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This paper presents an innovative decentralised seismic tomography computing paradigm
in cyber-physical sensor systems, where each sensor node computes the tomography
based on its partial information and through gossip with local neighbours only. The
key challenge is the potential high communication overhead due to limited knowledge
of each node about the entire network topology and information. The aim of this paper
is to develop efficient algorithms for maximising the quality of tomography resolution
while minimising the communication cost. We reformulate the conventional seismic
tomography problem and exploit the alternating direction method of multipliers method
to design two distributed algorithms. One is a synchronous algorithm and the other is
asynchronous and more fault-tolerant and scalable. We theoretically prove that both
proposed algorithms can reach their convergent solutions in a linear rate in terms of the
number of communication rounds. Extensive evaluations on both synthetic and real data-
sets validate the superior efficiency of the proposed algorithms. They not only achieve
near-optimal (compare to centralised solution) high-quality tomography but also retain
low communication cost even in sparse networks.

Keywords: cyber-physical system; distributed computing; in-network processing;
seismic tomography; sensor network

1. Introduction

Current seismic imaging systems use sensors placed on earth surface to acquire information
on the compressional waves generated by underground seismic activities. The acquired data
are then used to derive the internal velocity structure of the earth subsurface. However, they
are prone to several bottleneck problems. First, for example, in previous volcano monitoring
investigations, the number of stations (sensors) is up to 20 due to deployment cost and other
issues. The resulting low station coverage inevitably becomes a main constraint on our
capability of obtaining high-resolution tomography model.[1] Second, even if thousands of
nodes can be incorporated (e.g. petroleum exploration systems), the huge volume of raw
seismic data has to be collected into a central place for post-processing. The underlying
time-consuming process prohibits its potential for effective disaster warning in which the
timescale can be tens of minutes. More introduction and motivation can be seen in [2].

We adopt the travel time-based seismic tomography in the present work to reveal
the velocity model inside the volcano.[3] The basic procedure of seismic tomography is
illustrated in Figure 1 involving three steps.
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Figure 1. Procedure of seismic tomography.[2]

Figure 2. Legend in Figure 1.

The first step is ‘Event Location’, which means we need estimate the where and when
certain seismic event occurs (Figure 1(a)). The second step is named ‘Ray tracing’. This
process is to estimate the rays coming from the event location to the receivers. The traces
of the rays are affected by the velocity structures of the materials they travel along. In other
words, the rays contain information of the internal velocity model that we are interested
in (see Figure 1(b) as a conceptual view of this process). The final step is ‘Tomographic
Inversion’. It basically utilises the traced ray paths to image a 3-D tomography of the velocity
model within the volcano (Figure 1(c)). Interested readers are referred to [2] for more details.

In this paper, we focus on the tomographic inversion process, which can be formulated
as a large linear inversion problem (detailed formulation in next section). However, it is
highly demanded to have a distributed computing algorithm to fill the gap between the
‘centralised’ nature of traditional tomography computing and the ‘distributed’ feature of
sensor networks.

Considering the issues discussed above, we are thus motivated to propose two in situ
seismic imaging methods on decentralised large-scale cyber-physical sensor systems. They
enjoy the nature of distributed and fully decentralised computing and gossip between neigh-
bours only. One is synchronous and the other is asynchronous. They exhibit the following
merits: (i) simple implementation and no data fusion centre or coordinator required; (ii)
close to ‘optimal’ (centralised algorithm is considered as the benchmark) imaging quality
even in sparse networks with severe packet loss, which are scenarios often occur in volcano
monitoring; (iii) guaranteed linear rate approaching to consensus optimal solution for every
node; (iv) lower communication cost comparing to other potential distributed methods in
the literature.

In our hardware design, each station is capable of sensing, communicating and comput-
ing. The hardware design of each station adopts the stackable design principles and there
are four types of stacks in each station: computing board, communication board, sensor



Cyber-Physical Systems 93

board and energy board. Detail hardware configuration is described in [4]. We plan to
test the proposed decentralised seismic tomography algorithms in the underlying system
architecture for real-world deployment.

The rest of the paper is organised as follows. Section 2 reviews the related work. The
reformulation of seismic tomography and derivation of Synchronised Distributed Seismic
Tomography Algorithm (sDSTA) are described in Section 3. Next in Section 4, we present
the derivation of Asynchronous Distributed Seismic Tomography Algorithm (aDSTA).
Section 5 focuses on the convergence analysis of sDSTA and aDSTA. In Section 6, the
effectiveness of the proposed approaches is evaluated. Section 7 describes potential benefits
of proposed methods under different modellings. Section 8 provides the final remarks.

