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ABSTRACT

Deep neural network architectures based on unrolling optimization algorithms have been widely adopted in
deep-learning based image reconstruction applications in recent years. However, these architectures only mimic
the iterative schemes of the corresponding algorithms, but lack rigorous convergence guarantee; and the learned
network layers are difficult to interpret. These issues have hindered their applications in clinical use. In this
paper, we develop an efficient Learned Descent Algorithm with a Line Search strategy (LDA-LS) and apply
it to the nonconvex nonsmooth optimization problem of low-dose CT (LDCT) reconstruction. We show that
LDA-LS yields a highly interpretable neural network architecture, where the regularization parameterized as
multilayer perception is explicitly integrated into the iterative scheme and learned during the training process.
We demonstrate that LDA-LS retains convergence guarantee as classical optimization algorithms, while achieving
improved efficiency and accuracy in LDCT image reconstruction problems.

Keywords: Learned descent algorithm, line search, nonsmooth nonconvex optimization, low-dose CT.

1. INTRODUCTION

Computed Tomography (CT) is a medical imaging technology widely used in clinical diagnosis nowadays. CT
employs X-ray measurements from different angles to generate cross-sectional images of the human body.1,2

Low-dose CT (LDCT) is an important means to reduce patient exposure to harmful X-ray but results in various
degrees of noise and artifacts which must be removed by adaptive image reconstruction method for clinical use.

Filtered Back-Projection (FBP) is a classic analytical method to reconstruct image from limited projection
data, however, the reconstruction quality is severely degraded with substantial noise and artifacts in LDCT
scenario. To reconstruct better images from LDCT, a number of methods including preprocessing, postprocessing,
and hybrid methods have been proposed in the literature.3–7

In recent years, we have witnessed tremendous success of deep neural networks, which is at the heart of
deep learning, in a large variety of real-world imaging applications. In particular, convolutional neural networks
(CNNs) have been applied to CT image reconstruction on sparse view and low dose data.6–12 However, deep
learning methods are widely criticized for being difficult to interpret and data demanding. A recent strategy
known as unrolling method aims at mitigating these issues and gained popularity in image reconstruction ap-
plications.13–17 Unrolling method constructs a deep neural network that mimic the iterative structure of some
known optimization scheme, such as proximal gradient descent algorithm, but replaces the proximal operator
with a multilayer perceptron which is to be learned during training. Nevertheless, the resemblance between the
obtained deep neural network and the original optimization scheme is superficial, and such unrolling method
lacks convergence guarantees that are of paramount importance in both theory and practice.

In this paper, we adopt the framework called learnable descent algorithm (LDA),18 and enhance it with a
Line Search Strategy to avoid explicitly using the Lipschitz constant of the objective function which is generally
unknown in practice. We then apply LDA-LS to the LDCT image reconstruction problem. The algorithm is
termed as LDA-LS. LDA-LS parameterizes the regularization function as the composition of the l2,1 norm and a
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smooth but nonconvex feature mapping in the form of a deep CNN. Due to the presence of l2,1 norm and CNN,
the objective function be minimized is nonsmooth and nonconvex. LDA-LS leverages the Nesterov’s smoothing
technique and the idea of residual learning to arrive at a descent-type algorithm. This algorithm is provably
convergence with explicit iteration complexity analysis.18 In this work, we provide the details of LDA-LS and
demonstrate its promising performance in LDCT image reconstruction.

The remainder of the paper is organized as follows. In section 2, we present the related works in the literature
that associate with our problem. Then in section 3, we present our method by first defining our model and each
of its components, and then stating the algorithm and details of network training. Section ?? presents the
numerical results including parameter study, ablation study and comparison with other competing algorithms.

2. RELATED WORKS

Deep learning methods have been successfully applied to CT image reconstruction in the past several years.8–10,19–22

In,20 a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN) is developed to reconstruct low-
dose CT images using normal dose training data. In,8 FBPConvNet is developed based on U-net23 for LDCT
reconstruction. More structured deep neural networks including unrolling methods are proposed.5,13,14,16,24–29

For example, in,14 a deep network architecture called BCD-Net is developed which further improves recon-
struction quality and generalizes better than methods such as FBPConvNet. Momentum structure has also been
integrated into the network architecture in.13,27 To address lack of convergence and further improve performance
of unrolling methods, in,18 a Learned Descent Algorithm (LDA) is developed. The LDA architecture is fully
determined by the algorithm and thus the network is fully interpretable. As interpretability and convergence
guarantee is highly desirable in medical imaging, this framework is a promising method for inverse problems such
as LDCT reconstruction.

