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Abstract—We consider the decentralized consensus optimiza-
tion problem arising from in-situ seismic tomography in large-
scale sensor networks. Unlike traditional seismic imaging per-
formed in a centralized location, each node in this setting
privately holds an objective function and partial data. The goal
of each node is to obtain the optimal solution of the whole seismic
image, while communicating only with its immediate neighbors.
We present a fast decentralized gradient descent method and
prove that this new method can reach optimal convergence rate
of O(1/k2) where k is the number of communication/iteration
rounds. Extensive numerical experiments on synthetic and real-
world sensor network seismic data demonstrate that the proposed
algorithms significantly outperform existing methods.
Keywords—Big Data, Decentralized Computing, In-network

Processing, Seismic Tomography, Sensor Network

I. INTRODUCTION

Seismic tomography is a technique for imaging Earths

sub-surface characteristics in an effort to understand deep

geologic structure. It involves massive data collection, often

manually retrieval, from hundreds to thousands geophones

to a central place for post-processing. Real-time subsurface

imaging is in great demand today as it is essential to assess the

sustainability and potential hazards of geological structures,

and reduce the costs and risks of exploration and production

activities. Sensor network has been an effective approach for

real-time remote environment monitoring. However, collecting

massive raw seismic data through a sensor network in real-

time is infeasible, due to severe bandwidth and sensor energy

constraints. This paper is thus proposing a novel decentralized

in-situ computing method for imaging earth subsurface in

real-time. It is based on the principle of travel-time seismic

tomography [1].

The principle of travel-time seismic tomography is illus-

trated in the left panel of Figure 1. It uses geophones placed

on earth surface to acquire travel time of the compressional

waves, known as P-waves, which are then used to derive the

internal 3D velocity structure of the earth subsurface. More

specifically, the travel-time seismic tomography on sensor

networks involves three steps [1]: (i) once an earthquake

happens, the sensor nodes (green triangles on the ground) will

detect seismic disturbances and determine source location of

earthquakes given a prior estimation of geologic structure, (ii)

Our research is supported by NSF-CNS-1066391, NSF-CNS-0914371,
NSF-CPS-1135814 and NSF-CDI-1125165.

at each sensor node, ray tracing is performed to find the ray

paths from the seismic source location to the sensor node,

and (iii) the ray paths are used to perform a tomography

reconstruction of the velocity structure x of earth subsurface.

Here x ∈ R
n is the vectorization of the mesh grids with

resolution n (n partition blocks of the volcano image on the

left of Figure 1), where each component of x represents the

slowness (reciprocal of velocity) of the material (e.g. magma,

rocks, etc.) at the corresponding location, and hence x can

be reconstructed using the travel times and lengths of ray

paths obtained in the first two steps. In this work, we focus

on the fundamental computational problem in the third step

(illustrated by top right tomographic inversion in Figure 1)

assuming the first two steps are already done. Our proposed

framework is designed to leverage the computational power of

all the sensor nodes. It performs in-network processing such

that the “big data” stored in the nodes are processed locally. In

addition, each node transmits its local estimate of the whole

solution instead of the raw sensor data to its direct neighbors.

Different from centralized approach, this kind of distributed

and decentralized mechanism is much more scalable and fault-

tolerant, and is a paradigm-shifting approach to solve a class

of Big Data problems arising from distributed systems.

Recent advances in convex optimization provide models and

algorithms for decentralized Big Data computing problems,

while minimizing the related computation and communication

[2]. The problem in this paper has a general form as follows.

Consider an undirected connected network G = (V, E) where
V is the node set and E is the edge set. The size of network is

m = |V| and two nodes i, j are called neighbors if (i, j) ∈ E .
Now each node (sensor or agent) i privately holds an objective
Fi : R

n → R which describes the data and acquisition

process at the node. Here we assume Fi is proper, convex, and
continuously differentiable, and its gradient ∇Fi has Lipschitz
constant Li > 0. The goal is to find the consensus solution

x ∈ Rn of the minimization problem

min
x∈Rn

{
F (x) :=

m∑
i=1

Fi(x)

}
, (1)

while each node can only communicate with its direct neigh-

bors. The problem is called decentralized since the data is

acquired and processed in a distributed network, and the nodes
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Fig. 1: Illustration of seismic tomography and the new decentralized sensor network 1. Left: Principle of travel-time seismic

tomography. Right: Real-time decentralized volcano tomography.

are required to collaboratively solve for a consensus solution.

