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Abstract: Learned optimization algorithms are promising approaches to inverse problems by lever-
aging advanced numerical optimization schemes and deep neural network techniques in machine
learning. In this paper, we propose a novel deep neural network architecture imitating an extra
proximal gradient algorithm to solve a general class of inverse problems with a focus on applications
in image reconstruction. The proposed network features learned regularization that incorporates
adaptive sparsification mappings, robust shrinkage selections, and nonlocal operators to improve
solution quality. Numerical results demonstrate the improved efficiency and accuracy of the proposed
network over several state-of-the-art methods on a variety of test problems.

Keywords: image reconstruction; deep learning; learned optimization algorithm

1. Introduction

Recent years have witnessed the substantial success of deep neural networks (DNN)
in a large variety of real-world applications [1–9]. Equipped with proven expressive power,
DNNs can be used to approximate highly complicated functions provided a sufficient
amount of data [10]. However, training DNNs as end-to-end black-boxes can be extremely
data demanding, rendering DNNs difficult to interpret, generalize, and sensitive to noise
and outliers. To overcome these issues, learned optimization algorithms (LOAs) have
started to gain attention as they are designed to combine the interpretable mechanism of
optimization algorithms and the expressive power of DNNs. One of the most important
applications of LOAs is solving the inverse problem of general form

min
x

f (x; y) + g(x), (1)

where f is the data fidelity term determined by the data formation and noise distribution
that relate the target solution x and the given measurement data y, and g is the critical
(possibly nonconvex) regularization term that promotes the desired solution x, as f is often
underdetermined and the data y can be incomplete and noisy. In classical approaches to
inverse problems, the regularization g is often handcrafted based on human heuristics and
limited experience, which can be overly simplified and not capable to capture the intrinsic
complex features of the solution. LOAs, on the other hand, allow the regularization g to
be learned from training data and hence can result in significant improvement over the
handcrafted regularizations.

Our goal in this paper is to propose an efficient extra proximal gradient algorithm
that employs the Nesterov’s acceleration technique and the extra gradient scheme, and
unroll this algorithm into a deep neural network called the extra proximal gradient net-
work (EPGN) to solve a class of inverse problems (1). Motivated by the least absolute
shrinkage and selection operator (LASSO) [11–13], our EPGN implicitly adopts an l1-type
regularization in (1) with a nonlinear sparsification mapping learned from data. The proxi-
mal operator of this regularization is elaborated by several linear convolutions, nonlinear
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activation functions, and shrinkage operations for robust sparse feature selection in EPGN.
As our focus application is in image reconstruction, we also incorporate a nonlocal feature
selection component into the learned regularization to leverage similar patterns within im-
ages and improve reconstruction quality. The proposed EPGN combines the advantages of
the accelerated extra gradient scheme, the sparsity promoting nonlinear transforms, and the
nonlocal feature selections. As a consequence, our EPGN is efficient, robust, and accurate in
a variety of image reconstruction problems as demonstrated by the numerical experiments.

2. Related Work

One of the early LOAs is the learned iterative shrinkage thresholding algorithm
(LISTA) for solving l1 regularized linear inversion [14]. LISTA maps the standard ISTA
optimization algorithm to a recurrent neural network (RNN) with certain layer weights
learned from training data to improve the performance. The asymptotic linear convergence
rate for LISTA is established in [15,16]. Several variations of LISTA are proposed for image
reconstruction with regularizations based on low rank or group sparsity [17], l0 minimiza-
tion [18], and learned approximate message passing [19]. These LOA methods employ
handcrafted regularizations and require a closed-form solution of the proximal operator of
the regularization term. The idea of LISTA is also extended to solve composite problems
with linear constraints, called differentiable linearized alternating direction method of
multipliers (D-LADMM) [20], which exhibits an asymptotic linear convergence rate.