3. METHOD

In this section, we provide the details of the LDA-LS and associated parameter training strategy for LDCT image
reconstruction. We first present the image reconstruction problem with learnable regularization in Section 3.1.
The nonsmooth noncvonex regularization used in our model and its smooth approximation are given in Section
3.2. Section 3.3 presents LDA-LS and its convergence result.

3.1 Image reconstruction with learnable regularization

Image reconstruction is a typical inverse problem that can be modeled in a variational form and cast as an
optimization problem as follows:

min
x∈X

φ(x;b,θ) := f(x;b) + r(x;θ), (1)

where x is the image to be reconstructed, X is the admissible set of x (e.g., X = Rn and n is the number of pixels
in x), f is the data fidelity term of x, and r represents the regularization term to overcome the illposedness of
the problem. In LDCT, we choose f(x) = 1

2‖Ax− b‖2 as the data-fidelity term, where A is the system matrix
for CT scanner and b is the (noisy) sinogram measurements, and ‖ · ‖ is the standard Euclidean norm. It is
worth pointing out that our method can be readily extended to general smooth but (possibly) nonconvex f . In
(1), θ stands for the learnable parameter that determines the regularization function r. In particular, we choose
to parameterize r as the composition of the sparsity-promoting l2,1 norm and multiple convolutional layers. The
convolutional layers form a CNN which plays the role of a sparse feature mapping, and the l2,1 norm is employed
here since it is very powerful for robust group sparse feature selection. We provide more details on the structure
of r in the following subsection. We expect that the parameter θ learned from training data yields a much more
adaptive regularization r than handcrafted ones that are often overly simplified and cannot capture the complex
structures of images.
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To learn the parameter θ of the regularization r, we leverage a set of training data and form the parameter
learning problem as a bi-level optimization:

min
θ

L(θ) :=
1

N

N∑
s=1

‖x(s)(θ)− x̂(s)‖2, (2a)

s.t. x(s)(θ) ∈ arg min
x∈X

{φ(x;b(s),θ) = f(x;b(s)) + r(x;θ)}. (2b)

That is, the optimal parameter θ is obtained by minimizing the loss function L, where L measures the average
squared error between x(s)(θ), the minimizer of the objective function φ(·;b(s),θ) with LDCT data b(s) using
the parameter θ, and the high-quality ground-truth image x̂(s) corresponding b(s). Here N is the number of
training data pairs (b(s), x̂(s)). For notation simplicity, we write f(x) and r(x) instead of f(x;b(s)) and r(x;θ)
respectively hereafter.

3.2 Parametric form of learnable regularization

In this work, we employ the parametric form of r in (2) as the composition of the group sparsity promoting
function l2,1 norm and a deep CNN architecture. Specifically, we formulate r as follows:

r(x) = ‖g(x)‖2,1 =

m∑
i=1

‖gi(x)‖, (3)

where each gi(x) ∈ Rd is as a feature vector at the position i ∈ [m]. In our experiments, we set the feature
extraction operator g to the following l-layer CNN with nonlinear activation function σ as follows:

g(x) = wl ∗ σ · · · σ(w3 ∗ σ(w2 ∗ σ(w1 ∗ x))), (4)

where {wq}lq=1 denote the convolution weights each consisting of d kernels with identical spatial kernel size
(3 × 3), and ∗ denotes the convolution operation. Here, the componentwise activation function σ is set to a
smoothed rectified linear unit (ReLU):