Our key contribution is twofold. First, we develop a fast

gradient-based method for solving the decentralized consen-

sus optimization problem in in-situ seismic tomography. To

improve the performance in practice, we also propose a simple

backtracking technique for searching local Lipschitz constant.

Second, we prove that the proposed algorithms achieve the

optimal convergence rate, which is the lower bound of cen-

tralized algorithms in solving smooth optimization problems.

The remainder of this paper is organized as follows. In the

next section, we survey the related work on the distributed

or decentralized consensus optimization problem. In Section

III, we derive the proposed fast decentralized gradient descent

method with its main convergence results. In Section IV, we

conduct extensive numerical tests on synthetic and real world

seismic data sets to demonstrate the practical performance of

the proposed algorithm. Section V concludes the paper.

II. RELATED WORK

In seismic tomography, the third step: tomography recon-

struction (imaging) is the most computationally intensive and

time-consuming aspect. Today the centralized approaches for

seismic imaging have to be done with clusters of high-

performance computers. However, they cannot be directly dis-

tributed in wireless sensor network. The tomography imaging

problem can be modeled as solving a large-scale linear system

of equations. In this paper, we focus on the key research

challenge on solving the (regularized) least-squares problem

distributedly under the severe constraints of sensor network.

In the literature of sensor networks there are a few studies

on consensus-based Distributed Least Mean Square (DLMS)

algorithms [3], [4]. These algorithms let each node maintain

its own local estimation and, to reach the consensus, exchange

information only within its local neighbors. This can also

1Source: http://sensorweb.cs.gsu.edu/?q=VolcanoSRI

be used for getting least-squares solutions statistically. The

problem is that it needs “bridge” sensors as fusion centers

for collecting the information within the neighbors and dis-

tributing processed information back to the neighbors. This

results in huge communication burden in the “bridge” sensors.

Also the tomography result will be dramatically affected when

these critical “bridge” sensors are malfunctioned. Sayed and

Lopes developed a Distributed Recursive Least-Squares (D-

RLS) strategy by appealing to collaboration techniques to

achieve an exact recursive solution [5]. However, it requires a

cyclic path in the network to perform the computation node by

node while exchanging a large dense matrix between nodes.

The aforementioned decentralized consensus problem at-

tracts much attention recently, especially in distributed ma-

chine learning, multi-agent optimization, etc. For solving the

problem in (1), several (sub)gradient-based methods have

been proposed [6]–[11]. However, bounded (sub)gradients are

usually assumed in analyzing the convergence results in most

of the above algorithms. In addition, they cannot converge to

an optimal solution of (1) if fixed step size is used [12]. In

order to guarantee to converge to an optimal solution, Chen

[10] and Jakovetic [11] thus adopt diminishing step sizes

in their algorithms. More related algorithmic developments

can be found in [13]–[19]. Jakovetic [11] proposed a D-NC

algorithm showing an outer-loop convergence rate of O(1/k2)
in terms of objective error, leveraging Nesterov’s acceleration,

which is the best theoretical rate known so far. However,

significant consensus iterations are required per outer-loop

iteration. Without bounded gradient, [20] derives a correction

method based on mixing matrix for regular decentralized

gradient decent method and obtains O(1/k) convergence rate
without diminishing step sizes.

Besides synchronous algorithms discussed in previous, there

are several works on asynchronous distributed optimization

methods [21], [22]. However, their convergence rates are

usually weaker than the ones in the synchronous methods.
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III. ALGORITHM DESIGN

Notation. Let x ∈ R
n be a column vector in problem

(1), and x(i) ∈ R
n be the local copy held privately by

node i for every i ∈ V . Without further remark, vectors are

all column vectors. A vector v = (v1, · · · , vn)T ∈ R
n is

sometimes written in short as [vi]. Let W ∈ R
n×n be a

symmetric positive semidefinite matrix and ‖v‖W is the (semi-

)W-norm of v. If v = (v(1), · · · , v(m))T ∈ R
m×n where

each v(i) ∈ R
n, then ‖v‖W =

√∑m
i=1 ‖v(i)‖2W. Subscript

k is outer iteration number, which is also the number of

communication.

