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An Efficient Algorithm for Multiphase Image
Segmentation with Intensity Bias Correction

Haili Zhang, Xiaojing Ye, and Yunmei Chen

Abstract— This paper presents a variational model for simulta-
neous multiphase segmentation and intensity bias estimation for
images corrupted by strong noise and intensity inhomogeneity.
Since the pixel intensities are not reliable samples for region
statistics due to the presence of noise and intensity bias, we
use local information based on the joint density within image
patches to perform image partition. Hence, the pixel intensity
has a multiplicative distribution structure. Then, the maximum-
a-posteriori (MAP) principle with those pixel density functions
generates the model. To tackle the computational problem of
the resultant nonsmooth nonconvex minimization, we relax the
constraint on the characteristic functions of partition regions, and
apply primal-dual alternating gradient projections to construct a
very efficient numerical algorithm. We show that all the variables
have closed-form solutions in each iteration, and the computation
complexity is very low. In particular, the algorithm involves only
regular convolutions and pointwise projections onto the unit ball
and canonical simplex. Numerical tests on a variety of images
demonstrate that the proposed algorithm is robust, stable, and
attains significant improvements on accuracy and efficiency over
the state-of-the-arts.

Index Terms— Image segmentation, intensity inhomogeneity,
optimization methods, minimax techniques.

I. INTRODUCTION

IMAGE segmentation has been an active research area in
computational vision and pattern analysis with a wide

range of applications. In particular, the emerging developments
in medical imaging demand effective and robust algorithms
for image segmentation, such as organ or tumor detection
and tissue classification. Approaches to image segmentation
can be roughly classified into two categories: edge-based
models (e.g. [1]–[5]) and region-based models (e.g. [6]–[11]).
Edge-based models rely on edge information to locate the
boundaries of regions. Region based models partition the
image domain into several disjoint regions such that each
region exhibits distinct statistical properties from those by
others. It is also noted that most of these methods explicitly
or implicitly assume intensity homogeneity of input images.
However, in many real world applications, images encounter
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Fig. 1. Image segmentation in the presence of intensity bias. Left: input image
with a square initial partition contour in red. Middle: result of segmentation
assuming piecewise constant intensity. Right: result of segmentation with bias
correction.

significant intensity inhomogeneity due to spatial variations
in illuminations and physical constraints in acquisition sensi-
tivities. For example, in magnetic resonance (MR) imaging,
intensity inhomogeneity is presented as bias field mainly
caused by nonuniform magnetic fields [12]. In these cases,
the same object in a given image may exhibit various con-
trasts at different locations of the image domain. These large
variations in image intensities can cause false identification
of regions as a consequence of ambiguous statistics presented
by pixel intensities. For instance, the widely used Chan-Vese
model which assumes piecewise constant intensity in each
region cannot generate correct segmentation due to intensity
inhomogeneity as shown in the middle of Figure 1. On
the other hand, a desired segmentation can be obtained by
taking the intensity inhomogeneity into account, as shown
on the right of Figure 1. Therefore, segmentation for images
with inhomogeneous intensities is a challenging problem, and
usually requires a combination of segmentation and intensity
bias correction.

There have been a series of work proposed to tackle the
segmentation problem with intensity biases in images (e.g.
[12]–[21] and references therein). Due to the space limitation,
we here only review several very recent models that are closely
related to the present work. In [20], the authors proposed
a variational model for tissue classification of MR images.
In their model, local intensities of different tissues within a
neighborhood were used to form separable clusters, where the
centers are approximated by the product of the bias within
the neighborhood and a tissue-dependent constant. This local
clustering criterion is combined with membership functions to
form an energy functional. Then the tissue classification and
bias field estimation are simultaneously achieved by estimating
the membership functions, bias field, and the parameters that
approximate the true signals in each region via minimizing
the energy functional. In [22], a minimization framework was
developed for multiphase segmentation and bias correction.
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This model used the same local clustering criterion as that in
[20] to define an energy functional in level set formulation.
Later, Li et al. extended their model in [21] to simultaneous
multi-phase segmentation and bias correction. In [21], multiple
level set functions were used to represent the subregions.
Minimization of the energy was achieved by an interleaved
process of level set evolution [23] and the estimation of the
bias field. Recently, Zhang et al. in [24] also proposed a level
set approach for simultaneous tissue segmentation and bias
correction for MR images. But different from the work in
[20]–[22], where the intensities in each cluster were approxi-
mated by its mean in L2 sense, in their model local intensities
of different tissues were assumed to be distributed as Gaus-
sians with the means as the centers of the cluster and variances
to be optimized.