σ(x) =


0, if x ≤ −δ,
1
4δx

2 + 1
2x+ δ

4 , if − δ < x < δ,

x, if x ≥ δ,
(5)

where δ is set to be 0.001 throughout the experiments in this work. The smooth activation function σ in (5)
grants a smooth but nonconvex feature mapping g. Hence, the gradient ∇g can be computed in a straightforward
manner, where each {w>q } can be implemented as transposed convolutional operators.30 However, since the l2,1
norm in (3) is not differentiable, the optimization problem (1) or (2b) is nonsmooth and nonconvex . To tackle
this problem, we apply the Nesterov’s smoothing technique31 to get the smooth approximation:18

rε(x) =
∑
i∈I0

1

2ε
‖gi(x)‖2 +

∑
i∈I1

(
‖gi(x)‖ − ε

2

)
, (6)

where I0 = {i ∈ [m] | ‖gi(x)‖ ≤ ε}, I1 = [m] \ I0. Here the parameter ε controls how close the smoothed rε(x)
is to the original function r(x), and one can readily show that rε(x) ≤ r(x) ≤ rε(x) + mε

2 for all x in Rn. From
(6) we can calculate ∇rε(x):

∇rε(x) =
∑
i∈I0

∇gi(x)>
gi(x)

ε
+
∑
i∈I1

∇gi(x)>
gi(x)

‖gi(x)‖
, (7)

where∇gi(x) ∈ Rd×n is the Jacobian of gi at x. As we will show in the next subsection, the smoothing parameter
ε is automatically reduced and gradually tends to 0 during the iterations, such that rε can closely approximate
the original nonsmooth regularization r.
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3.3 Learned descent algorithm

The training of network parameter θ is outlined as follows. To mitigate the challenges in solving the bi-level
optimization problem (2), we approximate the solution x(s)(θ) of the lower-level problem (2b) by iterating the
Learned Descent Algorithm with Line Search (presented in Algorithm 1), or LDA-LS in short, for a fixed number

K of iterations. The last iterate, denoted by x
(s)
K (θ), can be thought of as an approximate solution of (2b) and

used in the upper-level problem (2a). Moreover, the LDA-LS is applied to the lower-level problem (2b) with the
smoothed regularization rε given in (6) since explicit calculation of gradients is required. The optimal parameter
θ is obtained by minimizing the upper-level problem (2a) using a stochastic gradient descent method such as

ADAM such that x
(s)
K (θ) is close to the ground truth image in the training data set.

We now provide the details of the derivation of LDA-LS and its parameter training algorithm. We first focus
on the lower-level problem (2b) which LDA-LS is intended to solve. In each iteration k, we apply a proximal
gradient descent step to (2b) with a smoothed regularization rε in (6) and ε = εk as follows:

zk+1 = xk − αk∇f(xk), (8a)

xk+1 = proxαkrεk
(zk+1), (8b)

where the proximal operator is defined as

proxαr(z) := arg min
x

{ 1

2α
‖x− z‖2 + r(x)

}
.

However, the proximal operator does not have a closed-form solution due to the complex structure of rεk .
Therefore, we approximte rεk by

r̃εk(x) = rεk(zk+1) + 〈∇rεk(zk+1),x− zk+1〉+
1

2βk
‖x− zk+1‖2 (9)

with some βk > 0 and obtain a closed-form approximation of (8b) as follows:

uk+1 = proxαk r̃εk
(zk+1) = zk+1 − τk∇rεk(zk+1), (10)

where τk = αkβk

αk+βk
. We also compute a safeguard iterate vk+1 as

vk+1 = arg min
x

〈∇f(xk),x− xk〉+ 〈∇rεk(xk),x− xk〉+
1

2αk
‖x− xk‖2, (11)

which also has a closed-form
vk+1 = xk − αk∇f(xk)− αk∇rεk(xk). (12)

To ensure objective function decay, we employ a line search strategy by shrinking αk by ρ ∈ (0, 1) until the
following condition holds:

φεk(vk+1)− φεk(xk) ≤ −τ‖vk+1 − xk‖2. (13)

That is, we check whether vk+1 satisfies (13): if yes, we move on to the next step (14) below; otherwise, we set
αk to ραk and recompute vk+1 using (12). It is straightforward to verify that this line search terminates within
finitely many steps due to the Lipschitiz continuity of ∇φεk .

