× 32× 32. The monitored area contains a magma chamber
(low velocity area) in a 10 km3 cube. The number of sensor nodes is set to 100 and they are randomly
distributed on top of the region. 400 events are generated and we compute the travel times from
every event to each node based on the ground truth, and send the event location and travel time to
corresponding node. To simulate the event location estimation and ray tracing errors, awhite Gaussian
noise is added to the travel time to construct the sensor node observations (arrival times). Details on
the steps of seismic tomography can be found in [25]. The ground truth of the magma model with
resolution 128× 128× 128 (highest resolution for illustration) is depicted in Figure 6.

In addition to the convergence behaviour investigated under unreliable links, we illustrate the
tomography results with this effect considering the application of seismic imaging in sensor networks
(see Figure 7).

We also evaluate the robustness of our proposed algorithm from another perspective - packet
loss. We simulate packet loss by setting partial vector of the broadcast to zero. We test with packet
loss ratios 10 and 30%, respectively. The results at 50 iterations are shown in Figure 8. It is clear that
the distinction between the result without packet loss is relatively small even at the case of 30%
packet loss ratio. This validates the fault-tolerances and robustness of our proposed method in the
applications frequently suffering from severe packet loss, such as (wireless) sensor networks-based
seismic tomography. Similar as the previous subsection, the theoretical analysis of the effect of packet
loss to the proposed algorithm is also an interesting direction to explore in the future.

5. Conclusion

This work investigated the decentralized consensus optimization problem, where the objective func-
tion is the sum of a set of convex and differentiable local functions. We proposed an asynchronous
and broadcast-based algorithm, which does not require any synchronisation among the sensor nodes.
The developed algorithm is then leveraged to solve big data computing problem in sensor networks.
We conducted extensive tests of proposed algorithm on various aspects. The experiment results show
that our designed method outperforms the benchmark.
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Appendix 1. Proof of Theorem 3.4
Proof: We define stk to be the vector with components

[
xik

]
t
,∀i ∈ V , where

[
xik

]
t
is the t-th element of node i’s estimate

at iteration k. Using xik = yik −
[
yik − αi,k∇Fi(xik)

]
I(i ∈ Jk)− yik I(i ∈ Jk) we can have:

stk = Wks
t
k−1 + dtk . (A1)
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Here dtk is defined as a vector with

[
dtk

]
i
=
[
−αi,k∇Fi(xik)

]
t
for i ∈ Jk ,

[
dtk

]
i
= 0 otherwise. (A2)

From the definition of stk , it can be shown that: [
x̄k
]
t =

1
m
1T stk (A3)

where 1 = [1, 1, · · · , 1]T denotes a vector containing all 1’s. In addition, plugging (A3) into (A1) yields:

[
x̄k
]
t =

1
m

(
1TWks

t
k−1 + 1T dtk

)
. (A4)

Combing (A1) and (A4) derives the following.

stk −
[
x̄k
]
t 1 =

(
Wk −

1
m
11TWk

)
stk−1 +

(
I− 1

m
11T

)
dtk (A5)

where I represents the identity matrix. Based on the definition and leveraging the stochasticity of matrix Wk , it can be
shown thatWk1 = 1. Hence, we can have:

(
Wk −

1
m
11TWk

) [
x̄k−1

]
t 1 = 0. (A6)

Adding the right part of (A6) into both sides of (A4) yields:

stk −
[
x̄k
]
t 1 =

(
Wk −

1
m
11TWk

)(
stk−1 −

[
x̄k−1

]
t 1
)
+
(
I− 1

m
11T

)
dtk (A7)

To simplify the notation, we define

Qk = Wk −
1
m
11TWk , U = I− 1

m
11T

The next step is to take the norm and conditional expectation on both sides of equation (A7):

E

[∥∥∥stk − [x̄k]t 1
∥∥∥ |	k−1

]
≤ E

[∥∥∥Qk

(
stk−1 −

[
x̄k−1

]
t 1
)∥∥∥ |	k−1

]
+ E

[∥∥∥Udtk
∥∥∥ |	k−1

]
(A8)

where 	k is the σ -algebra containing the past history up to iteration k, i.e.

	k =
{
xi0, it , jt ,∀i ∈ V , t = 0, 1, · · · k

}
. (A9)

By using Lemma 3.2 (μ is the largest eigenvaluementioned there), we can upper bounding the first term in the right-hand
side of (A8) as follows.