A. Proposed Algorithms and Interpretation
The decentralized gradient descent (DGD) is a standard

approach for solving (1). Recall that if regular gradient descent

is applied at each node i to minimize its own objective Fi inde-
pendent of other nodes, then a solution x(i) ∈ argminx Fi(x)
can be severely biased due to the insufficient information in

data at i. Moreover the solutions x(i) will not be all equal, and
their average is not the solution to (1) in general. Instead, it

is more sophisticated for each node i to request private copies
x(j) from its immediate neighbors to gather more information

and proceed with its next update of x(i). Motivated by this

idea, the DGD iterates

x
(i)
k+1 =

m∑
j=1

wijx
(j)
k − αk∇Fi(x(i)k ) (2)

at every node i for k = 0, 1, 2, · · · . Here x(i)k is the local copy

held by node i at iteration k, αk is the step size that satisfies

αk ≤ 1/L, where
L := max

1≤i≤m
{Li} (3)

and Li is the Lipschitz constant of ∇Fi. The prescribed

symmetric mixing matrixW = [wij ] ∈ Rm×m is nonnegative,

wij = 0 if (i, j) /∈ E and i �= j, and Wv = v if and only if

v ∈ Rm is consensual, i.e., all its components are equal, due

to the intuition that the mixing should not make changes if

all x(i) are already identical. Therefore, each node i collects

x
(j)
k sent from its immediate neighbors j, mixes them with its

own x
(i)
k using weights wij , and performs a gradient descent

at x
(i)
k in iteration k.

To simplify notation, we define x := (x(1), · · · , x(m))T ∈
R
m×n, F(x) =

∑m
i=1 Fi(x

(i)) ∈ R, column vector ∇Fi(x) ∈
R
n, and ∇F(x) = (∇F1(x(1)), · · · ,∇Fm(x(m)))T ∈ Rm×n,

then the decentralized minimization (1) is equivalent to a

consensus optimization problem

min
x∈Rm×n

{F(x) :Wx = x} , (4)

where the constraint Wx = x requires that a solution x∗ =
(x(1), · · · , x(m))T needs to be consensual, i.e., x(1) = x(2) =
· · · = x(m) = x∗, for some solution x∗ ∈ Rn to (1), namely x∗
satisfies

∑m
i=1∇Fi(x∗) = 0. Furthermore, the DGD algorithm

(2) can be written as

xk+1 =Wxk − αk∇F(xk). (5)

One can immediately observe that αk → 0 is a nec-

essary condition for the convergence of xk to a solu-

tion x∗ using (5), otherwise there will be ∇F(x∗) =
(∇F1(x∗), · · · ,∇Fm(x∗))T = 0 upon convergence xk → x∗,
implying ∇Fi(x∗) = 0 for all i, which is not true in general.

Algorithm 1 Fast Decentralized Gradient Descent (FDGD)

with known Lipschitz constant L

Initialize y0 = 0 and arbitrary x0, set x
ag
0 = x0.

for k = 0, 1, · · · , do

yk+1 = yk + (W̃ −W)xk (6)

xmdk = (1− θk)x
ag
k + θkW̃xk (7)

xk+1 = W̃xk − yk+1 − 1

Lθk
∇F(xmdk ) (8)

xagk+1 = (1− θk)x
ag
k + θkxk+1 (9)

end for
Output xagk+1

In this paper, we develop a fast decentralized gradient

descent method which does not require diminishing step size

and the method is accelerated to reach an optimal O(1/k2)
convergence rate for general convex differentiable functions

Fi. We adopted the idea of Nesterov’s optimal gradient method

for centralized smooth optimization [23]–[26] and mixing

matrix method in network gossip and consensus averaging

algorithms [20], [27], [28], and developed the following fast

decentralized gradient algorithm (Algorithm 1) to solve the

seismic tomography problem (4). In Algorithm 1, k is the

(outer) iteration number which also indicates the number of

rounds of communications. Every node privately holds its local

copies y(i), x(i),md, x(i), x(i),ag and Fi. At iteration k, each

node i sends its current x
(i)
k to all its immediate neighbors

{j : (i, j) ∈ E} and receives x
(j)
k from them (one round

of communication), then performs weighted sums using wij
and w̃ij (according to multiplications Wxk and W̃xk), and
updates its y(i), x(i),md, x(i) and x(i),ag. The result x(i),ag is

output as the final reconstruction.