Finally, we choose between uk+1 and vk+1 that has the smaller function value φεk to be the next iterate
xk+1:

xk+1 =

{
uk+1 if φεk(uk+1) ≤ φεk(vk+1),

vk+1 otherwise.
(14)

The LDA with Line Search derived above is summarized in Algorithm 1 (LDA-LS). Line 9 of Algorithm 1 presents
a reduction criterion. That is, if the reduction criterion ‖∇φεk(xk+1)‖ < σγεk is satisfied, then the smoothing
parameter εk is shrunk by γ ∈ (0, 1). In our implementation, the parameter θ includes all the step sizes αk and
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Algorithm 1 Learnable Descent Algorithm with Line Search (LDA-LS) for (1)

1: Input: Initial x0, ρ, γ ∈ (0, 1), and ε0, σ, τ > 0. Maximum iteration K or tolerance εtol > 0.
2: for k = 0, 1, 2, . . . ,K do
3: zk+1 = xk − αk∇f(xk)
4: uk+1 = zk+1 − τk∇rεk(zk+1)
5: repeat
6: vk+1 = xk − αk∇φεk(xk) and set αk ← ραk
7: until φεk(vk+1)− φεk(xk) ≤ −τ‖vk+1 − xk‖2
8: If φ(uk+1) ≤ φ(vk+1), then set xk+1 = uk+1, otherwise set xk+1 = vk+1.
9: If ‖∇φεk(xk+1)‖ < σγεk, set εk+1 = γεk; otherwise, set εk+1 = εk.

10: If σεk < εtol, terminate.
11: end for
12: Output: xk+1.

τk and the initial smoothing parameter ε0. Given N training data pairs {(b(s), x̂(s))}Ns=1 of the ground truth
data x̂(s) and its corresponding LDCT measurement b(s), the optimal θ is obtained by minimizing the objective

function (2a) with each x(s) approximated by the Kth iterate x
(s)
K of LDA-LS as described above.

One of the major advantages of Algorithm 1 over existing unrolling based methods is that LDA-LS has
guaranteed convergence with explicit iteration complexity bound similar to.18 To ensure the convergence, LDA-
LS requires a few mild assumptions on f and g as follows: (A1) f is differentiable and (possibly) nonconvex,
and ∇f is Lf -Lipschitz continuous. (A2) Every component of g is differentiable and (possibly) nonconvex,
∇g is Lg-Lipschitz continuous, and supx∈X ‖∇g(x)‖ ≤ M for some constant M > 0. (A3) φ is coercive, and
φ∗ = minx∈X φ(x) > −∞. It is easy to verify that these assumptions readily hold in most image reconstruction
problems.18 Due to the nonsmooth and nonconvex nature of (2b), we need to characterize its optimality condition
using Clarke stationary point.32 Specifically, the Clarke subdifferential and Clarke stationary point are defined
as follows

Definition 3.1 (Clarke subdifferential). Suppose that f : Rn → (−∞,+∞] is locally Lipschitz, the
Clarke subdifferential ∂f(x) of f at x is defined as

∂f(x) :=
{
w ∈ Rn | 〈w,v〉 ≤ lim sup

z→x, t↓0

f(z + tv)− f(z)

t
,∀v ∈ Rn

}

Definition 3.2 (Clarke stationary point). For a locally Lipschitz function f , a point x ∈ Rn is called
a Clarke stationary point of f if 0 ∈ ∂f(x).

The following theorem states the convergence of Algorithm 1 (LDA-LS) to a Clarke stationary point of
(1). The proof closely follows18 and hence is omitted here. It is worth noting that the difference from18 is that
Algorithm 1 eliminates the explicit requirement on step size αk in18 which can be difficult to estimate in practice.
Instead, Algorithm 1 (LDA-LS) employs line search of αk and thus the descent criterion is automatically satisfied
in practice and the convergence can be guaranteed in theory.

Theorem 3.3. Suppose that {xk} is the sequence generated by Algorithm 1 with any initial x0, then the algorithm
terminates within O(ε−3tol ) steps. If εtol = 0 and K =∞, and let {xkl+1} be the subsequence where the reduction
criterion Line 7 of Algorithm 1 is met for k = kl and l = 1, 2, . . . , then {xkl+1} has at least one accumulation
point, and every accumulation point of {xkl+1} is a Clarke stationary point of (1).