The aim of this paper is to build a joint image segmentation
and bias field correction framework that unifies these recent
models, and to develop an efficient numerical algorithm to
solve the model efficiently. We consider a multiplicative struc-
ture of intensity density function for center points of image
patches, then we utilize the maximum-a-posteriori (MAP)
principle to construct a generalized model for joint image
segmentation and bias field estimation. Besides the modeling
aspect, computation is also a critical issue of segmentation
in real applications. Many variational segmentation models
use level set formulation [25] to deal with the problem of
topology changes during contour evolution, and have showed
promising results. However, the computational cost of level
set based approaches can be high in the commonly used semi-
implicit implementation. Also, it has been demonstrated that
the method is sensitive to initial condition [9]. In addition,
practical implementation of level set based segmentation usu-
ally requires techniques such as reinitialization or enforcing
certain penalty terms to keep the level set function from being
too flat [22], [26]. As an alternative, we directly work on
the characteristic functions of the partition regions. Then the
regularization term that penalizes lengths of partition curves
is equal to the total variations (TV) of the characteristic func-
tions, and the new objective function is convex with respect to
these functions. However, the minimization is still difficult to
carry out due to the non-convexity of the solution set, which is
later shown to be the tensor product of vertices of a canonical
simplex. For multiphase segmentation, we relax the constraint
to the entire simplex before solving the minimization problem.
Then we truncate the final result and obtain a characteristic
function as our segmentation result. This is an extension of
the idea proposed in [27], [28] for two-phase segmentation.
In that case, there is a single characteristic function with binary
constraint appeared in the minimization. After relaxation, the
constraint becomes the unit interval and hence can be handled
relatively easily, see, e.g. [27], [29]. Moreover, theoretical
results on the equivalence between the original and relaxed
problems can be established. However, the situation becomes
much more complicated when the problem levels up to mul-
tiphase segmentation, mainly due to the simplex constraints
and multiple non-smooth TV terms involved in optimization.
In this paper, we propose an effective numerical algorithm
that utilizes the primal-dual formulation of TV norms and

special properties of canonical simplex to quickly approximate
a solution. The primal-dual formulation has been successfully
applied to TV based image reconstruction to achieve very
promising efficiency [30], [31]. In this paper, we utilize the
similar idea to derive a fast segmentation algorithm which
involves only convolutions using kernel function with small
support, and pointwise projections onto the unit ball and
canonical simplex. To demonstrate the effectiveness of our
method, we test the proposed algorithm on various images,
and make comparisons with the state-of-the-art algorithms.

The rest of this paper is organized as follows. In the next
section, we derive the model for joint image segmentation
and bias field estimation. In Section III, we develop a fast
numerical algorithm via the primal-dual gradient projections.
Section IV presents the results on a number of images and
evaluates the performance of the proposed algorithm with
comparisons to several recently proposed methods in the field.
The last section concludes the paper.

II. MODEL FORMULATION

A. Multiphase Segmentation and MAP Approach

We first establish a generalized multiphase image segmenta-
tion framework for joint region partitioning and intensity bias
correction. Suppose I : � → R is the input image to be
segmented, where � ⊂ R

d is a closed and bounded region
that represents the domain of I , and d is the dimension of
the image (usually 2 or 3). For ease of presentation, we only
consider rectangular gray-valued images in this paper. Given
image I , the purpose of image segmentation is to partition
its domain � into several (say M) regions, such that each
region delineates an image pattern distinct from those by other
regions. Namely, we need to solve for a set of regions {�i }Mi=1
such that � = ∪M

i=1�i , {�i }Mi=1 are disjoint, and �i indicates
the support of the i -th pattern in image I . This is equivalent
to solving for the collection of characteristic functions χi (x)
of �i , where

χi (x) =
{

1 if x ∈ �i ,
0 otherwise,

(1)

for i = 1, . . . , M , and
∑

i χi (x) = 1, ∀x ∈ �.
As addressed in the introduction section, the input image I

can be corrupted by noise and unknown intensity bias field
b:�→ R. That is

I (x) = b(x)I0(x)+ n(x) (2)

where I0 is the ideal clean image. Consider the simple case
where the ideal image is constant ci in each region �i , and the
noise n(x) is normally distributed and independent of those at
other locations. More precisely, if x ∈ �i , then

I (x) = b(x)ci + ni (x) (3)

where ni (x) is normally distributed with mean zero and
unknown variance σ 2

i . It is worth noting that different appli-
cations may yield changes in the modeling of (3) [12].
Nevertheless, the derivation and resulting algorithms given
below still work with appropriate modifications accordingly.

To this end, we can see that a complete solution package
to an image segmentation with bias field estimation problem
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is {χ, b, c, σ }, where χ = (χ1, . . . , χM )T :� → {0, 1}M ,
c = (c1, . . . , cM )T ∈ R

M and σ = (σ1, . . . , σM )T ∈ R
M+ .

Here χi , the i -th component of χ , is the characteristic function
of �i as defined in (1), ci and σ 2

i represent the original mean
intensity and noise variance in region �i . b is unknown bias
field that causes intensity inhomogeneity in the image.

We first find the posterior probability distribution
p({χ, b, c, σ }|I ) of {χ, b, c, σ } given image I , and then
obtain an optimal segmentation and bias field estimation by
the maximum-a-posteriori (MAP). Note that the Bayes’ rule
implies that

p({χ, b, c, σ }|I ) ∝ p(I |{χ, b, c, σ })p({χ, b, c, σ }). (4)

Therefore, we need to determine p({χ, b, c, σ }), the prior
information imposed to {χ, b, c, σ }, and p(I |{χ, b, c, σ }), the
joint distribution of pixel intensities given {χ, b, c, σ }.