E

[∥∥∥Qk

(
stk−1 −

[
x̄k−1

]
t 1
)∥∥∥2 |	k−1

]
≤ μ

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥2 . (A10)

Based on the property that E
[‖z‖] ≤ √E

[‖z‖2], (A10) can be transformed to:

E

[∥∥∥Qk

(
stk−1 −

[
x̄k−1

]
t 1
)∥∥∥ |	k−1

]
≤ √μ

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥ . (A11)

The remaining part is that we need to upper bound the second item in the right hand side of (A8). We find that U is a
projection matrix since:

U1 =
(
I− 1

m
11T

)
1 = 0. (A12)
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Then the norm of matrix U is 1. In consequence, we can obtain the following (also from the definition of dtk in (A2)):

∥∥∥Udtk
∥∥∥2 ≤ ∥∥∥dtk

∥∥∥2 ≤∑
i∈Jk

∥∥∥αi,k∇Fi(xik)
∥∥∥2 . (A13)

The bound of αi,k is shown in Lemma 3.3, thus the right hand side of (A13) can be further bounded as follows.

∥∥∥Udtk
∥∥∥2 ≤∑

i∈Jk
α2i,k

∥∥∥∇Fi(xik)
∥∥∥2 ≤ 4m2

k2p2∗

∑
i∈Jk

∥∥∥∇Fi(xik)
∥∥∥2 . (A14)

Now take conditional expectation on both sides of (A14), together with the assumed bounded gradient condition,
also the cardinality of Jk is no more thanm, we obtain

E

[∥∥∥Udtk
∥∥∥2 |	k−1

]
≤ 4m3

k2p2∗
G2. (A15)

Using the inequality (converting (A10) to (A11)) again yields

E

[∥∥∥Udtk
∥∥∥ |	k−1

]
≤ 2m

√
m

kp∗
G. (A16)

At this point, we have all the bounds of the terms in the right hand side of (A8). Plugging (A11) and (A16) into (A8)
implies

E

[∥∥∥stk − [x̄k]t 1
∥∥∥ |	k−1

]
≤√μ

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥+ 2m

√
m

kp∗
G. (A17)

Since 1
k−1 > 1

k , it can be shown that

1
k

E

[∥∥∥stk − [x̄k]t 1
∥∥∥ |	k−1

]
≤ 1

k − 1

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥− 1−√μ

k

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥+ 2m

√
m

k2p∗
G. (A18)

Using the second claim of Lemma 3.1, we can see the following almost surely for any t.

∞∑
k=1

1
k

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥ <∞. (A19)

In addition, based on the definition of stk , for any node i, it follows that

∞∑
k=1

1
k

∥∥∥xik−1 − x̄k−11
∥∥∥ <∞. (A20)

Thus the first part of Theorem 3.4 is proved. For the second claim, we need to first show the following almost surely.

lim
k→∞

∥∥∥stk − [x̄k]t 1
∥∥∥ = 0. (A21)

Equation (A19) implies that

lim
k→∞

inf
∥∥∥stk − [x̄k]t 1

∥∥∥ = 0. (A22)

In order to show (A21), then we have to prove that the convergence of
∥∥∥stk − [x̄k]t 1

∥∥∥when k →∞.
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We will use the first claim of Lemma 3.1 to prove this. First take the square norm and conditional expectation on both
sides of (A7). Further derivations are shown as follows.

E

[∥∥∥stk − [x̄k]t 1
∥∥∥2 |	k−1

]

≤ E

[∥∥∥Qk

(
stk−1 −

[
x̄k−1

]
t 1
)∥∥∥2 |	k−1

]
+ E

[∥∥∥Udtk
∥∥∥2 |	k−1

]

+ 2

√
E

[∥∥∥Qk

(
stk−1 −

[
x̄k−1

]
t 1
)∥∥∥2 |	k−1

]
×
√
E
[∥∥∥Udtk

∥∥∥2 |	k−1
]
. (A23)

Plugging (A10), (A11) and (A15)–(A16) into (A23) yields

E

[∥∥∥stk − [x̄k]t 1
∥∥∥2 |	k−1

]

≤ μ

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥2 + 4m3

k2p2∗
G2 +√μ

∥∥∥stk−1 − [x̄k−1]t 1
∥∥∥ 2m
√
m

kp∗
G. (A24)

Using (A19) and the first claim of Lemma 3.1, it is clear to see that
∥∥∥stk − [x̄k]t 1

∥∥∥ converges almost surely for any t. With

this (A21) is proved. Leveraging the definition of stk one more time, the almost sure convergence of the disagreement is
verified (second conclusion). This completes the entire proof of Theorem 3.4.