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Each phase (block) of the network forward propagation can be viewed as one algorithm iteration, which motivates
us to imitate the iterating of the optimization algorithm and use a stair training strategy.18 We minimize the loss
for 200 epochs each stair using the Adam Optimizer33 with β1 = 0.9, β2 = 0.999 and initial learning rate 10−4.
The Xavier method34 is called to initialize the convolution weights and the smoothing parameter ε0 is initialized
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to be 0.001. The input x0 is obtained by FBP.35 The default architecture configuration is set as follows: the
feature extraction operator g consists of 4 convolutions with 48 kernels and kernel size 3 × 3, then with batch
size 2 for training and default phase number 15. The algorithm is implemented using the PyTorch toolbox.36

The experiments are performed on two well-known public datasets: the Low Dose CT Image and Projection
Data of The Cancer Imaging Archive (TCIA) Public Access37 and another open source dataset available at the
National Biomedical Imaging Archive (NBIA). We randomly selected 10 patients out of 151 patients in TCIA
data. Among these 10 patients, we randomly sampled 400 scans from 8 patients for training and another 100
scans from the rest 2 patients for testing. To validate the generalizability, we sampled another testing data from
NBIA which consists of 80 images of different parts of the human body for diversity. All sampled images were
uniformly resized to 256× 256 and normalized to [0, 1]. The distance-driven algorithm38,39 is adopted to obtain
the projection of fan beam CT. In the simulation configuration, we set both source and detector to rotation
center distances 25 cm and physical region 17×17 cm2. We uniformly cast 1024 projection views in 360◦ range.
The X-ray was detected by 512 detector elements of width 0.72 mm each. To make the simulation alike the real
clinical condition, the noisy transmission measurement I was produced by adding Poisson and electronic noise40

I = Possion(I0 exp (−b̂)) +Normal(0, σ2
e), (15)

where I0 is the number of incident photons, b̂ is the noise-free projection and σ2
e represents the variance the

background electronic noise. Full dose intensity I0 is default to be 1.0×10641 and for the equipment measurement
error variance σ2

e is constantly 10 for all different dose cases. We obtained the noisy projection b by taking the
logarithm transformation over I0/I. Among low dose cases we simulated three projections of levels 10%, 5% and
2.5% with incident intensity I0 = 1.0× 105, 5.0× 104 and 2.5× 104 accordingly. All the experiments were done
on a server with AMD Ryzen Threadripper 1900X CPU, 32 GB of memory and Nvidia RTX-2080Ti GPUs.

4.1 Ablation study

4.1.1 Comparison with standard gradient descent

We investigate the effectiveness of the proposed LDA-LS algorithm by comparing with unrolling the standard
gradient descent (GD) iteration of (2), and an accelerated inertial version by setting xk+1 = xk − αk∇φ(xk) +
θk(xk − xk−1) where θk is also learned (AGD). The result is shown in Figure 1. The PSNR score of LDA-LS at
each iteration is much higher than standard GD and AGD, where the latter two have comparable performance.

4 6 8 10 12 14 16
Phase Number K

44

45

46

47

PS
NR

 (d
B)

GD
AGD
LDA-LS

Figure 1. The reconstruction PSNR plots across various GD-type algorithms on TCIA dataset with dose level 10%.

4.1.2 Hyper-parameter selection

We check the influence of some hyper-parameters of the architecture by perturbing one while the others remain
default if not explicitly mentioned, including the number of convolutions (l), the depth of the convolution kernels
(d) and the phase number (K). The default configuration is described at the beginning of Section 4. The impacts
of these parameters to the testing results are shown in Figure 1 and Table 1 with dose level 10%. We can observe
that the default configuration achieves a good balance between the reconstruction performance and network
complexity as desired.
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Table 1. The results with different depth of convolution kernels and number of convolutions on TCIA data when K = 7.

Depth of conv. kernels Number of convolutions
16 32 48 64 3 4 5

PSNR (dB) 44.79 45.30 46.10 46.21 45.21 46.10 46.03
Number of parameters 7,071 27,951 62,655 111,183 41,919 62,655 83,391
Average testing time (s) 0.153 0.189 0.239 0.278 0.201 0.239 0.282

4.2 Results on TCIA and NBIA test sets

We conducted extensive experiments on different algorithms. Besides the traditional FBP,35 two state-of-the-art
neural network based approaches got involved here for comparison, which are FBPConvNet8 and RED-CNN.20

The reconstruction quality was evaluated by the metrics Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM). The experimental results of TCIA data on various dose levels are summarized in
Table 2. The proposed LDA-LS returns the best results with the least number of parameters. Some representative
testing images in NBIA dataset with dose level 2.5% are visualized in Figure 2 to give additional qualitative
justification. It can be seen that LDA-LS preserves the detailed structures well and achieves the best quality.