In Algorithm 1, the superscript “ag” stands for “aggre-

gated”, and “md” stands for “middle”. Matrix W̃ = (I+W)/2
is a half-mixing matrix based on W. A few remarks about

this algorithm are in place. Firstly, Algorithm 1 is a first-order

method since only ∇F is required in each iteration, and hence

the subproblem has low computation complexity. Secondly,

we do not need to use diminishing step sizes which converge

to 0 but still can ensure both of convergence and consensus.

Thirdly, if θk = 1 for all k, then Algorithm 1 reduces to a

version very similar to regular decentralized gradient descent

(5). However, by the choice of θk = O(1/k) as below, the
change from input xmdk to output xagk+1 is faster than that from
xk to xk+1. This implies that Algorithm 1 will converge faster

than regular DGD. The last remark explains intuitively why the

multi-step scheme defined in (7), (8), and (9) could potentially
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Algorithm 2 Fast Decentralized Gradient Descent with Backtracking (FDGD-BT)

Initialize y0 = 0 and arbitrary x0, set x
ag
0 = x0.

for k = 0, 1, · · · , do
1)

yk+1 = yk + (W̃ −W)xk (10)

2)

xmdk = (1− θk)x
ag
k + θkW̃xk (11)

3) For each node i, find the smallest integer j
(i)
k = 0, 1, 2, · · · such that

Fi(x
(i),ag
k+1 ) ≤ Fi(x

(i),md
k ) + 〈∇Fi(x(i),mdk ), x

(i),ag
k+1 − x

(i),md
k 〉 + L

(i)
k ρj

(i)
k

2
‖x(i),agk+1 − x

(i),md
k ‖2 (12)

where

xk+1 = W̃xk − yk+1 − 1

θk
L−1
k ∇F(xmdk ) (13)

xagk+1 = (1− θk)x
ag
k + θkxk+1 (14)

Here (x
(i),md
k+1 )T is the i-th row of xmdk+1, (x

(i),ag
k+1 )

T is the i-th row of xagk+1 and Lk = diag(L
(i)
k ρj

(i)
k ).

end for
Output xagk+1

accelerate the convergence of Algorithm 1.

A practical issue with Algorithm 1 is that either the Lips-

chitz constant L(i) of ∇Fi or the maximum Lipschitz constant

L defined in (3) may not be available to the nodes. To

overcome this issue, we design a backtracking strategy so

that each node can search for its own L
(i)
k at iteration k by

gradually increasing its previous L
(i)
k with multiples of ρ > 1

until (12) is satisfied. Note that such searching is guaranteed

to finish in finitely many times for each iteration k, and the

total number of searches is bounded by 
logρ(L(i)/L(i)0 )� at
each node i for the entire computation. The resulting algorithm
with such backtracking strategy is presented in Algorithm 2.

Remark: From a sensor network point of view, the commu-

nication operation in Algorithm 1 & 2 is more costly than the

computations within each k round (usually communication is

more energy-consuming for sensors). Thus it is preferable to

evaluate our algorithm performance in terms of the number of

communication rounds to reach desirable results. Notice that

in both Algorithm 1& 2, only one communication is needed

in one outer k round.

B. Convergence Analysis

In general we have the following convergence result for

Algorithm 2 (Theorem 1). Before the analysis of Theorem 1,

we would like to first prove the following Lemma.

Lemma 1. Suppose x̂ is a solution of min
x

(
�F(x; y)+

L
2 ‖x−

z‖2) with some given y, z and L. Then we have
�F(x̂; y) +

L

2
‖x̂− z‖2 � �F(x; y) +

L

2
‖x− z‖2− L

2
‖x− x̂‖2

(15)

where �F(x; y) is defined as �F(x; y) = F(y) +∇F(y)T (x−
y).