To learn more general and adaptive regularization function in (1), the other group of
LOAs is proposed to solve inverse problem (1) with learnable regularization. A straightfor-
ward approach in this group uses deep convolutional neural network (CNN), denoted by
hk(·), to replace the proximal operator proxαk g [21] of the unknown regularization term g
in the proximal gradient update:

xk+1 = proxαk g(bk), (2)

where αk > 0 is the step size in the kth iteration, bk := xk − αk∇ f (xk; y), and proxg(·) is
defined by

proxg(b) := arg min
x

1
2
‖x− b‖2 + g(x). (3)

Therefore, one avoids explicit formation of the regularization g, but creates a neural
network with prescribed K phases, where each phase mimics one iteration of the proximal
gradient method such as (2) to compute bk as above and xk = hk(bk). The CNN hk can
also be cast as a residual network (ResNet) [22] to represent the discrepancy between
bk and the improved xk [23]. Such a paradigm is also embedded into half quadratic
splitting [23], ADMM [24], and primal dual methods [25] to replace the proximal operator
in the subproblems. To improve over the generic black-box CNNs above, several LOA
methods are proposed to unroll numerical optimization algorithms such as deep neural
networks so as to preserve their efficient structures with proven efficiency, such as the
ADMM-Net [26] and ISTA-Net [27]. These methods also prescribe the phase number K and
map each iteration of the corresponding numerical algorithm to one phase of the network,
and learn specific components of the network using training data.

3. Extra Proximal Gradient Network

In this section, we propose a novel parameter-efficient deep neural network archi-
tecture to solve the inverse problem (1) with regularization learned from data. To this
end, we first introduce the accelerated extra proximal gradient algorithm that combines
Nesterov’s acceleration technique and the extra proximal gradient update in Section 3.1.
In Section 3.2, we mimic this algorithm to construct the proposed extra proximal gradient
network (EPGN), where Nesterov’s acceleration step corresponds to a simple linear com-
bination layer in EPGN to boost convergence, and the extra proximal gradient structure
induces a predictor–corrector update scheme with efficient utilization of network parame-
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ters in EPGN. For the image reconstruction applications considered in our experiment part,
we integrate mixing layers into EPGN to combine the local and nonlocal image features for
enhanced reconstruction quality in Section 3.3. Additional details of the EPGN training
process are provided in Section 3.4.

3.1. Extra Proximal Gradient Algorithm

The extra gradient method proposed in the seminal work [28] has attracted significant
interest in optimization in recent years. It has been extended to solve variational inequality
problems [29] and convex/nonconvex composite optimization problems [30] with theoreti-
cal performance guaranteed. Extra gradient algorithms use an additional gradient step in
a first-order optimization algorithm to improve the convergence results. This can also be
interpreted as a predictor–corrector scheme to speed up convergence. The following two
variants of the original extra gradient algorithm are closely related to our proposed extra
proximal gradient algorithm. The first one is the extended extra gradient method in [30],
which uses extra proximal gradient steps at each iteration to solve nonconvex composite
minimization problem (1) by

xk+ 1
2
= proxαk g(xk − αk∇ f (xk; y)), (4a)

xk+1 = proxβk g(xk − βk∇ f (xk+ 1
2
; y)). (4b)

The second one is the convex accelerated extra gradient algorithm developed in [31],
which integrates Nesterov’s accelerated gradient method for smooth convex optimiza-
tion [32] into the extra gradient scheme. Different from the classical extra gradient method,
this algorithm evaluates gradients in both steps at an interpolation of the previous two iter-
ates rather than the previous iterate only. Recall that Nesterov’s acceleration technique [32]
for minimizing smooth convex function f is given by

x̃k = xk + γk(xk − xk−1), (5a)
xk+1 = x̃k − α∇ f (x̃k; y), (5b)

which performs a momentum structure (5a) to improve the convergence rate of standard
gradient methods. For nonconvex problems, a monitor mechanism that tunes γk adap-
tively can be introduced to remedy convergence issue [33]. Motivated by this acceleration
technique, we propose to combine (4) and (5) and introduce the accelerated extra proxi-
mal gradient updating scheme summarized in Algorithm 1 to solve inverse problems of
form (1). In Algorithm 1, αk and βk are step sizes, and γk is the momentum coefficient in
the kth iteration.