2. Related work

There has been a rich history that people used iterative methods (e.g. conjugate gradient)
to solve the seismic tomography inversion problem in (3).[5] However, they are designed
or specialised for computing resources in which ‘centralised’ computing is performed. A
parallel splitting method for solving (3) was proposed in [6], where the local solutions
are weighted combined to obtain the final solution. The method in [6] can distribute the
computational tasks into multiple computers while the communication between the nodes
becomes an issue, that is every node needs to communicate with the rest of the nodes in each
iteration. Several studies in the context of signal processing applications bring applicable
distributed algorithms in sensor networks.[7–9] Sayed and Lopes developed a Distributed
Recursive Least Squares (D-RLS) strategy in [7]. The main issue is that a ‘cyclic path’
exists in the network to execute the computation and a large dense matrix needs to be
exchanged between nodes. Schizas proposed the Distributed Least Mean Square (LMS)
algorithm [8] in which every node keeps a local copy of the common variable and all the
nodes are expected to reach consensus on the value of the decision variable eventually.
Although the communication protocol in [8] only transmits the solutions and is more
efficient than the one in [6], certain ‘bridge’ sensors are still required as fusion centres
for collecting the information within the neighbours and distributing processed information
back to the neighbours. This results in huge communication burden in the ‘bridge’ sensors.
Multi-resolution-based and component-average-based distributed algorithms have been
proposed in [2] and [10], respectively. However, their methods are not performed in a
decentralised fashion, which means large data aggregations or multi-hop communications
are still involved in their methods. In contrast to the aforementioned existing works, we
proposed algorithms in the present work which are communication and computational load
balanced, multi-hop communication free, robust and privacy preserving.

Recently, several fast distributed algorithms have been proposed for solving general
convex and differentiable functions.[11–13] They assume the network has a synchronised
clock while this setting might not be always feasible or favourable in distributed sensor
networks. In this paper, besides the synchronised algorithm, we develop an asynchronous
version, which can alleviate the synchronisation task and further reduce the communication
overhead.

3. Synchronised distributed seismic tomography algorithm–sDSTA

3.1. Problem formulation

In this section, we give the formal formulation of decentralised seismic tomography com-
putation problem. Similar or even more detail formulation leading to (3) were described
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in [2,10]. We assume the event location and ray tracing steps are completed. Let t∗i =
[t∗i1, t∗i2, . . . , t∗i J ]T , where t∗i j is the travel time experienced by node i in the j th event. The
travel time of a ray is the sum of the slowness in each block times the length of the ray
within that block, i.e. t∗i j = Ai [ j, h] · s∗[h] where Ai [ j, h] is the length of the ray from
the j th event to node i in the hth block and s∗[h] is the slowness of the hth block. Let
t0
i = [t0

i1, t0
i2, . . . , t0

i J ]T be the unperturbed travel times where t0
i j = Ai [ j, h] · s0[h]. We

can thus have the following compact form:

Ai s∗ − Ai s0 = Ai s (1)

Let ti = [ti1, ti2, . . . , ti J ]T denote the travel time residual such that ti = t∗i − t0
i ,

Equation (1) is equivalent to:
Ai s = ti (2)

We now have a linear relationship between the travel time residual observations, ti ,
and the slowness perturbations, s. Since each ray path intersects with the model only at
a small number of blocks compared with n, the design matrix, Ai , is sparse. The seismic
tomography inversion problem is to solve a linear system of equations:

As = t (3)

where A ∈ R
m×n , t ∈ R

m and s ∈ R
n is the vector to be estimated. This system is usually

organised to be overdetermined (let the number of rays (the number of measurements) m is
larger than n) and the inversion aims to find the least squares solution s such that

s = arg min
s

‖ As − t ‖2 (4)

Since vector t is usually noise corrupted, the system is inconsistent. In consequence, one
needs to solve a regularised least square problem (the regularisation term can vary, we use
Tikhonov regularisation here since it is the most popular one in seismic inversion problem):

min
s

1

2
‖As − t‖2

2 + λ2‖s‖2
2 (5)

From (2), we can equivalently express (5) as follows.

min
s

p∑
i=1

ci (s) (6)

where p sensor nodes are considered in the system, ci (s) = 1
2‖Ai s − ti‖2

2 + λ2
i ‖s‖2

2. The
i th sensor node has the knowledge of Ai and ti only. We can see (6) is meant a problem
that each sensor node jointly optimises (using their private local functions ci ’s) to reach
a consensus on the global common interest s that minimising the total cost. Notice that
minimising each local function ci , respectively, is clearly a suboptimal solution since only
partial information is utilised and the result would be inevitably biased.

3.2. Preliminary of ADMM

In this paper, we leverage the ADMM technique to devise our distributed seismic tomog-
raphy solution for (6). To briefly illustrate the general ADMM algorithm,[14] consider the
prototype problem:

minimise f (x) + g(z)

subject to: Ax + Bz = c (7)
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with variables x ∈ Rn and z ∈ Rm , where A ∈ R p×n , B ∈ R p×m and c ∈ R p. Functions f
and g are assumed to be convex. As in the method of multipliers, the augmented Lagrangian
can be formed:

Lρ(x, z, y) = f (x) + g(z) + yT (Ax + Bz − c) + (ρ/2) ‖Ax + Bz − c‖2
2 .

ADMM consists of the iterations:

xk+1 := arg min
x

Lρ(x, zk, yk) (8a)

zk+1 := arg min
z

Lρ(xk+1, z, yk) (8b)

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c), (8c)

where ρ > 0 is the predefined augmented Lagrangian parameter and y is the Lagrangian
multiplier (dual variable) of the constraint in (7). The ADMM algorithm is considered to
have three steps: an x-minimisation (8a), a z-minimisation step (8b) and a dual variable
update (8c).