Proof. Let g(x) = �F(x; y) +
L
2 ‖x − z‖2, then we see that

g(x) is convex and ∇g(x) = ∇F(y) + L(x − z),∇g(y) =
∇F(y)+L(y−z). Hence ‖∇g(x)−∇g(y)‖ = L‖x−y‖, which
implies that ∇g(x) has Lipschitz constant L. In consequence,
we can have

g(x̂) � g(x) +∇g(x)T (x̂− x) +
L

2
‖x− x̂‖

Since x̂ is a minimizer of function g(x), ∇g(x) = 0. We

then have ∇g(x)T (x̂ − x) = (∇g(x)T −∇g(x̂)T )(x̂ − x) =
−L‖x − x̂‖2. Plugging this fact into the previous inequality

yields (15).

Theorem 1. Suppose x∗ is a solution of (5), and the param-
eters {θk} in Algorithm 1 satisfies

θ0 = 1, θk ∈ (0, 1], 1

θ2k
≥ 1− θk+1

θ2k+1
, (16)

then the iteration {xagk } satisfies

F(xagk )− F(x∗) ≤ Lθ2k
2(1− θk)

(
‖x0‖2W̃−W

+ ‖x∗ − x0‖2W̃
)

(17)

and ∞∑
k=1

‖(I− 1

m
11T )xagk ‖2 <∞, (18)

where I ∈ Rm×m is identity matrix and 1 = (1, · · · , 1)T ∈
R
m.

Proof. By the backtracking criterion in Algorithm 2 for each

node i and definition of F, we have

F(xagk+1) ≤F(xmdk ) + 〈∇F(xmdk ),xagk+1 − xmdk 〉
+
1

2
‖xagk+1 − xmdk ‖2 (19)
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By the definition of �F we have

F(xagk+1) ≤ �F(x
ag
k+1;x

md
k ) +

1

2
‖xagk+1 − xmdk ‖2

= (1− θk)�F(x
ag
k ;x

md
k ) + θk�F(xk+1;x

md
k )

+
θ2k
2
‖xk+1 − W̃xk‖2

≤ θk

(
�F(xk+1;x

md
k ) +

θk
2
‖xk+1 − W̃xk‖2

)
(20)

+ (1− θk)F(x
ag
k )

Recall the update of xk+1 implies the optimality condition

xk+1 = argmin
x

(
�F(xk+1;x

md
k ) + 〈yk+1,xk+1〉

+
θk
2
‖xk+1 − W̃xk‖2

) (21)

Hence by Lemma 1 we have

�F(xk+1;x
md
k ) + 〈yk+1,xk+1〉+ θk

2
‖xk+1 − W̃xk‖2

≤ �F(x;x
md
k ) + 〈yk+1,x〉+ θk

2
‖x− W̃xk‖2 (22)

− θk
2
‖x− xk+1‖2

Substitute this back into

F(xagk+1) ≤ θk

(
�F(x;x

md
k ) + θk〈yk+1,x− xk+1〉

+
θk
2
‖x− W̃xk‖2 − θk

2
‖x− xk+1‖2

)
+ (1− θk)F(x

ag
k )

(23)

Now we set x to any solution x∗, subtract F(x∗) and divide

θ2k on both sides to obtain

1

θ2k

(
F(xagk+1)− F(x)

) ≤ 1− θk
θ2k

(F(xagk )− F(x))

− 1

θk
δF(x;x

md
k ) + 〈yk+1,x− xk+1〉+ 1

2
‖x− W̃xk‖2

− 1
2
‖x− xk+1‖2 (24)

where δF(x
∗;xmdk ) is defined as δF(x

∗;xmdk ) := F(x∗) −
�F(x

∗;xmdk )(≥ 0), ∀x∗.
From the update of (6) we can see that

yk+1 = (W̃ −W)sk (25)

where

sk =
k∑
t=0

xt (26)

for each k = 1, 2, · · · . Furthermore, due to the fact that x∗ is

consensual and (W̃ −W)1 = 0, we have

〈yk+1,x∗ − xk+1〉 = 〈(W̃ −W)sk,x
∗ − xk+1〉

=− 〈(W̃ −W)sk,xk+1〉
=〈sk − sk+1, (W̃ −W)sk〉 (27)

=
1

2

(
〈(W̃ −W)sk, sk〉 − 〈sk+1, (W̃ −W)sk+1〉

+ 〈sk − sk+1, (W̃ −W)(sk − sk+1)〉
)