Table 2. Quantitative results (Mean ± Standard Deviation) of the LDCT reconstructions of TCIA data of dose level 10%.

Dose Level
1.0× 105 5.0× 104 2.5× 104

Parameters
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

FBP35 38.56±0.71 0.9664±0.0050 35.82±0.77 0.9384±0.0094 32.99±0.80 0.8898±0.0163 N/A
FBPConvNet8 44.20±0.56 0.9941±0.0010 42.62±0.57 0.9918±0.0014 41.07±0.59 0.9886±0.0019 1.0 · 107

RED-CNN20 44.16±0.55 0.9939±0.0009 42.78±0.63 0.9920±0.0015 41.11±0.55 0.9887±0.0019 1.8 · 106

LDA-LS 47.36±0.660.9970±0.000644.65±0.630.9947±0.000943.37±0.650.9932±0.0011 6.2 · 104

(a) Reference (b) FBP (32.02) (c) FBPConvNet(38.14 (d) RED-CNN (38.27) (e) LDA-LS (40.14)

Figure 2. Reconstructed CT images in NBIA data with display window [-160, 240] HU. PSNRs (dB) are in the parentheses.

5. CONCLUSION

This paper proposed the Learned Descent Algorithm with Line Search (LDA-LS) for LDCT reconstruction.
By learning the nonsmooth nonconvex regularizer parameterized as the composition of l2,1 norm and a neural
network, LDA-LS can produce high-quality LDCT images with very low computational cost. The regularization
learned by LDA-LS is more interpretable, and the convergence is guaranteed in sharp contrast to existing unrolling
methods. Numerical results justify the promising efficiency and robustness of the proposed method.
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[29] Adler, J. and Öktem, O., “Learned primal-dual reconstruction,” IEEE transactions on medical imag-
ing 37(6), 1322–1332 (2018).

[30] Dumoulin, V. and Visin, F., “A guide to convolution arithmetic for deep learning,” arXiv preprint
arXiv:1603.07285 (2016).

[31] Nesterov, Y., “Smooth minimization of non-smooth functions,” Mathematical programming 103(1), 127–152
(2005).

[32] Clarke, F. H., [Optimization and nonsmooth analysis ], vol. 5, Siam (1990).

[33] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980
(2014).

[34] Glorot, X. and Bengio, Y., “Understanding the difficulty of training deep feedforward neural networks,” in
[In Proceedings of the International Conference on Artificial Intelligence and Statistics. Society for Artificial
Intelligence and Statistics ], (2010).

[35] Kak, A. C., Slaney, M., and Wang, G., “Principles of computerized tomographic imaging,” Medical
Physics 29(1), 107 (2002).

[36] Paszke, A. et al., “Pytorch: An imperative style, high-performance deep learning library,” in [Advances in
Neural Information Processing Systems 32 ], 8024–8035, Curran Associates, Inc. (2019).

[37] McCollough, C. et al., “Data from low dose ct image and projection data [data set],” The Cancer Imaging
Archive. (2020).

[38] De Man, B. and Basu, S., “Distance-driven projection and backprojection,” in [2002 IEEE Nuclear Science
Symposium Conference Record ], 3, 1477–1480, IEEE (2002).

[39] De Man, B. and Basu, S., “Distance-driven projection and backprojection in three dimensions,” Physics in
Medicine & Biology 49(11), 2463 (2004).

[40] li, T., Lu, H., and Liang, Z., “Penalized weighted least-squares approach to sinogram noise reduction and
image reconstruction for low-dose x-ray computed tomography,” IEEE transactions on medical imaging 25,
1272–83 (11 2006).

[41] Niu, S. et al., “Sparse-view x-ray ct reconstruction via total generalized variation regularization,” Physics
in Medicine & Biology 59(12), 2997 (2014).

Proc. of SPIE Vol. 11840  1184013-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