Algorithm 1: Accelerated Extra Proximal Gradient Algorithm.
Input: Data y and initialization x0 = x− 1

2
.

Output: x = xK.
For k = 0, 1, 2, . . . , K− 1, do

x̃k = xk + γk(xk − xk− 1
2
), (6a)

bk+ 1
2
= x̃k − αk∇ f (x̃k; y), (6b)

xk+ 1
2
= proxαk g(bk+ 1

2
), (6c)

x̂k = xk+ 1
2
+ γk(xk+ 1

2
− xk), (6d)

bk+1 = x̂k − βk∇ f (x̂k; y), (6e)
xk+1 = proxβk g(bk+1). (6f)
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3.2. Extra Proximal Gradient Network (EPGN)

We now cast Algorithm 1 as an LOA by mapping its iterations to the phases of a
deep neural network. To this end, we select a phase number K (value to be specified in
our experiment), and construct a deep neural network with K phases where each phase
performs the updates described in (6). More specifically, we retain the same updates (6a),
(6b), (6d) and (6e) in the kth phase of the network. As a result, (6a) and (6d) are simple
linear combination layers to integrate the momentum term for acceleration, and (6b) and
(6e) are gradient updates for improved fitting to the data. The parameters αk, βk, γk are all
to be learned for every phase k (we set αk = βk for simplicity). The remaining updates (6c)
and (6f) are replaced by a robust implicit ResNet-type update (we will make it explicitly
computable later):

xk+l = bk+l + rk(xk+l), (7)

where l = 1/2, 1, and the residual mapping rk plays a critical role of regularization that
improves the quality of output xk+l in each phase k. In this paper, we parameterize rk as a
composition of two nonlinear mappings, denoted by Gk and G̃k, such that:

rk(xk+l) = G̃k ◦ Gk(xk+l). (8)

In the remainder of this subsection, we show the details of the CNN structures of
these two nonlinear mappings Gk and G̃k and how to make the implicit residual update (7)
explicit by leveraging the robust shrinkage selection operator.

3.2.1. Nonlinear Feature Extraction Operator Gk

We parametrize the nonlinear operator Gk as a multilayer convolutional network of
the following structure:

Gk(x) = Bkσ(AkDkx), (9)

where Dk and Ak are two linear convolutional operations that generate and convolve the
local features of the input x, σ is a nonlinear activation function set to the rectified linear
unit (ReLU) (i.e., σ(x) = max(x, 0)), and Bk is another linear convolution that fuses the
activated local features. All the linear mappings Ak, Bk, and Dk are realized as 3 × 3
convolutions. Hence, the size of the receptive field (RF) [34] of Gk is 7× 7.

The purpose of Gk is to extract the main features of its input, such that these features
can be easily refined by a robust feature selector. To this end, we employ the soft shrinkage
selection operator in LASSO, which is the proximal operator of the l1 norm and proved to be
effective in selecting sparse outstanding features and suppressing noises of its input. More
specifically, we consider Gk(b) as the features prepared to be further pruned by shrinkage
(as b is obtained by direct gradient update (6b) and (6e) which may contain undesired
artifacts, and hence the features Gk(b) need further refinement), and Gk(x) as the refined
feature obtained by pruning Gk(b) using shrinkage. In other words, we expect Gk(xk+l)
to be