B. Modeling the Intensity Inhomogeneity

Based on model (3), one can see that I (x) is normally
distributed as N (b(x)ci , σ

2
i ) if x ∈ �i (or χi (x) = 1) given

the segmentation {χ, b, c, σ }. However, the observed intensity
I (x) is merely one realization and it is usually not reliable
to recover χ , b, c and σ simultaneously. For robust density
function estimation, we use the intensity density functions of
neighbor pixels in Wx to approximate p(I (x)|{χ, b, c, σ }) in
MAP (4). More precisely, we model p(I (x)|{χ, b, c, σ }) using
a multiplicative density structure of I (x) as follows,

p(I (x)|{χ, b, c, σ }) ∝
∏

y∈W ρ
x

(p(I (y)|{χ, b, c, σ })πx (y) , (5)

where Wρ
x = {y ∈ � : |y − x | ≤ ρ} is a circular image

neighborhood with prescribed radius ρ and centered at x .
On the right hand side of (5), we consider that I (y) closely
follows the model (3) and contributes to the density function
of I (x) via a weighted product as in (5). In (5), πx : Wρ

x →
[0, 1] gives the weights of intensity distributions of the points
in Wρ

x such that
∑

y∈W ρ
x

πx(y) = 1. One can simply choose
πx(y) = 1/|Wρ

x | for all y ∈ Wρ
x if the intensities of neighbor

points in Wρ
x make equal contributions to the probability

distribution p(I (x)|{χ, b, c, σ }). In this paper, alternatively,
we use more adaptive weights πx(y) according to the distance
from y to the center x via

πx(y) = Ks(y − x), (6)

where Ks a (truncated) Gaussian kernel function defined by

Ks(z) =
{

C exp
(−|z|2/2s2

)
, if |z| ≤ ρ

0 otherwise.
(7)

for some s > 0. In (7), C is a normalizing constant that makes∫
|z|≤ρ Ks(z)dz = 1.

We observe that the intensity bias field in practical appli-
cations usually varies gradually across the image domain. In
another words, the value b(y) is nearly constant for points y in
an image patch Wρ

x provided that ρ is not too large. Therefore,
we approximate b(y) by b(x), the bias at the center point x ,

and obtain that I (y) ∼ N (b(x)ci , σ
2
i ) for y ∈ Wρ

x ∩�i . Hence,
the joint distribution p(I |{χ, b, c, σ }) in (5) can be obtained:

p(I |{χ, b, c, σ }) =
∏
x∈�

∏
y∈W ρ

x

p(I (y)|{χ, b, c, σ })Ks(y−x)

(8)
where p(I (y)|{χ, b, c, σ }) is Gaussian-type

1√
2πσ 2

i

exp

(
−|I (y)− b(x)ci |2

2σ 2
i

)
(9)

for those points y that χi (y) = 1. By now, we have established
the conditional probability density p(I |{χ, b, c, σ }) in (4).

On the other hand, we set the prior of χ according to
the descriptive length of the boundaries ∂�i to exponential
distribution with parameter α, which implicitly penalizes unde-
sired irregular and zigzag partition curves. The priors of b, c
and σ are imposed non-informatively. In addition, terms in
{χ, b, c, σ } are assumed to be independent. Consequently, the
prior p({χ, b, c, σ }) can be simplified to

p({χ, b, c, σ }) ∝
M∏

i=1

exp(−α|∂�i |). (10)

Based on (8) and (10), the MAP of (4) is equivalent to the
following minimization after we applied negative logarithm to
both sides of (4),

min
χ,b,c,σ

{
α

M∑
i=1

|∂�i | + L({χ, b, c, σ })
}

. (11)

Here L({χ, b, c, σ }) is the negative log-likelihood function

L({χ, b, c, σ }) = − log p(I |{χ, b, c, σ })

=
∫

�

M∑
i=1

∫
W ρ

x ∩�i

Ks(y − x)li (y; x)dydx

=
∫

�

M∑
i=1

∫
�

χi (y)Ks(y − x)li (y; x)dydx

(12)

and li (y; x) is defined for y ∈ �i ∩Wρ
x by

li (y; x) := |I (y)− b(x)ci |2
2σ 2

i

+ 1

2
log(2πσ 2

i ). (13)

In (12), we substituted the summation by integral to accom-
modate the continuous setting of our derivation, and omitted
Wρ

x and �i in the last equality according to the definitions of
Ks and χi in (7) and (1), respectively. We point out here that
the data fitting structure (12) using Gaussian distribution (9)
with constant variance has been used in previous work [20],
[21], [24] for image segmentation in the presence of intensity
inhomogeneity. The derivation above provides a MAP point
of view of this approach. Varying assumptions on intensity or
noise distribution, one can also modify (3) and (9) accordingly
and obtain an adaptive term (12) to solve specific image
segmentation problems.
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To write the first term in (11) using the characteristic
functions χi , we recall that the total variation of a function
f : �→ R is defined by