Appendix 2. Proof of Theorem 3.5
Proof: We start by looking at (7) with i ∈ Jk . Subtracting x (some point in the feasible set) on both sides of (7) and taking
square norm yields the following.

∥∥∥xik − x
∥∥∥2 ≤ ∥∥∥yik − x

∥∥∥2 + α2i,k

∥∥∥∇Fi(xik)
∥∥∥2 − 2αi,k

(
∇Fi(xik)

)T (
yik − x

)
. (B1)

By using the equality αi,k =
(
αi,k − 1

kδi

)
+ 1

kδi
and the inequality in Lemma 3.3, we can bound the right-most term in

(B1) as follows.

∥∥∥xik − x
∥∥∥2 ≤ ∥∥∥yik − x

∥∥∥2 + α2i,k

∥∥∥∇Fi(xik)
∥∥∥2 − 2

kδi

(
∇Fi(xik)

)T (
yik − x

)

+ 4

k3/2−qp2∗

∥∥∥∥ (∇Fi(xik))T (yik − x
)∥∥∥∥ . (B2)

Based on the fact that 2aT b ≤ ‖a‖2 + ‖b‖2, the inner product in the right hand side of the (B2) can be bounded as
follows.

∥∥∥xik − x
∥∥∥2 ≤ (1+ βk)

∥∥∥yik − x
∥∥∥2 − 2

kδi

(
∇Fi(xik)

)T (
yik − x

)

+
(
α2i,k + βk

) ∥∥∥∇Fi(xik)
∥∥∥2 (B3)

where βk = 2
k3/2−qp2∗

. By the convexity of function Fi and the bounded (sub)gradient condition, the following inequality

holds for arbitrary a, b, and c [19].

∇Fi(a)T
(
a− b

) ≥ Fi(c)− Fi(b)− G ‖a− c‖ . (B4)

Plugging (B4) into (B3) with a = xik , b = x , c = x̄k−1 we can have

∥∥∥xik − x
∥∥∥2 ≤ (1+ βk)

∥∥∥yik − x
∥∥∥2 − 2

kδi

(
Fi(x̄k−1)− Fi(x)

)
+ 2G

kδi

∥∥∥yik − x̄k−1
∥∥∥+ 4G

kδi

∥∥∥xik−1 − x̄k−1
∥∥∥+ τk

∥∥∥∇Fi(xik)
∥∥∥2 (B5)
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where τk = 4m2

k2p2∗
+ βk . To bound the term

∥∥∥yik − x̄k−1
∥∥∥, we will use the property in [19] described in (B10). Now taking

conditional expectation and the bounded (sub)gradient condition, it follows that

E

[∥∥∥xik − x
∥∥∥2 |	k−1, ik , Jk

]
≤ (1+ βk)

∥∥∥yik − x
∥∥∥2 − 2

kδi

(
Fi(x̄k−1)− Fi(x)

)
+ 2G

kδi

∥∥∥yik − x̄k−1
∥∥∥+ 4G

kδi

∥∥∥xik−1 − x̄k−1
∥∥∥+ τkG

2. (B6)

Recall the definition of δi , it is the probability of node i updates (the event that it receives broadcast from any of its
neighbours). Hence, the fact holds δi ≥ p∗

m . Then (B6) can be modified to

E

[∥∥∥xik − x
∥∥∥2 |	k−1, ik , Jk

]
≤ (1+ βk)

∥∥∥yik − x
∥∥∥2 − 2

kδi

(
Fi(x̄k−1)− Fi(x)

)
+ 2mG

kp∗

∥∥∥yik − x̄k−1
∥∥∥+ 4mG

kp∗

∥∥∥xik−1 − x̄k−1
∥∥∥+ τkG

2. (B7)

Now let x = x∗ where x∗ is an optimal point of the objective function. Substituting this into (B7) yields

E

[∥∥∥xik − x∗
∥∥∥2 |	k−1, ik , Jk

]
≤ (1+ βk)

