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ABSTRACT
In this paper, we present a multiphase segmentation model for

MR images in the presence of strong intensity inhomogeneity.

The problem is formalized as a constraint min-max optimiza-

tion problem that consists both primal and dual variables. We

use the primal dual hybrid gradient (PDHG) algorithm to al-

ternately solve for the optimal solutions. The proposed algo-

rithm is quite efficient in that all the subproblems have closed

form solutions. Moreover, the computational complexity is

shown to be linear with respect to the size of the image. Nu-

merical experiments on various images demonstrated that our

algorithm outperforms recently developed methods in terms

of efficiency and accuracy.

Index Terms— Image segmentation, Maximum a poste-

riori estimation, Optimization, PDHG, Projection algorithms

1. INTRODUCTION

Magnetic resonance (MR) images usually encounter strong

intensity inhomogeneity due to limitations in imaging devices

or subject-induced susceptibility effect [1]. The intensity in-

homogeneity effect is likely to smear object boundaries and

thus hampers the process of image segmentation. Therefore,

segmentation for MR image is a challenging problem and

conventional approaches based on edge detection or intensity

classification may not work.

To tackle this issue, various work has appeared for si-

multaneous segmentation and intensity correction. (e.g. see

[1, 2, 3, 4, 5, 6]). Here we review a few models that is closely

related to our work. In [5], a variational model was pre-

sented for multi-phase tissue clarification of MR images in

the presence of intensity inhomogeneity. Their model can be

viewed as a local weighted K-means clustering approach and

includes membership functions into their energy functional.

[7] used the same approach as that in [5] with the only dif-

ference being the cost functional was written under the level

framework. Recently, another level set approach for simulta-

neous tissue segmentation and bias correction was proposed

in [8]. Different from the work in [5, 7], where the intensities

in each cluster were approximated by their means in the L2

sense, in the model of [8] local intensities of different tissues

were assumed to be Gaussian distributed with the means as

the centering intensities of each cluster and variances to be

optimized. This approach is more general than the one used

in [5, 7], which can be viewed as a special case of Gaussian

distribution with the same fixed variance for each cluster.

In this paper, we present a multiphase segmentation

framework for simultaneous image segmentation and bias

correction. We employ the primal-dual formulation and

rewrite the minimization problem as a constraint min-max

optimization problem that consists both primal and dual vari-

ables. We apply the primal dual hybrid gradient (PDHG)

algorithm [9] to alternately solve for the optimal solutions.

As a result, the numerical algorithm only involves convo-

lutions of small kernel functions, and pointwise projections

onto unit ball and canonical simplex. Therefore, all the

subproblems have closed form solutions and the proposed al-

gorithm is quite efficient. Numerical experiments on various

images demonstrated that our algorithm outperforms recently

developed methods in terms of efficiency and accuracy.

2. MODEL FORMULATION

Suppose I : Ω → R is the image to be segmented, where

Ω ⊂ R
2 is a closed and bounded region that represents the

domain of I . Given an image I , the purpose of image seg-

mentation is to partition of its domain Ω into multiple (say

M ) regions, such that each region delineates an object dis-

tinct from others. Namely, we need to solve for a set of re-

gions {Ωi}Mi=1 such that Ω = ∪M
i=1Ωi, {Ωi}Mi=1 are disjoint.

In other words, we need to solve for membership functions

of the form u = (u1, · · · , uM )T : Ω → {0, 1}M subject to∑
i ui(x) = 1 for each point x ∈ Ω, where ui is the charac-

teristic function of region Ωi.

As stated in the introduction, the image I can be corrupted

by some unknown intensity bias field b : Ω → R and noise. In

this paper, we further assume the intensities of original clean

image are constant ci at each region Ωi, and the noise is nor-

mally distributed and independent of those at other locations,
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which can be mathematically modeled by

I(x) = b(x)ci + ni(x), (1)

where ni(x) is normally distributed with mean 0 and variance

σ2
i unknown.

Denote c = (c1, . . . , cM )T and σ = (σ1, . . . , σM )T .

Our purpose is to find the posterior probability distribu-

tion p({u, b, c, σ2}|I) of the segmentation results {u, b, c, σ}
given image I . By the Bayes’ rule, we have

p({u, b, c, σ}|I) ∝ p(I|{u, b, c, σ})p({u, b, c, σ}), (2)

where p({u, b, c, σ}) is the prior information imposed to the

segmentation {u, b, c, σ}, and p(I|{u, b, c, σ}) is the joint

distribution of pixel intensities in I given the segmentation

{u, b, c, σ}.