T V ( f ) = sup
p∈Y

{
−

∫
�

f div pdx

}
(14)

where the admissible set Y is

Y : = {p ∈ C∞0 (�;Rd) : |p(x)| ≤ 1,∀ x ∈ �}. (15)

Since χi is the characteristic function of �i , the total variation
of χi is then the descriptive length of ∂�i by coarea formula:

T V (χi ) = |∂�i |. (16)

Plug (16) and (12) into (11), we obtain a generalized
multiphase segmentation model as follows,

min
χ,b,c,σ

M∑
i=1

{
αT V (χi )+

∫
�

χi (x)hi (x)dx

}
(17)

subject to the constraint that only one component in χ(x) =
(χ1(x), . . . , χM (x))T is 1 and the others are 0 at each x ∈ �.
In (17), the function hi is defined by

hi (x) =
∫

�
Ks(y − x)li (x; y)dy. (18)

The second term in (17) is obtained by exchanging the symbols
x and y, followed by switching the order of integrations.

III. NUMERICAL ALGORITHM

Although the segmentation problem has been unified to
(17), this minimization problem cannot be solved efficiently
in general due to the non-differentiability of the TV term,
and the nonconvexity of the objective function with respect
to {χ, b, c, σ }. Conventional approaches based on level set
formulation require extensive computations and suffer the local
minimums severely. In this paper, we develop an efficient
numerical algorithm to tackle the computation of (17).

We first relax the constraint on the characteristic function
χ = (χ1, . . . , χM )T in (17) to X defined by

X : = {
u : �→ [0, 1]M |u(x) ∈ 	M ,∀ x ∈ �

}
(19)

and the canonical simplex 	M is defined by

	M = {
(z1, . . . , zM )T ∈ R

M≥0 : z1 + · · · + zM = 1
}

(20)

The relaxed model of (17), using notation u instead of
conventional binary function χ , becomes

min
u,b,c,σ

M∑
i=1

{
αT V (ui )+

∫
�

ui (x)hi (x)dx

}
(21)

subject to u ∈ X . One can readily see that the original
constraint in (17) further requires u(x) to be one of the vertices
of 	M . This relaxation substitutes the solution set of u by a
continuous and convex set.

In the rest part of this section, we use alternating minimiza-
tions to construct an iterative algorithm. Namely, we need to
minimize the objective function with respect to one of the
variables in {u, b, c, σ } with others fixed at a time.

A. First Variations of b, c, and σ

First of all, we observe that the variables b, c, and σ only
appear in the second term of the objective function in (21),
and their solutions can be obtained by first variations.

Fix u, c and σ , we compute the Euler-Lagrangian (E-L)
equation for b and obtain

b(x) =
∑M

i=1(ci/σ
2
i )[Ks ∗ (ui I )](x)∑M

i=1(c
2
i /σ

2
i )[Ks ∗ ui ](x)

, x ∈ �, (22)

where ∗ is the convolution operator. Next, we fix u, b, and σi

and obtain the E-L equation of ci for each i = 1, . . . , M as

ci =
∫
� [Ks ∗ (ui bI )](x)dx∫
� [Ks ∗ (ui b2)](x)dx

. (23)

Finally we have the E-L equation of σi as

σ 2
i =

∫
�

(
[Ks ∗ (ui I 2)]− 2ci b[Ks ∗ I ]+ ci b2

)
dx∫

� [Ks ∗ ui ]dx
. (24)

Therefore, the updates of b, c and σ have closed forms and
the main computations are regular convolutions using kernel
function Ks defined in (7).

B. Solution to u

Now we turn to the minimization of the objective function
(21) with respect to u. For fixed b, c and σ , the minimization
can be written as

min
u∈X

M∑
i=1

{
αT V (ui )+

∫
�

ui (x)hi (x)dx

}
, (25)

where hi does not depend on u according to its definition
in (18). We remark that (25) is a constrained nonsmooth
optimization problem due to the constraint on u(x) ∈ 	M

for each x ∈ � and the nondifferentiable TV term. So we
need to find an effective way to tackle these two issues.

For each ui , we introduce the dual variable pi ∈ Y accord-
ing to the definition in (14), and rewrite the minimization
problem (25) as a min-max problem

min
u∈X

max
pi∈Y

M∑
i=1

{
−α

∫
�

ui div pidx +
∫

�
ui hi dx

}
, (26)

where X is defined in (19) and Y is the admissible set of pi ’s
defined in (15). The objective function in (26) is convex with
respect to primal variable u and concave to dual variable p.
The sets X and Y are both closed and convex. Therefore
classical theory of saddle points of min-max problem applies
[32]. Moreover, a fast primal-dual hybrid gradient scheme was
introduced by Zhu and Chan in [30] and then extensively
used for imaging applications, especially for TV based image
reconstruction problems. In this paper, we adopt such a primal-
dual update scheme, and introduce fast projections so that the
computations in such scheme can be carried out efficiently.