3.3. Algorithm design

To fit the generic two-block ADMM framework, a natural reformulation of (6) can be posed
as:

min{si }

p∑
i=1

ci (si )

s.t. si = s j , j ∈ Ni ,∀i (9)

where si is the local estimate of the global variable s at i th sensor node and Ni is the
set of neighbours of node i . The constraints in (9) are consensus constraints that lead the
neighbours to have agreement on the decision variable s. However, in the constraints of
(9), the estimate si is directly coupled with neighbouring nodes, a parallel processing of the
optimisation problem is not possible.

To overcome this issue, we introduce auxiliary variables qi j , then the constraints in (9)
are decomposed equivalently into the following form (e.g. see [15]):

min{si ,qi j }

p∑
i=1

ci (si )

s.t. si = qi j , s j = qi j , j ∈ Ni ,∀i (10)

Let k be the iteration index and the generic ADMM solution of (10) consists of updates
in (12a)–(12d). Denote Lρ as the augmented Lagrangian of optimisation problem (10) given
by:

Lρ(si , qi j , yi j , zi j ) =
p∑

i=1

{
ci (si ) +

∑
j∈Ni

{yT
i j (si − qi j )

+ zT
i j (s j − qi j ) + ρ

2
‖si − qi j‖2

2 + ρ

2
‖s j − qi j‖2

2}
}

(11)
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where ρ > 0 is a predefined parameter. Note that yi j and zi j are the Lagrangian multipliers
for the first and second constraint in (10), respectively.

sk+1
i = arg min

{si }
Lρ(si , qk

i j , yk
i j , zk

i j ) (12a)

qk+1
i j = arg min

{qi j }
Lρ(sk+1

i , qi j , yk
i j , zk

i j ) (12b)

yk+1
i j = yk

i j + ρ(sk+1
i − qk+1

i j ) (12c)

zk+1
i j = zk

i j + ρ(sk+1
j − qk+1

i j ) (12d)

(12a)–(12d) are over every node i and all its neighbours j ∈ Ni . Typically, each node
i updates its variables in (12a)–(12d) and performs only local communications with its
immediate neighbours.

Notice that the genericADMM in (12a)–(12d) requires sensor node i to update variables
{si , qi j , yi j , zi j } in each iteration, where each variable is the same size as si . It is evidently a
huge burden when the size of variable si is large. Fortunately, a simplified efficient version
for our problem can be obtained as follows (only needs to transmit si for sensor i).

sk+1
i =

(
AT

i Ai + (2λ2
i + 2ρ′|Ni |)I

)−1(
AT

i ti − uk
i + ρ′(|Ni |sk

i +
∑
j∈Ni

sk
j

))
(13a)

uk+1
i = uk

i + ρ′(|Ni |sk+1
i −

∑
j∈Ni

sk+1
j

)
(13b)

where |Ni | represents the cardinality of set Ni . ρ′ = ρ/2.

Proposition 1 For the problem in (10), the updates of (12a)–(12d) are equivalent to
(13a)–(13b).

Proof See the detail derivation in Appendix 1. Interested readers are referred to [16]
and [17] for similar derivations of the average consensus problem and the sparse linear
regression problem, respectively. �

Note that obtaining sk+1
i in (13a) is solving a linear system of equations. Theoretically,

we can use any solver while considering the property of tomography inversion problem,
we adopt Bayesian Algebraic Reconstruction Technique (BART) method in this paper.[18]

A closer look into (13a) and (13b) reveals that for node i , the information needed
is only the summation of its neighbours’ current estimates sk

j , j ∈ Ni . Thus a natural
implementation is that, in every iteration, all the nodes broadcast their current estimates
to all their neighbours. After receiving all the neighbours’ estimates, the sensor nodes can
perform local updates in parallel. When all the nodes finish their computations, they will
broadcast their new estimates again. The idea is summarised in Algorithm 1.

Note that in step 5 of Algorithm 1, the minimisation of sk
i is not carried out exactly.

In this situation, the proposed ADMM-based algorithm will still converge provided certain
mild conditions.[19, p.26]. More importantly, solving the minimisation of sk

i to a very high
accuracy, especially at the initial iterations, may not be worthwhile. The reason is two-
folds: first, at the initial iterations (communications), node i has limited information (even
no information) about the whole structure due to its nature of local communication with
immediate neighbours. In this situation, the solution si may has a large deviation from the
true solution no matter how hard we try for the solution. In addition, solving sk

i is an iterative
process and might require a large amount of time (iterations) to have a solution with very
small relative error.
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Algorithm 1 Synchronised Distributed Seismic Tomography Algorithm (sDSTA)
1: Initialization: Input Ai , ti for sensor i , ∀i .

Initialize s0
i = 0, u0

i = 0, ∀i . Set parameters ρ′ > 0 and λi , ∀i .

2: At each iteration k, (k = 0, 1, . . .), every sensor i broadcasts its sk
i to its neighbors j ∈ Ni .

3: Once every head i receives all its neighbors’s estimates,
do the following local updating.

4: Compute uk
i based on (13b).

5: Update sk+1
i by running a finite number of BART iterations on (13a), with initial value sk

i .

6: When all the nodes finish their primal updates sk+1
i , ∀i ,

broadcast them to all neighbors, and repeats step 4-6
until certain stopping criterion has been satisfied.

Regarding the communication cost of this proposed scheme, we see that it depends on
the network topology. The quantitative relation can be described in Proposition 2.

Proposition 2 The communication cost of sDSTA for each node is o(k) and the total
communication cost is at most o(k N (N − 1)) (complete network) and can be as low as
o(2k N ) (ring network) with respective to network size N and communication round k.