=
1

2

(
〈sk, (W̃ −W)sk〉 − 〈sk+1, (W̃ −W)sk+1〉

+ 〈xk+1, (W̃ −W)xk+1〉
)

Note that here

〈xk+1, (W̃ −W)xk+1〉 − ‖x∗ − xk+1‖2
=〈xk+1, (W̃ −W)xk+1〉 − 〈x∗ − xk+1,x

∗ − xk+1〉
=〈x∗ − xk+1, (W̃ −W)(x∗ − xk+1)〉
− 〈x∗ − xk+1,x

∗ − xk+1〉 (28)

=− 〈x∗ − xk+1, (I+W − W̃)(x∗ − xk+1)〉
=− 〈x∗ − xk+1,W̃(x∗ − xk+1)〉

Moreover, we know the consensual solution x∗ satisfies

W̃x∗ = x∗, hence there is

‖x∗ − W̃xk‖2 = ‖W̃(x∗ − xk)‖2 = 〈x∗ − xk,W̃
2(x∗ − xk)〉

= 〈x∗ − xk,W̃(x∗ − xk)〉 − 〈x∗ − xk, (W̃ − W̃2)(x∗ − xk)〉
(29)

Substitute the results we obtained above to, we have

1

θ2k

(
F(xagk+1)− F(x∗)

)− 1− θk
θ2k

(F(xagk )− F(x∗))

+ 〈x∗ − xk, (W̃ − W̃2)(x∗ − xk)〉
≤1
2

(
〈sk, (W̃ −W)sk〉 − 〈sk+1, (W̃ −W)sk+1〉

)
+
1

2

(
〈x∗ − xk, (W̃ −W)(x∗ − xk)− 〈x∗ − xk+1,

(W̃ −W)(x∗ − xk+1)〉
)

(30)

Due to the setting of θk, we take the sum of k = 0, 1, · · · , k
and obtain

1− θk+1
θ2k+1

(
F(xagk+1)− F(x∗)

)
+

k∑
t=0

〈x∗ − xt,

(W̃ − W̃2)(x∗ − xt)〉
≤1
2

(
〈s0, (W̃ −W)s0〉 − 〈sk+1, (W̃ −W)sk+1〉

)
+
1

2

(
〈x∗ − x0, (W̃ −W)(x∗ − x0)− 〈x∗ − xk+1,

(W̃ −W)(x∗ − xk+1)〉
)

(31)
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Note that W̃ ≥W and that F > −∞, we obtain

−∞ <
1− θk+1
θ2k+1

(
F(xagk+1)− F(x∗)

)
+

k∑
t=0

〈x∗ − xt, (W̃ − W̃2)(x∗ − xt)〉 (32)

≤1
2

(
〈s0, (W̃ −W)s0〉 − 〈x∗ − x0, (W̃ −W)(x∗ − x0)〉

)
Since W̃ ≥ W̃2, this inequality implies

k∑
t=0

〈x∗ − xt, (W̃ − W̃2)(x∗ − xt)〉 <∞

and that

F(xagk+1)− F(x∗) ≤ θ2k+1
2(1− θk)

(
〈s0, (W̃ −W)s0〉

− 〈x∗ − x0, (W̃ −W)(x∗ − x0)〉
)

Since there is

W̃ − W̃2 = W̃(I− W̃) =
I+W

2
· I−W

2
=
1

4
(I−W2)

(33)

the first inequality implies

1

4

k∑
t=0

〈(I−W2)xt,xt〉

=
k∑
t=0

〈x∗ − xt, (W̃ − W̃2)(x∗ − xt)〉 <∞ (34)

We decompose each xt into two parts, namely 11Txt and

(I− 11T )xt, then the first part is in Null(I−W) and hence

the inequality above implies

1

4
(1− μ(W)2)

k∑
t=0

‖(I− 11T )xt‖2

≤ 1

4

k∑
t=0

〈(I−W2)xt,xt〉 <∞ (35)

where μ(W) denotes the second largest singular value of ma-
trix W (since W is symmetric stochastic matrix, μ(W) < 1).
The above fact means that the nonconsensual part of xt is
suppressed to 0. Since

xagk =

k∑
t=1

txt

k∑
t=1

t

, for k = 1, 2, 3, . . . (36)

we know xagk tends to be consensual as well.