In the discrete setting where the image I consists of N
pixels, we can vectorize each ui into a column vector in R

N ,
then its dual variable pi is a matrix in R

N×d , where d is the
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dimension of the image (e.g. 2 or 3). Hence, the optimization
problem (26) can be written as

min
u∈X

max
pi∈Y

F(u, p): =
M∑

i=1

〈ui , αDT pi + hi 〉, (27)

where D : R
N → R

N×d is the discretized gradient operator,
the superscript T is the conjugate operator, and 〈·, ·〉 represents
the regular inner product in R

N .
Note that both of X and Y are closed and convex sets.

Hence a solution to the min-max problem (27) can be obtained
by alternately solving for the primal variable u and dual
variable p

uk+1 = 
X ([uk
i − δk(αDT pk+1

i + hi )]
M
i=1), (28)

pk+1
i = 
Y

(
pk

i + τk Duk
i

)
, i = 1, . . . , M. (29)

where δk and τk act as the step sizes of the primal and dual
variables u and p in the k-th iteration, respectively, and [ui ]M

i=1
denotes the matrix [u1, . . . , uM ] that has ui as columns. Here

X : R

N×M → X and 
Y : R
N×d → Y are projection

operators onto the sets X and Y , respectively. More precisely,

X maps each row of its argument, say z ∈ R

M , to the simplex
	M using the algorithm shown in [33], [34], and 
Y projects
each row of its argument, say z ∈ R

d , to the unit ball Bd : =
{z ∈ R

d : ‖z‖2 = 1} via

z �→ z

max{‖z‖2, 1} . (30)

We note that the projections 
X and 
Y mentioned above
have complexity M log M and Md , respectively. Therefore, the
main computational cost is N M(log M + d) in each iteration.
Note that M is the number of phases in the image and is
usually less than 10, and d is the dimension of the image
such as 2 or 3. Moreover, these projections are applied to
each of the N pixels and hence the computations in both of

X and 
Y can be carried out in parallel. On the contrary,
level set function based segmentation with commonly used
semi-implicit gradient descent scheme usually requires Gauss
eliminations to solve tridiagonal linear systems, and hence the
computation cannot be parallelized easily.

C. Algorithm

In conventional settings of alternating minimizations, we
need to iterate (28) and (29) until convergence to get u before
updating the other variables b, ci and σi , i = 1, . . . , M .
However, we found that empirically it is more efficient to
simply solve for u and p only once and immediately update
the remaining variables.

The stopping criterion of the proposed algorithm is set
to ‖uk − uk−1‖2/‖uk‖2 < εtol. Namely, the computation is
automatically terminated if the relative change in the iterate
{uk} is less than a prescribed tolerance value εtol.

As we have relaxed the constraint on the function u, the
resulting u may contain values in (0, 1) and hence are not
characteristic functions. Therefore, once u is obtained, we
further threshold the components of u(x) to ū(x) by

ūi (x) =
{

1 if ui (x) = max1≤ j≤M{u j (x)}
0 otherwise

(31)

Algorithm 1 Fast Multiphase Segmentation (FastSEG)

Input α > 0 and εtol. Initialize u0 and p0, and set b0 = 1,
k = 0.
repeat

Update ck using (23) with uk and bk ;
Update σ k using (24) with uk , bk and ck ;
Compute hk using (18) with bk , ck and σ k ;
Compute uk using (28) with hk ;
Compute pk using (29) with hk ;
Update bk using (22) with uk , ck and σ k ;
k ← k + 1.

until ‖uk − uk−1‖2/‖uk‖2 < εtol
Compute ū using (31) and return {ū, b, c, σ }.

for each x ∈ �. If there are several equally maximal values
in u(x), we just pick one randomly.

To sum up, we propose a fast segmentation (FastSEG)
algorithm in Algorithm 1 below.

IV. EXPERIMENTAL RESULTS

In this section, we test the Algorithm 1 on a variety of
images and compare with recently proposed methods for
image segmentation in the presence of noise and intensity bias.

A. Experiment Settings

The proposed algorithm is implemented and all the tests
are performed in MATLAB�7.9 (R2009b) computing envi-
ronment on a PC with Intel Dual Core 2 Duo CPU at 2.4 GHz
(only one core is used in computation) and 3 GB of memory.
We expect a significant improvement in computation speed if
the program is parallelized.

In this paper, we always determine the number of phases
M for an input image. We use initialization in the same way
as that of the comparison algorithms if available. In particular,
as our algorithm does not employ level set functions, we
set u0 in Algorithm 1 to the characteristic functions of the
regions delineated by the initial contours in the comparison
algorithms. For other experiments, we use K -means algorithm
to the collection of pixel intensities of the given image, and
assign u0

i (x) = 1 if the K -means algorithm classifies x to
the i -th group and 0 otherwise for i = 1, . . . , M . Note that
the minimizations in segmentation problems are nonconvex in
general, and hence it is usually preferred to start from an initial
guess close to the desired partition. The K -means algorithm
can generate close approximations to the desired segmentation
if there are slight noise and intensity bias. However, we can
observe unsatisfactory initialization by K -means for many
images tested in this paper. For instance, Figure 4(a) shows the
initial guess obtained by K -means, which is not quite close to
the final optimal segmentation shown in Figure 4(f). Never-
theless, the proposed algorithm is still shown to be very robust
with respect to different initializations in Section IV-C.1.