∥∥∥yik − x∗
∥∥∥2 − 2

kδi

(
Fi(x̄k−1)− Fi(x

∗)
)

+ 2mG

kp∗

∥∥∥yik − x̄k−1
∥∥∥+ 4mG

kp∗

∥∥∥xik−1 − x̄k−1
∥∥∥+ τkG

2. (B8)

Incorporating the case when i �∈ Jk (x
i
k = yik ) with the current formula (which assumes i ∈ Jk ), and also with the definition

that δi denotes the total probability that node i updates, we obtain

E

[∥∥∥xik − x∗
∥∥∥2 |	k−1

]
≤ (1+ βk)E

[∥∥∥yik − x∗
∥∥∥2 |	k−1

]

− 2
k

(
Fi(x̄k−1)− Fi(x

∗)
)+ 2mG

kp∗
E

[∥∥∥yik − x̄k−1
∥∥∥ |	k−1

]

+ 4mG

kp∗
E

[∥∥∥xik−1 − x̄k−1
∥∥∥ |	k−1

]
+ δiτkG

2. (B9)

It can be shown that for any x the following property holds [19].

m∑
i=1

E

[∥∥∥yik − x
∥∥∥ |	k−1

]
≤

m∑
i=1

∥∥∥xik−1 − x
∥∥∥ . (B10)

At this point, summing up both sides of (B9) over all the nodes i ∈ V , applying (B10) and the definition in (1) yields

m∑
i=1

E

[∥∥∥xik − x∗
∥∥∥2 |	k−1

]
≤ (1+ βk)

m∑
i=1

∥∥∥xik−1 − x∗
∥∥∥2 − 2

k

(
F(x̄k−1)− F(x∗)

)

+ 6mG

kp∗

m∑
i=1

∥∥∥xik−1 − x̄k−1
∥∥∥+ m∑

i=1
δiτkG

2. (B11)

It can be seen that the summation of βk over k (from 1 to∞) is bounded. Furthermore, the last term in (B11) meets
the condition in Lemma 3.1 due to the definition of τk . From the first claim of theorem 3.4, we can see that the following
holds almost surely. ∞∑

k=1

6mG

kp∗

m∑
i=1

∥∥∥xik−1 − x̄k−1
∥∥∥ <∞ (B12)

Considering the last two terms in (B11) as one item along with the fact that F(x̄k−1) − F(x∗) ≥ 0, we can see that all

the conditions of Lemma 3.1 have been satisfied. Hence, it concludes that the sequence
{∑m

i=1
∥∥∥xik − x∗

∥∥∥2} converges

and ∞∑
k=k̃

1
k

(
F(x̄k−1)− F(x∗)

)
<∞ (B13)
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Similar as the proof in Theorem 3.4, it can be deducted from (B13) that

lim
k→∞

inf F(x̄k−1) = F(x∗) (B14)

Since the sequence
{∑m

i=1
∥∥∥xik − x∗

∥∥∥2} converges and (B14) holds for any point x∗ in the set of optimal solutions

X∗, we know that there exists a subsequence
{
x̄kj

}
(of sequence

{
x̄k
}
) such that x̄kj → x̂ for some x̂ in the feasible

set X and limj→∞ F(x̄kj ) = F(x∗). By using continuity of function F and the fact that x̄kj converges to x̂ , it follows that
limj→∞ F(x̄kj ) = F(x̂). Hence, we have F(x̂) = F(x∗), which means x̂ belongs to the optimal solution set X∗ . Now we can

see that the sequence
{∑m

i=1
∥∥∥xik − x̂

∥∥∥2} converges, together with the fact that
{∑m

i=1
∥∥∥xik − x̄k

∥∥∥2} → 0 as k → ∞

(based on the second claim of theorem 3.4), we know
∥∥x̄k − x̂

∥∥2 converges. Since the subsequence
∥∥∥x̄kj − x̂

∥∥∥2 → 0,

there is
∥∥x̄k − x̂

∥∥→ 0, which shows that
{
x̄k
}
converges to an optimal point (x̂) of the problem. Finally, using the second

claim of theorem 3.4 again, it can be obtained that the sequence
{
xik

}
generated by any node i ∈ V converges to the

same optimal solution point almost surely. The proof of the theorem is thus complete.