According to (1), it is easy to see that I(x) is normally

distributed as N(b(x)ci, σ
2
i ) if ui(x) = 1 given the segmen-

tation {u, b, c, σ}. However, the observed intensity I(x) is

merely one realization and it is usually not reliable to recover

u, b, c and σi simultaneously. To overcome this difficulty, we

assume a multiplicative density structure of I(x) as follows,

p(I(x)|{u, b, c, σ}) ∝
∏

y∈Wρ
x

(p(I(y)|{u, b, c, σ})1/|Wρ
x |
,

(3)

where W ρ
x = {y ∈ Ω : |y − x| ≤ ρ} is the set of points

centered at x with a prescribed radius ρ and |W ρ
x | refers to

the number of points in W ρ
x . On the right side of (3), we

assume that I(y) closely follows the model (1).

Note that the intensity bias field varies gradually across

the image domain, we can approximate b(y) by b(x) and ob-

tain that I(y) ∼ N(b(x)ci, σ
2
i ) for y ∈ W ρ

x ∩Ωi. As a result,

the joint distribution p(I|{u, b, c, σ}) can be written as

p(I|{u, b, c, σ}) =
∏
x∈Ω

∏
y∈Wρ

x

p(I(y)|{u, b, c, σ})1/|Wρ
x |,

(4)

where p(I(y)|{u, b, c, σ}) is of Gaussian-type N(b(x)ci, σ
2
i ).

On the other hand, we set the priors of b, c and σ to be

(non-informative) uniform distributions, and the prior of u ac-

cording to the descriptive length of the boundaries ∂Ωi to ex-

ponential distribution with parameter λ, which implicitly pe-

nalizes irregular and zigzag partition curves. Moreover, terms

in {u, b, c, σ} are assumed to be independent. Therefore, the

prior p({u, b, c, σ}) can be simplified to

p({u, b, c, σ}) ∝
M∏
i=1

exp(−λ|∂Ωi|). (5)

Based on (4) and (5), the MAP of (2) is equivalent to the

following minimization problem,

min
u,b,c,σ

{
λ

M∑
i=1

|∂Ωi|+ L({u, b, c, σ})
}
, (6)

where L({u, b, c, σ}) is the negative log-likelihood function

L({u, b, c, σ}) = − log p(I|{u, b, c, σ})

=
1

|W ρ
x |

M∑
i=1

∫
Ω

∫
Ω

ui(y)li(y;x)dydx

≈ 1

|W ρ
x |

M∑
i=1

∫
Ω

∫
Wρ

x

Ks(y − x)ui(y)li(y;x)dydx,

(7)

where li(y;x) is defined by

li(y;x) :=
|I(y)− b(x)ci|2

2σ2
i

+
1

2
log(2πσ2

i ), (8)

and Ks a (truncated) Gaussian kernel function defined by

Ks(z) =

{
k exp

(−|z|2/2s2) , if |z| ≤ s
0 otherwise.

(9)

for some s > 0. In (9), k is a normalizing constant that makes∫
|z|≤ρ

Ks(z)dz = 1.

The first term in (6) can be expressed by the total varia-

tion,

|∂Ωi| = TV (ui) =: sup
p∈Y

{
−
∫
Ω

uidivpdx

}
, (10)

where the admissible set Y is

Y := {p ∈ C∞
0 (Ω;Rd) : |p(x)| ≤ 1, ∀x ∈ Ω}. (11)

Plug (10) and (7) into (6), we obtain the multiphase seg-

mentation model as follows,

min
u,b,c,σ

M∑
i=1

{
λTV (ui) +

∫
Ω

ui(x)hi(x)dx

}
(12)

subject to the constraint that only one component in u(x) =
(u1(x), . . . , uM (x))T is one and the rests are zeros. In (12),

the function hi is defined as

hi(x) =
1

|W ρ
x |

∫
Ω

Ks(y − x)li(x; y)dy. (13)

3. NUMERICAL ALGORITHM

In this section, we develop an efficient iterative algorithm to

solve the constrained minimization problem (12). We first

relax the constraint on the function u = (u1, · · · , uM )T in

(12) to X defined by

X := {u : Ω → [0, 1]M |u(x) ∈ ΔM , ∀x ∈ Ω} (14)

and the canonical simplex ΔM is defined by

ΔM = {(z1, · · · , zM )T ∈ R
M
+ : z1+· · ·+zM = 1}. (15)
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One can easily see that the original constraint requires that

u(x) to be one of the vertexes of ΔM and this relaxation ex-

tends u to a continuous domain. However, this is already good

enough as we can utilize the primal-dual gradient projections

to construct a fast iterative algorithm.

We apply the alternating minimization scheme to solve

problem (12). For fixed u, the variables b, c, and σ only ap-

pear in the second term of (12). Hence, b(x), ci, and σ2
i can

be updated by calculating their first variations.

b =

∑M
i=1(ci/σ

2
i )[Ks ∗ (uiI)]∑M

i=1(c
2
i /σ

2
i )[Ks ∗ ui]

,

ci =

∫
Ω
[Ks ∗ (uibI)](x)dx∫

Ω
[Ks ∗ (uib2)](x)dx

,

σ2
i =

∫
Ω

(
[Ks ∗ (uiI

2)]− 2cib[Ks ∗ I] + cib
2
)
dx∫

Ω
[Ks ∗ ui]dx

.