Sk(Gk(bk+l)) = proxθk‖·‖1
(Gk(bk+l)), (10)

where the shrinkage threshold θk > 0 is also to be learned with Ak, Bk, and Dk. Note
that the component-wise shrinkage operator Sk in (10) has a closed form solution as
[Sk(z)]i = max(|zi| − θk, 0) · zi/|zi| for each component zi of z. To further increase our
network capacity, we set the convolution Bk in Gk to contain N f kernels (N f is set to 32 by
default), each of size 3× 3 in our implementation, hence Gk(x) has N f channels at each
pixel of x. The shrinkage operator Sk in (10) is applied channel-wise with varying θk,j where
j = 1, . . . , N f . Hence, the learnable parameters of Gk include one convolution Dk with N f
kernels of size 3× 3 and convolutions Ak and Bk with N f kernels of size 3× 3× N f , and
those of Sk are the shrinkage thresholds θk = {θk,j : j ∈ [N f ]}.
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3.2.2. Nonlinear Residual Resembling Operator G̃k

Based on (8), the purpose of the nonlinear operator G̃ is to resemble the residual term
using the refined feature Gk(x), we can interpret Gk and G̃k respectively as encoder and
decoder in a symmetric form. More specifically, we parametrize G̃k(x) as D̃k Ãkσ(B̃kx),
where Ãk, B̃k, and D̃k are all 3× 3 convolutional operators, and D̃k compresses the N f
channels back to 1 channel according to Dk in implementation.

Combining the parametrized nonlinear operators Gk and G̃k and the shrinkage operator
Sk into (8), we obtain an explicit update rule of (7) given by

xk+l = bk+l + G̃k ◦ Sk ◦ Gk(bk+l). (11)

This update rule is employed in (6c) and (6f) for l = 1/2, 1 respectively in the
kth phase.

To summarize, our proposed extra proximal gradient network (EPGN) of a prescribed
K phases is constructed by unrolling Algorithm 1, where each phase executes (6) but with
(6c) and (6f) substituted by (11). The flowchart of the computation in EPGN is shown in
Figure 1. The proposed EPGN not only inherits the advantages of Algorithm 1 but also
employs learnable feature selection operations. Hence, EPGN combines the following
properties: (i) the simple linear momentum layers (6a) and (6d) for improved convergence;
(ii) the extra proximal gradient updates (6b), (6e), and (11) mimic the predictor–corrector
scheme for parameter-efficient network structure; (iii) learnable feature extraction, selection,
and residual resembling operators (Gk, G̃k,Sk) in (11) to effectively improve solution quality
as the input data flows through EPGN.
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Figure 1. Overview of the K-phase extra proximal gradient network (EPGN) architecture. The
arrows in the same color indicate computations within the same phase and share the same operators
and parameters.

3.3. EPGN with Nonlocal Operator (NL-EPGN)

Nonlocal methods have proven effective for image reconstruction problems, such
as in variational methods [35] and nonvariational approaches such as the notable BM3D
algorithm [36]. Nonlocal operators can significantly improve image quality as they use
image patches located in different regions to exploit the inherent self-similarity of images.
Recently, the success of the nonlocal methods has motivated the investigation of the
architecture of DNNs that have the ability to capture long-distance dependencies of the
image. The deep network architecture for gray-scale and color image denoising in [37]
is inspired by the projected gradient algorithm for solving a common variational image
restoration model with a learnable nonlocal regularization. The nonlocal neural network
proposed in [38] can be viewed as a generalization of the classical nonlocal mean in [35]
that computes the response at a position as a weighted average of the image intensities at
all positions. The weights implicitly depend on the feature maps in the patches with the
size determined by the receptive fields.

To exploit repeated features in images for enhanced reconstruction quality, we adopt
the idea in [38]. However, unlike [38] which only relies on nonlocal features, our NL-EPGN
fuses local and nonlocal features of images using a combination operator learned through
training data. More specifically, we propose NL-EPGN to integrate a nonlocal operator Nk
into the residual operator in (11), so that the features refined by the shrinkage operation Sk
can be passed to Nk to leverage nonlocal features in images:

xk+l = bk+l + G̃k ◦ Nk ◦ Sk ◦ Gk(bk+l). (12)
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The operator Nk contains two main components: a nonlocal blockMk that extracts
nonlocal features of the input, and a nonlinear layer that combines the local and nonlocal
features. The details of these two components are given as follows.