Due to the setting of θk, we can readily show that

θk ≥ 2

k + 2
, and

θ2k
1− θk

≤ 2

k(k + 2)
(37)

for all k = 1, 2, · · · , by induction. This implies that

F(xagk+1)− F(x∗) ≤ 1

k(k + 2)

(
〈s0, (W̃ −W)s0〉

− 〈x∗ − x0, (W̃ −W)(x∗ − x0)〉
)

IV. NUMERICAL TESTS

A. Experiment Settings

In this section, we perform experiments on the seismic

tomography problem using a regularized least squares model:

minx
1
2‖Ax − b‖22 + λ‖x‖22, where λ is the regulariza-

tion parameter. Simulations are performed on three different

datasets: 2D synthetic dataset, 3D synthetic dataset and 3D real

seismic tomography datasets. All methods are implemented in

MATLAB, and experiments are performed on a PC with an

Intel i5-3.0G HZ CPU and 8GB memory. In this experiment,

we compare

1) Three recent decentralized methods: EXTRA [20], D-

NG & D-NC [11] with our proposed FDGD algorithm.

2) FDGD and FDGD with backtracking line search.

We plot the results of average objective value

( 1m
∑m

i=1 f(x
k
i )), relative error (

√∑m
i=1 ‖xki−x∗‖2

2∑m
i=1 ‖x0

i−x∗‖2
2
) and

tomography images for all the three data sets, where x∗ is a

pre-computed centralized solution.

In our simulations, the regularization parameter λ is fixed

and the corresponding parameter λi for each node i is set to
1/p, where p is the total number of nodes in the system. In

each data set, the centralized solution of optimization problem

minx
1
2‖Ax−b‖22+λ‖x‖22 is obtained by LSQR method. The

centralized solution is taken as our benchmark comparing to

the decentralized methods tested. The matrix A and vector b is
constructed by stacking the sub-matrices of all the nodes. The

resolution means the number of blocks along the x, y and z-
axis. The communication network is generated randomly with

certain number of average node degree. The parameters are

described in TABLE I & II.

TABLE I: Summary of data set parameter settings

DATA SET SIZE OF A RESOLUTION λ
SYNTHETIC 2D 16,384X4,096 64X64 1.0

SYNTHETIC 3D 40,000X32,768 32X32X32 10−4

REAL DATA 3D 18,161X768,000 160X200X24 1.0

TABLE II: Network settings in the data sets

DATA SET # OF NODES AVG NODE DEGREE

SYNTHETIC 2D 32 3
SYNTHETIC 3D 100 3
REAL DATA 3D 11 2
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Fig. 2: FDGD convergence behavior in 2D synthetic seismic data set. (a) is the plot of average objective value comparing

FDGD with EXTRA, D-NG and D-NC methods. (b) is the relative error comparison plot.

B. Synthetic Data (2D Model)

The performance analysis here is based on the data set

generated using code in [29]. We create a 2D seismic to-

mography test problem with a square domain, using sources

located on the right boundary (green dots) and receivers

(seismographs) scattered along the left and top boundary (blue

squares). The rays are transmitted from each source to each

receiver (red lines) (see Figure 4(a)). The experiment results

are demonstrated in Figure 2-4.
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Fig. 3: Convergence behavior comparison of FDGD and

FDGD-BT in 2D synthetic data set. (a) and (b) depict the

FDGD and FDGD with backtracking line search implemen-

tation in terms of average objective value and relative error,

respectively.

C. Synthetic Data (3D Model)

In this section, the evaluation of algorithm is illustrated by

simulating seismic data on a synthetic model of resolution 323

consisting of a magma chamber (low velocity area) in a 10

km3 cube. 100 stations are randomly distributed on top of the
cube and form a network. To construct the matrix A and vector

b, 400 events are generated and we compute the travel times
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Fig. 4: FDGD tomography results of 2D synthetic data set. (a)

describes the 2D seismic model we used. (b) shows the ground

truth of original seismic image. (c)-(d) exhibit the tomography

results using centralized solution and FDGD, respectively.

from every event to each node based on the ground truth, and

send the event location and travel time to corresponding node

with white Gaussian noise. Figure 5-7 illustrate the experiment

results in this data set.