We use test images and default parameter settings in the
original code of comparison algorithms if available. For the
proposed algorithm, the stopping criterion εtol is set to 10−3

throughout the experiments. The parameters α, δk and τk are
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set to be 10−4, 0.2 and 0.5 respectively. The patch radius ρ
is set to 8, and the variance s is 4 in (7). For all images we
tested (whose intensities are scaled to [0,1]), they seem to
provide good compromise between smoothness and accuracy
as well as speed and stableness. We also found that moderate
changes in these parameters do not yield significant difference
in segmentation results.

B. Quantitative Evaluation and Comparison With Existing
Methods

We use Jaccard similarity coefficient as a quantitative mea-
sure to evaluate the segmentation results. Let �i be the i -th
region obtained by the algorithm and �̄i be its corresponding
region in the ground truth image, then the JSC between �i

and �̄i is defined as

J (�i , �̄i ) = |�i ∩ �̄i |
|�i ∪ �̄i |

, (32)

where | · | represents the area of a region. Generally speaking,
Jaccard similarity coefficients is bounded in [0, 1] and larger
values imply more accurate segmentation.

To demonstrate the effectiveness of the proposed model,
we compare it with three recently developed methods in this
field. For completeness, we give a brief summary regarding
these methods in the following.

1) Comparison Methods: To demonstrate the efficiency
of the proposed algorithm, we make comparisons to three
mostly related segmentation methods with intensity bias field
estimation.

The first method we are going to compare is the Weighted
K -means Variational Level Set (WKVLS) method [22]. For
the two-phase case, the WKVLS model can be written as

EW (φ, b, c1, c2)

= ν

∫
�
|∇H (φ)|dx + μ

∫
�
(|∇φ| − 1)2dx

+
∫

�

∫
�

H (φ)Ks(y − x)|I (y)− b(x)c1|2dydx

+
∫

�

∫
�
(1− H (φ))Ks(y − x)|I (y)− b(x)c2|2dydx,

(33)

where φ is the level set function whose zero level set represents
the partition contour, and H is the Heaviside function defined
by H (z) = 1 if z ≥ 0 and 0 otherwise. The first two terms
in (33) penalize the length of partition contour and force the
level set function φ to be up straight (has slope 1) during
evolutions. The last two terms in (33) are for data fitting as
in the proposed algorithm, but lack the variability of noise
level σi .

The next one is the Statistical and Variational Multiphase
Level Set (SVMLS) method [24], which also utilizes level set
formulation and minimizes the following energy functional

ES(�, b, c, σ ) =
4∑

i=1

∫
�

∫
�

Mi (�(y))Ks(y− x)li (y; x)dydx,

(34)

where li (y; x) is the same as that in (13), � = (φ1, φ2), and
Mi (�) is defined as follows:⎧⎪⎪⎨

⎪⎪⎩

M1(�) = H (φ1)H (φ2),
M2(�) = H (φ1)(1− H (φ2)),
M3(�) = (1− H (φ1))H (φ2),
M4(�) = (1− H (φ1))(1− H (φ2)).

(35)

The last method we would compare is the Coherent Local
Intensity Clustering (CLIC) method [20]. CLIC partitions an
image by solving a constrained minimization problem,

EC (b, u, c) =
M∑

i=1

∫
�

∫
�

ui (y)Ks(y − x)|I (y)

−b(x)ci |2dydx,

subject to
M∑

i=1

ui (x) = 1, ∀ x ∈ �. (36)

In the first comparison experiment below, we used the
default test image and parameter setting for SVMLS using
the online source code package, and manually tuned the
parameters of WKVLS, CLIC, and the proposed method until
the best visual quality was achieved for each method. We
also extensively tested reasonable parameters settings of all
comparison methods for the BrainWeb data in the second
experiment, and presented the result of each method that
reached the highest average JSC score respectively.

2) Experiment I: In the first experiment, we compare the
proposed model with the aforementioned three methods on
an MR brain image with strong intensity inhomogeneity and
noise. We use the default test image (shown in Figure 2(a))
from the source code package of SVMLS published online1.
The initial conditions (shown in Figure 2(b)) is also the default
setting for the SVMLS code and is used for all the tested
algorithms. For this experiment, we only provide visual results
in Figure 2 since a ground truth segmentation is not available.

The input image shown in Figure 2(a) contains strong
intensity inhomogeneity and hence it is difficult to distinguish
different tissue intensities from its histogram as shown in
Figure 2(c). Therefore, conventional approaches based on
intensity clustering do not return correct partitions. On the
other hand, all the four tested algorithms can generate reason-
able results by taking the intensity inhomogeneity into account.