In addition, the convergence speed of the proposed iterative method also depends on
the communication topology. In general, network with larger average degree is expected to
converge faster. We will discuss it in detail in Section 6.

4. Asynchronous distributed seismic tomography algorithm–aDSTA

We can recall that the updating in sDSTArequires each sensor node to wait until receiving the
solution of its slowest neighbour. While in some cases, it might be desirable to update with
less coordination and in an asynchronous fashion such that every node can independently
determine its own actions. In this section, we provide a solution methodology to address
this problem.

4.1. Component 1: adaptive communication

One major motivation of this adaptive communication scheme is that in sensor network
applications such as our distributed seismic tomography, communication is the most energy-
consuming component. In each iteration, sensor nodes need to broadcast their local estimates
si ’s, which is a long vector (e.g. in real data of Mount St. Helens, the size could be
around 768,000). Thus, it is highly demanded to design a mechanism that can reduce the
communication overhead for the proposed distributed algorithm.[20] Specifically, assume a
coordinator exists requiring all the nodes to perform m iterations. However, some node may
already own a good enough solution in less than m iterations, and its value does not change
much for several successive iterations. In this situation, it would be a waste if these nodes
continue to communicate and update. To address this problem, an adaptive communication
scheme is proposed in the following context.

Each sensor node should be able to determine if it needs to communicate and computing.
In each iteration, each node will compute an index which depends on the relative updates.
If this index is greater than a threshold, then the node will stop grabbing updates of its
neighbours.
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Proposed Scheme: For sensor node i , if the following two conditions satisfied:

‖sk
i − sk−1

i ‖
‖sk−1

i ‖ ≤ ϕi and
∥∥uk

i − uk−1
i

∥∥ ≤ μi (14)

then cti = cti + 1, otherwise cti = 0, where cti is a counter of node i and define Ei as
a threshold for node i . When cti > Ei , sensor node i stops updating, which also means
that it stops querying the estimates from its neighbours. When node i stops updating, its
neighbours can still ask for the latest value of node i to improve their accuracy. Notice
that in this situation, once node j obtains the last update of node i , it will not need more
transmissions from i since the estimate of node i will not change. Note that the stopping
criterion (14) is different from those of conventional ADMM methods where all the sensors
shall stop computations at the same time using a common stopping criteria and common
primal and dual tolerances. Stopping criteria (14) allows a sensor i to stop its computation
asynchronously and independently from other sensors. However, these criteria themselves
are insufficient for asynchronous implementation. Synchronisation is still required for dual
and primal variable updates at iteration k + 1 due to their dependencies on values of kth
iteration.

Algorithm 2 Asynchronous Distributed Seismic Tomography Algorithm (aDSTA): For
sensor i
1: Initialization: Input Ai , ti .

Initialize s0
i = 0, u0

i = 0, cti = 0. Set parameters ρ′ > 0, ϕi , μi , Ei and λi .
2: while criterion cti > Ei is not satisfied do

3: At new iteration k + 1, sensor i selects a neighbor j
according to the probability distribution in (15).

4: Sensor i contacts j to obtain j’s current value s j .

5: Compute uk
i based on (13b) with replacing∑

j∈Ni

s j by |Ni | · s j .

6: Update sk+1
i by running a finite number of BART iterations on (A7) with replacing

∑
j∈Ni

s j by

|Ni | · s j .

Use sk
i as the initial guess.

7: When sensor i finishes its primal updates sk+1
i , go to the following:

8: if criterion in (14) is satisfied then

9: cti = cti + 1

10: else

11: cti = 0

12: end if

13: end while

4.2. Component 2: randomised gossiping

To ensure full asynchronous implementation, the update of each node should be performed
in a randomised manner (otherwise there must be some predefined order for updating). To
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this end, we use the doubly stochastic matrix, T ∈ R
p·p for deciding the communications

among sensors, where Ti j is the probability that a sensor i contacts another sensor j at any
iteration. In a mathematical form, we can have

Ti j =
{

h(di j ), j ∈ Ni ;
0, otherwise.

(15)

where di j , { j ∈ S : j ∈ Ni } is the distance between sensor i and j . S is the set of sensors.
h(·) is a function of di j .At iteration k+1, sensor i may need to ask only one of the neighbours
j to send its estimate to i , unless i’s stopping criteria are already satisfied, whereas sensor
j can be contacted by more than one sensor, even when both of j’s stopping criteria are
satisfied.

Observation: In seismic tomography, each station has the ray information coming from
the events to the station. Thus, the closer the two stations are, the higher the similarity
between their obtained ray information is. Based on this observation, we can design the
probability Ti j in the following way: at each iteration, for sensor i , the probability of
selecting its neighbour sensor j is proportional to their distance di j . Since we give more
weight to the neighbour that contributes more new information to sensor i , our proposed
scheme is expected to converge faster than the method selecting its neighbour with uniform
distribution (since the unequal weighting might help the sensors reach consensus).