3.3.1. Nonlocal Feature Extraction BlockMk

Our design of the nonlocal feature extraction block Mk(xk) follows the work [38]
which computes a weighted average of features at all locations in an image. More precisely,
let [z]j denote the input feature vector at position j and [v]i the response vector at position i
of an image, then the nonlocal blockMk computes [v]i by:

[v]i = ∑j wij[ϕ(z)]j, (13)

where the function ϕ computes a representation of the input signal at position j, and wij is
the normalized weight depending on the similarity between [z]i and [z]j. The mapping ϕ
corresponds to a learnable matrix W ϕ (implemented as 1× 1 convolution). The weights
are computed by embedded Gaussian:

wij =
exp([Wαz]>i [W

βz]j)

∑j exp([Wαz]>i [W
βz]j)

, (14)

where both Wα and W β are implemented as N f /2 convolutional filters of kernel size 1× 1.
We employ the bottleneck structure to reduce computation [38]. Hence, the nonlocal block
Mk in phase k is implemented as v =Mk(z) where

Mk(z) = softmax([Wα
k z]>[W β

k z])W ϕ
k (z). (15)

3.3.2. Local and Nonlocal Combination Layer

We propose to use a learnable combination layer of form σ(Ck[z, v]) to merge the input
local feature z and nonlocal feature v obtained by nonlocal blockMk in (15). That is, the
nonlocal operator Nk is defined by

Nk(z) = σ(Ck[z,Mk(z)]). (16)

In the kth phase, the inputs of Nk are z = Sk ◦ Gk(bk+l) for l = 1/2, 1 as shown in
(12), [·, ·] stands for the concatenation operator at each pixel, and Ck corresponds to a set
of learnable weight vectors which project the concatenated vector to a scalar at each pixel
(implemented as 1× 1 convolution). The flowchart of the nonlocal operator is shown in
Figure 2.
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Figure 2. Data flow in the nonlocal operator Nk (16). “
⊗

” denotes matrix multiplication. Both input
zk and output N (zk) are of the same shape H ×W × N f (height×width×#channel) of the image.
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3.4. Network Training

As discussed above, the proposed EPGN (or NL-EPGN) consists of K phases, where
each phase imitates one iteration in the accelerated extra gradient Algorithm 1 with proxi-
mal steps (6b) and (6e) replaced by (11) (or (12) for NL-EPGN). The flowchart of variables in
the kth phase is shown in Figure 3. The parameters in the kth phase are collectively denoted
by Θk, which includes the feature extraction operator Gk = [Ak, Bk, Dk], the residual resem-
bling operator G̃k = [Ãk, B̃k, D̃k], the nonlocal operator [Wα

k , W β
k , W ϕ

k , Ck], the momentum
coefficient γk, and the shrinkage thresholds θk. Let Θ = {Θk : 0 ≤ k ≤ K− 1} be the set of
all network parameters. Then, given N training data pairs of form {(x(i), y(i)) : 1 ≤ i ≤ N},
where y(i) is the input measurement data and x(i) is the corresponding ground truth of the
ith pair, we define the loss function of Θ as

L(Θ) =
1
N

N

∑
i=1
‖xK(y(i); Θ)− x(i)‖2

2, (17)

where xK(y; Θ) denotes the output of the EPGN (i.e., the output of the last, Kth phase)
parametrized by Θ given input data y. The optimal network parameter Θ∗ is obtained by
minimizing the loss function (17) in the training process. After training, the EPGN with
parameter Θ∗ serves as a feed-forward neural network that can reconstruct high-quality
image x given new measurement data y on the fly.
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𝒙
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𝟏
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𝒙𝒌

ෝ𝒙𝒌

Figure 3. Data flow in the kth phase of EPGN. “
⊕

” represents element-wise sum. Orange and green
arrows represent computations in the first ((6a), (6b) and (11) with l = 1/2) and second ((6d), (6e)
and (11) with l = 1) stages of EPGN, respectively.