D. Real-world Data (3D Model)

To study the performance of the two proposed algorithms in

realistic scenarios, we use ten years (2001-2011) real seismic
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Fig. 5: Comparison of convergence performance in 3D synthetic data set. (a)-(b) are comparing FDGD with EXTRA, D-NG

and D-NC methods.
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Fig. 6: Convergence behavior comparison of FDGD and

FDGD-BT in 3D synthetic data set. (a) and (b) depict the

FDGD and FDGD with backtracking line search implemen-

tation in terms of average objective value and relative error,

respectively.

event data of Mount St. Helens in Washington, USA for the

experiment. The data were collected from 78 stations and we

construct them into 11 clusters and form a network based on

the clusters. Notice that unlike synthetic data used in previous

section, there is no ground truth in this real data scenario.

Hence we focus on the comparison of the proposed methods

with centralized processing scheme, which can be seen as a

benchmark that fully utilize the data available. Results are

shown in Figure 8-10.

Remark: Previous simulation results have demonstrated the
superiority of proposed FDGD over other existing methods.

In all the data sets, FDGD can obtain near “optimal” (the

centralized approach) solution with reasonable number of

communication rounds even in extremely low-connectivity

networks. The performance of FDGD-BT is almost the same

as FDGD implying we can still achieve similar results without
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Fig. 7: Vertical slices of 3D synthetic model tomography. Fig.

(a)-(c) are results of layer 14 along y-axis and Fig. (d)-(f) are
results of layer 18. Left-most column is the ground truth, the

middle column shows the centralized solution and the right-

most column contains the solution using our proposed FDGD

algorithm.

knowing Lipschitz constant L. Please note that the value

of regularization parameter λ also determines the convexity

property of the objective function. We do observe linear

convergence rate of EXTRA for strongly convex functions

as claimed in [20]. However, we found that in the simulated

synthetic data sets, smaller λ is better and more suitable for

image recovery. In the real data case, since no “ground truth”

is available, for simplicity, we also choose λ = 1 in our

experiments. In fact, λ = 1 is relative small comparing to

the data fitting term such that the objective function is not
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Fig. 8: Real data tomography inversion results comparison. (a)-(b) are comparing FDGD with EXTRA, D-NG and D-NC

methods. (c) and (d) show peformances of FDGD and FDGD with backtracking line search implementation. (e)-(f) describe

the solutions of vertical slices of at depth 0.9 km (left:centralized, right:FDGD). (g)-(h) exhibit the tomography results at depth

4.9 km.
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Fig. 9: Convergence behavior comparison of FDGD and

FDGD-BT in 3D real data set. (a) and (b) show performances

of FDGD and FDGD with backtracking line search implemen-

tation.

quite “strongly convex”. That explains why EXTRA does not

show linear convergence in our results. To show an example of

this scenario, we also perform the experiment on 2D synthetic

data set with λ = 20 (see Fig. 11).

V. CONCLUSION

Distributed and decentralized optimization is well suited

to Big Data applications, and in particular to analytics in

distributed architectures. In this paper we developed a novel

fast decentralized gradient descent method whose convergence

does not require diminishing step sizes as in regular decentral-

ized gradient descent methods, and prove that this new method

can reach optimal convergence rate of O(1/k2) where k is the
communication/iteration number. In the seismic tomography

application, we conducted experiments on synthetic and real-

(a) (b)

(c) (d)

Fig. 10: Seismic tomography comparison of the 3D real data

set. (a)-(b) describe the solutions of vertical slices of at

depth 0.9 km (left:centralized, right:FDGD). (c)-(d) exhibit

the tomography results at depth 4.9 km. The range of x-axis
is from 65 to 95 km and the y-axis is from 80 to 120 km. The

color in the figure represents the relative velocity perturbation

in specific location. More red means larger (negative) value

of perturbation. More blue means larger (positive) value of

perturbation

world sensor network seismic data. The results exhibit that
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Fig. 11: Convergence behavior comparison of 2D synthetic

data set with regularization parameter λ = 20.

the proposed algorithms significantly outperform the current

state-of-the-arts.
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