The communication scheme for sensor i can be described as follows. When the condi-
tions in (14) are not satisfied, sensor i selects a neighbor j according to the probability
distribution of Ti j . Upon contacting j , sensor i pulls the current value of s j from j .
During the computation, first update dual variable ui by replacing

∑
j∈Ni

s j with |Ni |s j .
Second, for updating primal variable si , in the right side of (A7), the item

∑
j∈Ni

s j

is replaced by |Ni |s j . After updating the primal variable si , sensor i will again do the
similar randomised communication process for receiving new s j . Sensor i repeats the
above steps until conditions in (14) are already satisfied. The algorithm with this proposed
communication scheme is illustrated in Algorithm 2.

Note that the set of neighbours Ni of sensor i in fact contains the sensors within the
communication range of node i . That is, if all the sensors except sensor i in the network are
within the communication range of sensor i , then they are all considered as neighbours of
sensor i .

5. Convergence analysis of sDSTA and aDSTA

Convergence rate is a critical factor in designing our proposed methods since faster conver-
gence means less communication rounds and more bandwidth saving. In this section, we
exploit Markov chain and spectral theory to derive the convergence speed of sDSTA and
aDSTA. We find that both methods can achieve linear convergence rate in theory.

Theorem 1 The proposed sDSTA and aDSTA methods converge to an optimal solution at
a linear rate O(αk) for some α < 1, in terms of the per node communications k.

In the following section, we will discuss in detail the proof of Theorem 1 in the
convergence analysis. Our analysis tool is similar to that in [16] [III.A] where it considers
the problem of average consensus, which is different from our seismic tomography problem
defined in (5). The attack plan is to construct a linear system capturing the dynamics of the
solution and utilise the properties of Markov chain (described in Lemmas 1 and 2) to obtain
the convergence rate.[21]
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5.1. Convergence rate analysis

In order to obtain the convergence rate of proposed aDSTA framework, The first step is to
describe the linear systems described in aDSTA (we will see that sDSTA is a special case
under this framework). To this end, we first focus on the state update for sensor i .

Recall that in aDSTA, the original updating equation for sk+1
i in (A7) is modified

by replacing
∑

j∈Ni
s j with |Ni | · s j , for some random neighbour j . According to the

distribution in (15), the expected value of |Ni | · s j is:

|Ni | ·
∑
j∈Ni

Ti j s j (16)

At this point, we can rewrite the updating of sk+1
i in aDSTA as follows.

(
AT

i Ai + (2λ2
i + 2ρ′|Ni |)I

)
sk+1

i − ρ′|Ni |sk
i

− ρ′|Ni | ·
{ ∑

j∈Ni

Ti j sk
j

}
+ uk

i − AT
i ti = 0 (17)

The updating rule for sk
i can be obtained accordingly:

(
AT

i Ai + (2λ2
i + 2ρ′|Ni |)I

)
sk

i − ρ′|Ni |sk−1
i

− ρ′|Ni | ·
{ ∑

j∈Ni

Ti j s
k−1
j

}
+ uk−1

i − AT
i ti = 0 (18)

Also, (13b) can be rewritten as:

uk+1
i = uk

i + ρ′|Ni |sk+1
i − ρ′|Ni ·

{ ∑
j∈Ni

Ti j s
k+1
j

}
(19)

Combining the previous three Equations (17)–(19) yields:
(

AT
i Ai + (2λ2

i + 2ρ′|Ni |)I
)

sk+1
i

=
(

AT
i Ai + (2λ2

i + 2ρ′|Ni |)I
)

sk
i + 2ρ′|Ni | ·

{ ∑
j∈Ni

Ti j sk
j

}

− ρ′|Ni |sk−1
i − ρ′|Ni | ·

{ ∑
j∈Ni

Ti j s
k−1
j

}
(20)

In a clearer form, the state update for sensor i can be expressed as:

sk+1
i = sk

i + 2ρ′|Ni | ·
(

AT
i Ai + (2λ2

i + 2ρ′|Ni |)I
)−1

·
{ ∑

j∈Ni

Ti j sk
j

}
− ρ′|Ni |

(
AT

i Ai + (2λ2
i + 2ρ′|Ni |)I

)−1
sk−1

i

− ρ′|Ni | ·
(

AT
i Ai + (2λ2

i + 2ρ′|Ni |)I
)−1

{ ∑
j∈Ni

Ti j s
k−1
j

}
(21)
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Now the matrix form for the linear system in aDSTA is:

E

[
vk+1

]
= E

[
M

] · vk (22)

M =
[

F G
I 0

]
(23)

where F, G, I and 0 are all p × p dimensional block matrices, respectively. vk+1 =[
s̄k+1, s̄k

]T
, where s̄k stacks all the sensor solutions at iteration k. For notation convenience,

we drop E
[ · ]

in (24) in the later context.
Regarding matrix F, the entry Fi i = I and entry (i, j) is: Fi j = 2Ti j Pi . With respect

to matrix G, we have Gi i = −Pi , Gi j = −Ti j Pi , where Pi = ρ′|Ni |
(

AT
i Ai + (2λ2

i +
2ρ′|Ni |)I

)−1
.

The state update (24) is valid for k > 0. Notice that in aDSTA we initialise s0
i =

0, u0
i = 0,∀i . By plugging in these initial conditions into (17), it is shown that s1

i =(
AT

i Ai + (2λ2
i + 2ρ′|Ni |)I

)−1
AT

i ti .

Thus the initial state vector v1 can be expressed as:

v1 =
[
R1, · · · , Rp, 0, · · · , 0

]T
(24)

where Ri =
(

AT
i Ai + (2λ2

i + 2ρ′|Ni |)I
)−1

AT
i ti .