4. Numerical Experiments

In this section, we evaluate the performance of the proposed EPGN and NL-EPGN
on several inverse problems in imaging reconstruction applications. We focus on the
reconstruction problem in compressive sensing in our experiments, however, the proposed
method can be easily adapted to other image reconstruction problems by changing the
data-fidelity term accordingly. All the experiments are implemented, trained, and tested in
the TensorFlow framework [39] on a desktop with an Nvidia GTX-1080Ti GPU and 11 GB
of graphics card memory (NVIDIA Corporation, Santa Clara, CA, USA).In all tests, the
network parameters Θ of EPGN/NL-EPGN are initialized using the Xavier method [40]
and trained with the Adam optimizer [41] with learning rate 1× 10−4 for 200 epochs. To
evaluate the reconstruction quality, we use the average peak signal-to-noise ratio (PSNR).

4.1. Nature Images Compressive Sensing

We first test EPGN on the compressive sensing (CS) image reconstruction problem. In
our experiment we use the 91 Images dataset for training and Set11 for testing [42]. For a
fair comparison, we follow the same data preparation and result evaluation procedures
in [27]. The ground truth data {x(i) : 1 ≤ i ≤ N} contains N = 88, 912 image patches
with luminance components that are all randomly cropped into size 33× 33 from 91 Images
dataset. We then generate a matrix with random Gaussian entries of size 10%n and 25%n,
where n = 332, and orthogonalize the rows. Then the measurement data for training is
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{y(i) = Ψx(i) : 1 ≤ i ≤ N}. The testing data Set11 preparation follows the same procedure
as training data.

4.1.1. Comparison with Existing Methods

We set the phase number K = 9 for EPGN and K = 7 for NL-EPGN in this test (as
shown in Figure 4 where the PSNRs of the networks become saturated). Table 1 shows the
comparison of the average PSNRs of the images reconstructed by EPGN/NL-EPGN versus
several state-of-the-art image reconstruction methods, namely TVAL3 [43], D-AMP [44],
IRCNN [23], ReconNet [42], DR2-Net [45], ISTA-Net+ [27], and DPA-Net [46], where the
first two are classical optimization-based methods, and the last five are deep learning-based
methods. The PSNR results of the first four methods and ISTA-Net+ in Table 1 are quoted
from [27]. We observe that EPGN and NL-EPGN outperform all aforementioned algorithms,
whereas NL-EPGN obtains the highest accuracy.

Figure 4. Average PSNR comparison between ISTA-Net+, EPGN and NL-EPGN with various phase
number on image compressive sensing problem on Set11 with a CS ratio of 25%.

Table 1. Natural image CS reconstruction results by existing methods and the proposed EPGN (with
9 phases) and NL-EPGE (with 7 phases) on dataset Set11 with CS ratios of 10% and 25%. Table shows
the average PSNR (dB) of the comparison methods.

Method 10% 25%
PSNR SSIM PSNR SSIM

TVAL3 [43] 22.99 0.3758 27.92 0.6238
D-AMP [44] 22.64 - 28.46 -
IRCNN [23] 24.02 - 30.07 -

ReconNet [42] 24.28 0.6406 25.60 0.7589
DR2-Net [45] 24.32 0.7175 28.66 0.8432

ISTA-Net+ [27] 26.64 0.8036 32.57 0.9237
DPA-Net [46] 26.99 0.8354 31.74 0.9238

EPGN (9-phase) 27.12 0.8893 32.87 0.9611
NL-EPGN
(7-phase) 27.33 0.8956 33.02 0.9623