It can be seen that the corrected images have less intensity
biases compared to 2(a). This can also be observed in their his-
tograms shown in the second row of Figure 2. The histograms
of the corrected images have clear intensity peaks and hence
different tissues can be distinguished more easily.

As the intensity bias field b is also estimated by these
algorithms, we plot I/b, the images after bias correction, in the
second row of Figure 2. Here / represents pointwise division.
We note here that the model has an ambiguity with regards
to b(x) and the {ci }i as shown in (3). So we normalized b(x)
obtained from different methods into [0, 1] before displaying
I/b. In this case, the images have comparable grey scales.

When we look into the details of the segmentation results,
we can observe that those obtained by CLIC and the proposed

1http://www4.comp.polyu.edu.hk/ cslzhang/code.htm
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Fig. 2. Comparison of the proposed model with WKVLS, SVMLS and
CLIC on an MR brain image (a) with strong intensity inhomogeneity. The
color squares in (a) depict initial contours used by all methods.

algorithm are more accurate than those by WKVLS and
SVMLS: the former two can better separate the gray and white
matters as indicated by the red arrows in Figure 2(i)–2(o).
One of the possible reasons is that WKVLS and SVMLS are
formulated in that level set framework and hence can be easily
trapped into local minimum.

3) Experiment II: The test image in this experiment is
an MR image obtained from BrainWeb2. As ground truth
segmentation is available in this case, we use Jaccard similarity
coefficient to evaluate the performance of the test algorithms
quantitatively.

In Figure 3, we use the same initialization for all the above
mentioned segmentation models as shown by the red and blue
rectangles in Figure 3(a). The ground truth obtained from
BrainWeb are presented in Figure 3(b), which consists of four
parts: background, white matter, gray matter and cerebrospinal
fluid (CSF). The segmentation results obtained by the pro-
posed algorithm, WKVLS, SVMLS and CLIC are shown in
Figure 3(c)–3(f), respectively. The Jaccard similarity coeffi-
cients and CPU time are summarized in Table I. WKVLS and

2http://www.bic.mni.mcgill.ca/brainweb/

Fig. 3. Comparison of the proposed model, WKVLS, SVMLS and CLIC on
an MR brain image with severe noise and intensity inhomogeneity.

TABLE I

JACCARD SIMILARITY COEFFICIENTS J SC OF THE FOUR REGIONS,

BACKGROUND (B), CSF (C), GREY MATTER (G) AND WHITE MATTER

(W), OBTAINED BY THE TEST ALGORITHMS AND THEIR CPU TIME

Method J SCb J SCc J SCg J SCw CPU (s)
WKVLS 48.87% 5.51% 25.63% 6.68% 160.82
SVMLS 69.71% 18.79% 42.84% 61.68% 21.90

CLIC 98.75% 70.76% 60.57% 65.96% 41.07
Proposed 99.13% 80.47% 80.69% 82.54% 33.75

SVMLS cannot return correct segmentation as evolution of the
level set functions can be easily stuck at a local minimum. The
result of CLIC are better than WKVLS and SVMLS, but it
contains too many superfluous points due to the lack of proper
regularization in such noisy case.

The proposed algorithm FastSEG exhibits promising effi-
ciency compared to the other methods due to several reasons.
First of all, FastSEG the directly solves for the characteristic
functions whereas methods based on level set formulation
need to propagate the front of level contour to reach desired
partition. Secondly, the necessary regularization of partition
curve using descriptive length is enforced accurately by TV
of characteristic functions. Last but not least, the primal- dual
gradient scheme can be adopted for the resulting min-max
problem, and fast solvers such as simplex projection and kernel
convolution can be implemented for low cost computations.

C. Further Evaluations of the Proposed Algorithm

It is important that an automated segmentation procedure is
robust with respect to different initial segmentations, intensity
bias status, noise level, and parameter settings. In this subsec-
tion, we further evaluate the performance of Algorithm 1 on
these aspects. Figures 4 to 7 followed by JSC Tables II to V
correspondingly show the results.

1) Robust to Initialization: As the objective functions
appeared in segmentation problems are usually nonconvex,
most algorithms especially those formulated using level set
functions, suffer local minimums and hence are very sensitive



ZHANG et al.: EFFICIENT ALGORITHM FOR MULTIPHASE IMAGE SEGMENTATION 3849

Fig. 4. Segmentation results of the proposed algorithm using different
initializations.

to initializations. On the contrary, the proposed algorithm 1
appears to be robust: we test Algorithm 1 on an MR image
using five different initializations as shown in Figures 4(a)
(generated by K -means), 4(b), 4(c), 4(d), and 4(e) (generated
by some seeds shown in red, green and blue squares). The final
characteristic functions χi obtained by the proposed algorithm
are shown in Figures 4(f), 4(g), 4(h), 4(i) and 4(j), respectively.
The results imply that the proposed algorithm is quite robust
with respect different initial conditions.