Before approaching our final claim, we state two properties of matrix M, which will
help derive the convergence rate of proposed algorithms.

Lemma 1 Matrix M has an eigenvalue equals 1.

Proof See details in Appendix 2. �
Lemma 2 There exists a selection of value ρ′ and matrix T such that the second largest
eigenvalue of matrix M is smaller than 1.

Proof See details in Appendix 3. �
Since the state transition matrix M has the two above properties, based on the classical

convergence analysis in [21], the convergence rate can be obtained as:

‖vk+1 − v∞‖2 � Cσ k−J+1
2 (25)

where C is a constant, J is the size of the largest Jordan block of M. σ2 denotes the second
largest eigenvalue of matrix M. Theorem 1 is thus verified.

Observation: Recall that in (16), if we assign the probability Ti j in a uniform distributed
manner such that:

Ti j = 1

|Ni | (26)

Then we have,

|Ni | ·
∑
j∈Ni

Ti j s j =
∑
j∈Ni

s j (27)

This implies that in this case, the convergence rate of aDSTA is the same as sDSTA in
expectation.
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Figure 3. Convergence behaviour of sDSTA.

Considering the convergence rate in (25), we see that the second largest eigenvalue of
matrix M is an important factor, which depends on the value of ρ ′ and the selection of
matrix T. In fact, besides our T matrix selection rule in III-B (given a certain feasible value
ρ′), another strategy is to minimise σ2 by solving the following optimisation problem (akin
to the fastest mixing Markov chain problem [22]):

minimise
t,T

t

subject to − tI 	 M(T) − M∞ 	 tI (28)

Here, M(T) indicates the transition matrix M is a function of T. M∞ is a limiting point
of M. The symbol 	 in A 	 B means matrix B − A is positive semidefinite.

6. Performance evaluation

In this section, we evaluate the performance and characteristics of sDSTA and aDSTA,
respectively. Our experiments are performed through MATLAB and network emulators.[23]
In the performance study, both synthetic and real seismic imaging data-sets are tested.

6.1. Synthetic data (2-D model)

The performance analysis here is based on the data-set generated using code in [24]. We
create a 2-D seismic tomography test problem with an N · N domain, using n sources
located on the right boundary and p receivers (seismographs) scattered along the left and
top boundary. The rays are transmitted from each source to each receiver. We know that
the regularisation parameter λ depends on the application and data-sets, which means for
specific scenario, λ is chosen based on the understanding and knowledge of the application.
For simplicity, we fix λ2 = 1 and λ2

i = 1/p in our experiments. The parameter ρ′ is set to
be 0.5.

6.1.1. Convergence behaviour of sDSTA

We first study the performance of sDSTA with a case that {N = 16 (tomography resolution
is 16 × 16), n = 64, p = 32}. The associated communicate network is a complete network
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Figure 4. Seismic Tomography Comparison (noisy data). Centralised solution in (b) is obtained by
running 50 iterations of BART. (c) is the tomography in Node 1 after 50 message communications
assumed in a complete network. (d) is Node 1’s tomography after 100 message communications
assumed in a ring network.

(every node can communicate with all the other nodes) and there is no noise in the data.
Note that in this scenario, the size of matrix A is 2048 × 256 and the size of each submatrix
Ai is 64 × 256.

In Figure 3, we plot the error (measured by ‖s − st‖2, st refers to the ground truth)
and residual (measured by ‖As − t‖2) for sensor 1 - sensor 8 (first eight nodes) in the
system. It shows that these 8 nodes finally reach consensus after around 25 iterations. It is
worth noting that one iteration here means one message communication for every node. For
the seismic tomography application investigated in this paper, our key concern is to find a
communication efficient algorithm since in this problem communication for each node is
much more expensive than computation within each node.

6.1.2. Tomography results of sDSTA

Now we consider a larger data size model with {N = 32 (tomography resolution is 32 ·32),
n = 128, p = 64}. A 5% Gaussian noise is added into data vector t. The tomography
results are depicted in Figure 4. Since noise is included, both centralised and sDSTA results
are less accurate comparing to the noiseless case. Nevertheless, the outline of the fault
zone (the brown part in (a)) is almost recovered. Another interesting point is that when
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Figure 5. sDSTA vs. aDSTA. (a) is the relative error plot. (b) shows the objective value curves. (c)
and (d) are tomography results.

connectivity ratio of the communication network is low (as the ring network in (d)), more
communications among the neighbours are required in order to achieve similar results as
the high connectivity ratio ones (e.g. (c)). This validates our claim in the last paragraph of
Section 3.3.

6.1.3. Performance comparison: sDSTA vs. aDSTA

We study a case with {N = 32, n = 256, p = 128}. Noise level is the same as the previous
example. A random communication network is created, and on average each sensor node
has only three neighbours. This setting is to emulate the situation in real that the sensor
network is widely spread in the field to cover a large area and for each sensor node, there
are very few number of nodes are within its communication range.

In Figure 5, we compare the performance of two proposed algorithms sDSTA and
aDSTA. In particular, though the tomography is a bit worse, the convergence speed of
aDSTA is shown to be close to sDSTA (in (a) and (b)). This observation conforms to
the theoretical analysis in Section 4.2. In fact, if the application has a base station or a
coordinator, and is not very real-time sensitive, synchronised-based sDSTA will meet the
requirement. In other situations, aDSTA might be more suitable.
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Figure 6. Performance of aDSTA with different strategies of choosing probability matrix T.