(16)

Now let us turn to the u subproblem. For fixed b, c and σ,

the minimization can be written as

min
u∈X

M∑
i=1

{
λTV (ui) +

∫
Ω

ui(x)hi(x)dx

}
. (17)

This is a constrained nonsmooth optimization problem due to

the constraint on u(x) ∈ ΔM for each x ∈ Ω and the non-

differentiable TV term in the objective function. So we need

to seek for an effective way to tackle these two issues.

For each ui, we introduce the dual variable pi ∈ Y ac-

cording to the definition in (10), and reformulate the mini-

mization problem (17) as a min-max problem

min
u∈X

max
pi∈Y

M∑
i=1

{
−λ

∫
Ω

uidivpidx+

∫
Ω

uihidx

}
. (18)

where X is defined in (14) and Y is the defined in (11).

In the discrete setting where the image to be segmented

consists of N pixels, we can vectorize each ui into a column

vector in R
N , then its dual variable pi is a matrix in R

N×d,

where d is the dimension of the image (e.g. 2 or 3). Hence,

the optimization problem (18) can be written as

min
u∈X

max
pi∈Y

F (u, p) :=

M∑
i=1

〈ui, λD
T pi + hi〉. (19)

where D : RN → R
N×d is the discretized gradient operator,

the superscript T is the conjugate operator, and 〈·, ·〉 repre-

sents the regular inner product in R
N .

Both of X and Y are closed and convex sets and thus a

solution to (19) can be obtained by alternately solving for the

primal variable u and dual variable p

uk+1 = ΠX(uk
i − δk∇uiF (uk, pk)),

pk+1
i = ΠY (p

k
i + τk∇piF (uk+1, pk)),

(20)

where δk and τk act as the step sizes of the primal and dual

variables u and p in the k-th iteration, respectively, and ‖ · ‖2
is the regular Euclidean norm of vectors. We note that the

solution to each problem has closed form as

uk+1
i = ΠX(uk

i − δk(λD
T pk+1

i + hi/λ)),

pk+1
i = ΠY

(
pki + τkDuk

i

)
, i = 1, · · · ,M,

(21)

where ΠX : RN×M → X and ΠY : RN×d → Y are projec-

tion operators onto the sets X and Y , respectively. More pre-

cisely, ΠX maps each row of its argument, say z ∈ R
M , to the

simplex using algorithm proposed in [10], and ΠY projects

each row of its argument to the unit ball Bd. These projec-

tions are applied to each of the N pixels and hence the com-

putations in both of ΠX and ΠY can be carried out in parallel.

4. EXPERIMENTAL RESULTS

In this section, we test the proposed model on a series of

real MR images and compare it with some recently developed

methods.

In Fig.1, we compare the proposed model with SVMLS

[8]. The original test image (a) suffers strong intensity inho-

mogeneity as indicated in its histogram (d). We use the same

initial condition (g) for both methods. The intensity inhomo-

geneity has been suppressed a lot in the bias corrected images

(b) and (c) in that the corresponding histograms (e) and (f)

have three sharp peaks. Therefore, both models are effective

for bias correction. The segmentation result of the proposed

model (i) is much more accurate than that of the SVMLS (h)

as indicated in the subregion pointed out by the red arrow.

Fig.2 shows the comparison with the CLIC (coherent local

intensity clustering) model proposed in [5]. Strictly speak-

ing, the CLIC model is just the fidelity term of our model

(7)(8) with σi ≡ 1. Another thing worth noting is that the

CLIC model has no regularization regarding the membership

function u and they manually set u to be binary during the

iterations. The test images are generated by adding Gaussian

white noise (with variance 0.001 and 0.01 respectively) to the

original clean MR image. As shown in Fig.2, both of the two

models work well for the test image with low noise. However,

the CLIC model fails when we increase the noise level.

5. CONCLUDING REMARKS

In this paper, we present a novel multiphase segmentation

framework for images with severe intensity inhomogeneity

and noise. The constrained minimization problem is solved

by employing the primal-dual hybrid gradient method. It is

shown that all the variables have closed form solutions and

the resulting algorithm could be paralleled. Numerical results

on various images show that our method is more efficient and

accurate in comparison with recently proposed algorithms.
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(a) Input: 238× 174 (b) Bias Correction

(SVMLS): 23.66s

(c) Bias Correction

(Proposed): 6.41s
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Fig. 1. Comparison with SVMLS [8] on an MR brain image.
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