4.1.2. Reconstruction Quality Assessment

Compared to the state-of-the-art ISTA-Net+ [27], both EPGN and NL-EPGN obtain
better reconstruction results with a similar number of parameters as shown in Table 2. In
particular, Figure 5 shows the reconstructed butterfly image with a CS ratio of 10%, from
which we can see that the 9-phase EPGN and 7-phase NL-EPGN can both capture the
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inconspicuous detail of the butterfly wings at the lower left part in the zoomed-in images.
Similarly, Figure 6 shows the reconstructed cameraman image with a CS ratio of 25%,
where the 9-phase EPGN and 7-phase NL-EPGN have fewer artifacts in the background
compared to ISTA-Net+, as observed in the lower right area of the zoomed-in images.
Figure 7 presents the reconstruction results of the Barbara image in Set11 from ISTA-
Net+,the 9-phase EPGN, and the 7-phase NL-EPGN with a CS ratio of 10%. We can
observe that the texture pattern of the scarf is better preserved by NL-EPGN due to the
nonlocal operator.

(a) (b) (c) (d)

Figure 5. Reconstruction of a butterfly image with a CS ratio of 10% using the 9-phase ISTA-Net+

(PSNR 25.91dB), 9-phase EPGN (26.47dB), and 7-phase NL-EPGN (26.58dB). (a) Ture. (b) ISTA-Net+.
(c) EPGN. (d) NL-EPGN.

(a) (b) (c) (d)

Figure 6. Reconstruction of the cameraman image with a CS ratio 25% using the 9-phase ISTA-Net+

(PSNR 28.97dB), 9-phase EPGN (29.62dB), and 7-phase NL-EPGN (29.73dB). (a) Ture. (b) ISTA-Net+.
(c) EPGN. (d) NL-EPGN.



J. Imaging 2022, 8, 178 10 of 13

(a) (b) (c) (d)

Figure 7. Reconstruction of the Barbara image with a CS ratio of 10% using the 9-phase ISTA-Net+

(PSNR 23.59dB), 9-phase EPGN (23.89dB), and 7-phase NL-EPGN (24.27dB). (a) Ture. (b) ISTA-Net+.
(c) EPGN. (d) NL-EPGN.

4.1.3. Parameter Efficiency

The number of network parameters in each phase of ISTA-Net+ is 37, 442 [27]. The
number of trainable parameters of each phase in EPGN is {Gk + G̃k + γk + αk + θk =
32× 3× 3× (1 + 32× 2) + 32× 3× 3× (32× 2 + 1) + 1 + 2 + 32 = 37, 475}. Similarly,
the number of learnable parameters of each phase in EPGN is 41, 571. Therefore, the
number of network parameters in each phase of ISTA-Net+, EPGN, and NL-EPGN are very
similar (NL-EPGN is about 10.9% more than ISTA-Net+ and EPGN). Figure 4 shows the
reconstruction PSNR of these three methods versus phase number, from which we observe
that NL-EPGN becomes saturated with phase number K ≥ 7, whereas EPGN with K ≥ 9
and ISTA-Net+ with K ≥ 11. Nevertheless, as shown in Table 2, a 7-phase NL-EPGN has
fewer network parameters than a 9-phase EPGN but achieves even higher PSNR.