Figure 7. Convergence performance comparison: aDSTA, DGD, EXTRA, D-NG.

Remark 1 We conclude that aDSTA can provide comparable tomography solution with
sDSTA and has less communication and coordination.

In the later context, we will focus on the performance evaluations of aDSTA.

6.1.4. Impact of probability matrix T on aDSTA

It is also interesting to study the effect of using different selection rules for probability matrix
T. In Figure 6, ‘Proposed mix’refers to the rule suggested in Section 4.2 (Equation (15)) and
‘SDP-based mix’ is the method described in (28). For each method, we run five realisations
of aDSTA and average the solutions. We find that ‘SDP-based mix’ is slightly better than
‘Proposed mix’ in terms of convergence rate. Nevertheless, the distinction between them
is not that obvious. In addition, solving (28) might need optimisation solver installed in
the nodes. In short, if solving (28) is not available or wanted in the application, the simple
‘Proposed mix’ can be a good alternative.
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Figure 8. Vertical slices of tomography model. The ground truth in (a) is generated by simulating
seismic data on resolution 1283 and 650 events are used. Centralised and aDSTAmethods are simulated
with resolution 323 and 400 events.

6.1.5. Compare aDSTA with other methods in the literature

We compare aDSTA with three recently developed general distributed optimisation algo-
rithms: Decentralised Gradient Descent (DGD) [11], EXTRA [12] and D-NG method [13].
All of these three methods are tested using hand-tuned optimal parameters, respectively.
Figure 7 demonstrates that aDSTA(blue curve) significantly outperforms the other methods.
Recall that in Figure 5(a) and (b), sDSTA is very close to aDSTA, which insinuates that
sDSTAis also faster than DGD, EXTRAand D-NG. This comparison conveys a message that
the proposed sDSTAand aDSTAalgorithms might be more suitable for our communication-
sensitive distributed seismic tomography.

6.2. Synthetic data (3-D model)

We follow the routine in [2] to generate a similar synthetic 3-D model data-set and use
the same code in [2] for visualising our solutions in Figures 8 and 9. The synthetic model
consists of a magma chamber (low velocity area) in a 10 km3 cube. One hundred stations
are randomly distributed on top of the cube and form a network. To construct the matrix A
and vector b, 650 events are generated and we compute the travel times from every event
to each node based on the ground truth, and send the event location and travel time to
corresponding node with white Gaussian noise.

6.2.1. Comparison of tomography results

Figure 8 demonstrates that aDSTA is close to centralised method in tomography quality.
Another interesting point is that aDSTA almost reconstructs the surface of magma even in
a much lower resolution comparing to the ground truth.

6.2.2. Data loss tolerance of aDSTA

We evaluate the robustness of aDSTA in Figure 9. Two packet loss ratios 10% and 30%
are tested in the emulator. We can find that even for 30% packet loss ratio, the distinction
between the result without packet loss is relatively small. This validates the robustness of
aDSTA in dealing with severe packet loss situations.
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Figure 9. Effect of packet loss in aDSTA.

6.3. Real data (3-D model)

To study the performance of the two proposed algorithms in realistic scenarios, we use
ten years (2001–2011) real seismic event data of Mount St. Helens in Washington, USA
for the experiment. The data were collected from 78 stations and a 3-D velocity model is
used, which assumes the velocity in the volcano changes along x-axis, y-axis and depth.
Notice that unlike synthetic data used in previous section, there is no ground truth in this
real data scenario. In other words, the true velocity structure of volcano Mount St. Helens
is currently unknown. Hence we focus on the comparison of the proposed methods with
centralised processing scheme, which can be seen as a benchmark that fully utilise the data
available.

6.3.1. Comparison of tomography results in real data

Figure 10 illustrates vertical slices of tomography model with various depths. The range of
x-axis is from 65 to 95 km, and the range of y-axis is from 80 to 120 km. The underlying
resolution is 160 × 200 × 24. The color in Figure 10 represents the relative velocity
perturbation in specific location. More red means larger (negative) value of perturbation.
More blue means larger (positive) value of perturbation. It is shown in Figure 10 that both
sDSTA and aDSTA (at the solution of 300 iterations) can effectively invert the tomography
model close to the benchmark (centralised algorithm) using real data.

6.3.2. Communication cost evaluation in real data

Figure 11 visualises the communication cost characteristics of aDSTA. Figure 11(a) shows
that sDSTA and aDSTA need much less amount of communication than the centralised
method and aDSTAis more efficient than sDSTA. Figure 11(b) illustrates the communication
distribution of aDSTA on each node with a heat map. We can see that, unlike synchronised
sDSTA, in aDSTA some nodes stop communication earlier than others, which saves the
bandwidth. Second, the cost disparities between several high cost nodes and the lowest
one are around 18%, which implies that the communication load is still balanced over the
network.
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Figure 10. Real data tomography inversion results comparison. (a)–(c) are results of layer depth
0.9 km. (d)–(f) are results of layer depth 2.9 km. (g)–(i) are results of layer depth 4.9 km.