TABLE II

JSC AND CPU TIME OF THE PROPOSED ALGORITHM USING DIFFERENT

INITIALS AS SHOWN IN FIGURES 4(A) TO 4(E), RESPECTIVELY

Initial J SCb J SCc J SCg J SCw CPU (s)

Init 1 99.98% 99.58% 99.83% 99.91% 14.63

Init 2 99.98% 99.46% 99.88% 99.97% 11.85

Init 3 99.99% 99.58% 99.90% 99.97% 12.18

Init 4 99.98% 99.46% 99.88% 99.96% 12.02

Init 5 99.83% 96.75% 99.00% 99.46% 13.75

Fig. 5. Robustness test of the proposed algorithm on different intensity
inhomogeneity. Left, middle, and right columns show segmentation results
on images with intensity bias in the middle, top, and bottom of image
domain, respectively. From top to bottom: input images, segmentation results,
estimated bias fields, corrected images, histograms of input images, and
histograms of corrected images, respectively.

2) Robust to Intensity Inhomogeneity: We conduct more
experiments on Algorithm 1 on MR images to test its capa-
bility on different intensity inhomogeneities. The results are
shown in Figure 5. The original MR images are obtained
from BrainWeb. We add synthetic intensity biases to the image
(concentrated at the middle, top and bottom of the image
domain), as shown in the first row of Figure 5. We show the
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TABLE III

JSC AND CPU TIME OF THE PROPOSED ALGORITHM ON DIFFERENT

BIAS FIELDS SHOWN IN THE LEFT (L), MIDDLE (M),

AND RIGHT (R) COLUMNS IN FIGURE 5

Column J SCbc J SCg J SCw CPU (s)

L 98.96% 91.65% 94.76% 8.34

M 98.82% 86.86% 91.78% 20.40

R 99.48% 95.34% 95.87% 18.01

Fig. 6. Robustness test of the proposed algorithm on different image noise
levels. Left, middle, and right columns correspond to small, medium and
strong noise levels, respectively. Top and bottom rows show the input images
and segmentation results, respectively.

TABLE IV

JSC AND CPU TIME OF THE PROPOSED ALGORITHM ON IMAGES WITH

SMALL, MEDIAN, AND STRONG NOISES SHOWN IN FIGURE 6

Noise Level J SCbc J SCg J SCw CPU (s)

Small 98.04% 76.47% 81.13% 2.68

Median 96.89% 74.53% 83.73% 3.08

Strong 95.75% 67.38% 78.37% 3.51

corrected images I/b, the recovered bias fields b, segmentation
results, histograms of the test images and corrected images
under each of these three images in Figure 5. We can see
that Algorithm 1 successfully detects the intensity biases and
obtains desired segmentations regardless of bias status.

3) Robust to Noise Level: The purpose of this experiment is
to test Algorithm 1 on MR images with intensity inhomogene-
ity and different levels of noise. The test images are generated
by first multiplying a simulated bias field to the clean MR
image and then adding low, medium, and strong Gaussian
noise. The segmentation results are presented in Figure 6.
From the results shown in the second row of Figure 6, we can
see that the proposed algorithm consistently returns reasonable
partitions of the image, but the accuracy can be slightly
affected by the noise level.

4) Different Parameter Settings: As shown in Section II,
Algorithm 1 involves the penalty parameter α, and step sizes
τk and δk for the primal and dual variables. We found that
the proposed algorithm performs well for a variety of images
under the same setting of these parameters. However, the
patch size ρ used for local density weight calculation in

Fig. 7. Efficiency of local intensity estimation in FastSEG when applied to
images with strong noise.

TABLE V

JSC AND CPU TIME OF THE PROPOSED ALGORITHM WITH DIFFERENT

PARAMETER ρ ON TEST IMAGE FIGURE 7(A)

ρ J SCbc J SCg J SCw CPU (s)

0 89.06% 65.52% 82.07% 10.99

2 86.83% 67.14% 84.59% 12.30

8 89.61% 66.81% 86.15% 12.10

(7) can impact the results under different level of noise. In
the following experiments we test Algorithm 1 with ρ =
0, . . . , 8. In particular, we show the results with ρ = 0, 2, 8 in
Figures 7(e)–7(g), respectively. Note that in Figure 7(e), there
are many superfluous points in the case of ρ = 0, where
local patch information is not utilized to estimate I (x). On
the other hand, the results look much better when we use
the neighboring information. This suggests the importance of
using local intensity density estimation (5), especially in the
presence of strong noise.
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V. CONCLUSION

In this paper, we present a general multiphase soft seg-
mentation framework which can deal with severe intensity
inhomogeneity and noise. Our model estimates the intensity
distribution at a particular pixel using a multiplicative structure
of distributions of all pixels in a neighborhood, and derive
the minimization problem using MAP. To tackle the computa-
tional difficulty due to the highly nonsmooth and constrained
formulation of the segmentation model, we apply primal-dual
gradient projections to develop a fast numerical algorithm.
Numerical results on various images show that our method is
more efficient and accurate in comparison with other recently
proposed algorithms.
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