We compare the reconstruction results of EPGN and ISTA-Net+ in a range of different
phase numbers with a CS ratio of 25%, as shown in Figure 4. We observe that the PSNR
values improve as the phase number increases and become saturated after K ≥ 9. EPGN
achieves a 0.3 dB higher PSNR on average than ISTA-Net+. To further demonstrate the
superiority of the extra proximal-gradient method over extending network depth, we
compare the 9-phase EPGN with the 15-phase ISTA-Net+, as shown in Table 2. Compared
to the 15-phase ISTA-Net+ which extends the depth of the network by simply adding more
phases, the 9-phase EPGN achieves better accuracy (0.27 dB higher) using much fewer
parameters and similar reconstruction time. We compare the reconstruction performance of
EPGN and NL-EPGN with CS ratios of 10% and 25%, the 7-phase NL-EPGN outperforms
the 9-phase EPGN by 0.21 dB and 0.15 dB respectively, as shown in Table 1. We also
compare the reconstruction results of NL-EPGN and EPGN in a range of different phase
numbers with a CS ratio of 25%. The results are shown in Figure 4. We observe that
NL-EPGN achieves an average of 0.2 dB PSNR better than EPGN. It is interesting that
the PSNR of NL-EPGN shows no significant improvement after K = 7. As shown in
Table 2, the reconstruction time of the 7-phase NL-EPGN is approximate 7 to 8 times that
of the 9-phase EPGN due to the time complexity of the nonlocal operator. However, the
effect of the nonlocal operator is remarkable, NL-EPGN with 7 phases has a 0.15 dB PSNR
improvement with 13.7% fewer parameters compared to EPGN with 9 phases. In Figure 8,
we show the PSNR versus epoch using the proposed NL-EPGN and the state-of-the-art
method ISTA-Net+ for image reconstruction with a CS ratio of 10% and phase number
3. While both networks gradually improve PSNR with more epochs, NL-EPGN appears
to be significantly more effective than ISTA-Net+ during training as the former produces
reconstructions with much higher PSNR.
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Table 2. Compressive sensing reconstruction performance comparison of the 9-phase ISTA-Net+,
15-phase ISTA-Net+, 9-phase EPGN, and 7-phase NL-EPGN on Set11 with a CS ratio of 25% on the
number of network parameters (# PARM), average PSNR in dB with standard deviation over the
reconstructed images, and average reconstruction time (Time) of one image in second.

Network (# Phase) # PARM PSNR (dB) Time (s)

ISTA-Net+ (9) 336,978 32.57 ± 2.20 0.084
ISTA-Net+ (15) 561,630 32.60 ± 2.19 0.103

EPGN (9) 337,275 32.87 ± 2.24 0.110
NL-EPGN (7) 290,997 33.02 ± 2.05 0.802

0 50 100 150 200
Epochs

25.0

25.5

26.0

26.5

PS
NR

 (d
B)

ISTA-Net +

NL-EPGN

Figure 8. Average PSNR comparison between ISTA-Net+ and NL-EPGN with various numbers of
epochs during training with 3 phases on Set11 with a CS ratio of 10%.

4.2. MR Images Compressive Sensing

We also test the performance of EPGN on compressive sensing reconstruction of
brain MR images [47] (CS-MRI). We randomly selected 100 and 50 images for training and
testing, respectively, and cropped every image to the size of 190× 190. In the CS-MRI
problem, the data fidelity is f (x; y) = ‖Φx− y‖2

2, where Φ = PF , P is a binary selection
matrix representating the sampling trajectory, and F is the discrete Fourier transform. We
compare EPGN with ISTA-Net+ [27] on the same MRI data set. The experimental results
on various undersampling ratios of radial masks are summarized in Table 3. Here, we set
the phase number of ISTA-Net+ and EPGN to 15 and 11 respectively. It is obvious that
EPGN outperforms ISTA-Net+ for each undersampling ratio.

Table 3. PSNR (dB) of reconstructions obtained by ISTA-Net+ and EPGN on MR images using radial
masks with sampling ratios of 10%, 20%, and 30%.

Method 10% 20% 30%

ISTA-Net+ 33.49 40.66 44.70
EPGN 33.70 40.94 45.45

5. Concluding Remarks

We presented a novel deep neural network architecture, called the extra proximal
gradient network (EPGN), to solve a general class of inverse problems with a focus on
image reconstruction applications. EPGN imitates the accelerated extra proximal gradient
algorithm and features a learned regularization that incorporates adaptive sparsification
mappings, robust shrinkage selections, and the combination of local and nonlocal operators
for improved solution quality and network parameter efficiency. Extensive numerical
experiments show that EPGN outperforms several existing state-of-the-art methods on a
variety of image reconstruction problems.
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