Figure 11. Communication cost comparison.
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7. Discussion

There are two potential benefits of using our proposed algorithms for seismic tomographic
inversion problem. First, both sDSTA and aDSTA can be easily modified to accommodate
problems with constraints on solution s. For example, we can add constraint that the value of
velocity perturbation is within some range (need knowledge from geophysics community).
The solution in this case might be better in revealing the real situation within the volcano.
Second, they can deal with different regularisations (as long as it is convex). For instance,
an efficient distributed algorithm can still be derived for the �1-norm regularised inversion
problem in [25].

8. Conclusion

This work opens a relatively underexploited area where seismic tomography inversion is
done over a sensor network in a distributed, decentralised fashion. This paper presents novel
designs for in-network travel time seismic imaging in cyber-physical sensor systems under
synchronous and asynchronous communication scenarios. The performance and features are
verified with experiments in both synthetic and real data-sets through network emulators.
The merits of the proposed methods elucidate that they are promising solutions for real-time
in situ seismic tomography in the near future.
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Appendix 1. Derivation of (13a)–(13b)
The goal here is to reduce the original ADMM steps (12a)–(12d) to (13a)–(13b). To this end, we first
focus on (12b). A closer look reveals that a closed-form solution of (12b) can be obtained as follows:

qk+1
i j = 1

2ρ

{
ρ(sk+1

i + sk+1
j ) + (yk

i j + zk
i j )

}
(A1)

Adding both sides of (12c) and (12d) yields:

yk+1
i j + zk+1

i j = (yk
i j + zk

i j ) + ρ(sk+1
i + sk+1

j ) − 2ρ · qk+1
i j (A2)
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After plugging (A1) into the right side of (A2), we obtain the following result:

yk+1
i j + zk+1

i j = 0 (A3)

Consequently, by plugging (A3) back into (A1), we have

qk+1
i j = 1

2

(
sk+1
i + sk+1

j

)
(A4)

We now re-express (12a) removing all the independent items with respect to variable si :

sk+1
i = arg min

{si }

{
ci (si ) +

∑
j∈Ni

(yk
i j )

T si + ρ

2

∑
j∈Ni

‖si − qk
i j )‖2

2

}

= arg min
{si }

{
ci (si ) +

∑
j∈Ni

(yk
i j )

T si + ρ

2

∑
j∈Ni

‖si − 1

2
(sk

i + sk
j )‖2

2

}
(A5)

Let uk
i = ∑

j∈Ni
(yk

i j ). Since function ci is differentiable with respect to si , (A5) is equivalent to
solving the following equation:

∇ci (s
k+1
i ) + uk

i + 2ρ|Ni |sk+1
i − ρ′(|Ni |sk

i +
∑
j∈Ni

sk
j

)
= 0 (A6)

where ∇ denotes the gradient of the function. Plugging ci (s
k+1
i ) = 1

2‖Ai sk+1
i − ti ‖2

2 + λ2
i ‖sk+1

i ‖2
2

into (A6) yields the following equation, which becomes (13a) immediately.(
AT

i Ai + (2λ2
i + 2ρ′|Ni |)I

)
sk+1
i = AT

i ti − uk
i + ρ′(|Ni |sk

i +
∑
j∈Ni

sk
j

)
(A7)

Now we need to derive the updating equation for ui . Substituting (A4) into (12c), we can have
(consider uk+1

i ):

uk+1
i =

∑
j∈Ni

(yk+1
i j )

=
{ ∑

j∈Ni

(yk
i j )

}
+ ρ

2

(
|Ni |sk+1

i −
∑
j∈Ni

sk+1
j

)

= uk
i + ρ

2

(
|Ni |sk+1

i −
∑
j∈Ni

sk+1
j

)
(A8)

Define ρ′ = ρ/2, then (13b) follows.

Appendix 2. Proof of Lemma 1
First, in the second row of matrix M, the summation is I, thus in the lower part, the summation of
every row is 1. Now we look at the upper part, considering the facts in about matrices F and G, the
summation of i th row can be expressed as:

Fi i + Gi i +
∑
j∈Ni

Fi j +
∑
j∈Ni

Gi j

=I − Pi +
∑
j∈Ni

2Ti j Pi −
∑
j∈Ni

Ti j · Pi

=I − Pi +
∑
j∈Ni

Ti j Pi (B1)

Recall that matrix T is defined as a doubly stochastic matrix yielding
∑

j∈Ni
Ti j = 1. Hence

the above equation equals I. Consequently, both the upper and lower part of matrix M satisfies the
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condition that the summation of each row is 1. Based on this fact, it is straightforward to show Lemma
1 (the corresponding eigenvector contains scaling factor for each element in a row).

Appendix 3. Proof of Lemma 2
Based on Lemma 1, we can construct the corresponding left and right eigenvectors denoted by l1

v and
r1
v , respectively (also scale the eigenvectors such that l1

vr1
v =1). Next, we need to find a limiting point

of the state transition matrix. From the definition, we can have l1
vM = l1

v , Mr1
v = r1

v . Consequently,

lim
k→∞ Mk = r1

v l1
v

The above fact implies that r1
v l1

v = M∞ is a limiting point.[21] Akin to the techniques used in [26],
it can be shown that once the following condition is satisfied, all the other eigenvalues of matrix M
is less than 1. Thus Lemma 2 is verified.

‖M − M∞‖2 < 1 (C1)

Here ‖ · ‖2 is the spectral norm of a matrix.


