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Abstract We present a primal-dual algorithm with consensus constraints that can
effectively handle large-scale and complex data in a variety of non-smooth image
reconstruction problems. In particular, we focus on the case that the data fidelity term
can be decomposed into multiple relatively simple functions and deployed to parallel
computing units to cooperatively solve for a consensual solution of the original prob-
lem. In this case, the subproblems usually have closed form solution or can be solved
efficiently at local computing units, and hence the per-iteration computation complex-
ity is very low. A comprehensive convergence analysis of the algorithm, including
convergence rate, is established.

Keywords Distributed optimization · Parallel computing · Consensus ·
Total variation · Image reconstruction

Mathematics Subject Classification 49N45

1 Introduction

1.1 Problem Formulation

In recent years, there are extensive interests in solving non-smooth image recon-
struction problems in the form of

min
x∈X {F(x) + J (Kx)} , (1.1)
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where x is the image to be solved and here represented as a vector in R
n , J is a non-

smooth (non-differentiable), proper, convex, and lower semi-continuous (l.s.c.) simple
function, K is a linear operator, X is the admissible set of the desired solution that
usually describes a box constraint or non-negativity constraint on the solution image.
In this paper, we are inspired by the fact that in a variety of real-world applications,
the so-called data fidelity term F(x), which models the physical or statistical relations
between observed data and the unknown image x , can be decomposed into a number
of relatively simple functions Fi for i = 1, · · · ,m as

F(x) =
m∑

i=1

Fi (x). (1.2)

Here for simplicity we mean that the proximity operators

(I + α∂ J )−1(y) := argmin
y∈dom(J )

{
J (z) + 1

2α
‖z − y‖2

}
, (1.3)

(I + α∂Fi )
−1(x) := argmin

x∈dom(Fi )

{
Fi (z) + 1

2α
‖z − x‖2

}
, i = 1, · · · ,m (1.4)

can be evaluated or solved easily. Here ‖ · ‖ is the regular norm induced by inner
product 〈·, ·〉 defined on finite dimensional vector spaces (e.g., Rn and C

n), dom(J )

and dom(Fi ) denote the (convex) domains of functions J and Fi , respectively, and
α > 0 is a constant. For example, in image reconstruction with the robust total-
variation (TV) regularization proposed in [38], K represents gradient operator and
J (·) is �1 (or �1-like) norm, such that J (Kx) computes TV semi-norm of an image x .
In this paper, we always use TV as example for analysis and numerical tests, and the
results can be readily extended to other J and K combinations satisfying the conditions
specified above. The data fidelity term F(·) can have different formats depending on
specific applications and will be described in details later in this section. We also
remark here that the proximity operators of J and Fi can be easily evaluated if and
only if can be those of their Fenchel dual functions J ∗ and F∗

i , due to the Moreau’s
identity [31].

It is worth noting that, despite of the special formulation and simplicity of com-
position functions J and Fi , optimization (1.1) has a large range of applications in
machine learning, statistical analysis, and signal processing besides image reconstruc-
tion. For example, in signal processing, K is a linear operator such aswavelet transform
[13,14,28,40]. In group lasso [19,24,29], K is an indication matrix corresponding to
group labeling, etc. In terms of data fidelity term F(x), we observe that data fidelity
term F(x) often yields a decomposition into a sum of relatively simple functions Fi (x)
as in (1.2). In particular,

1. Least squares F(x) = 1
2‖Ax − b‖2, where A = (a1, · · · , am)T. This can be

decomposed into simple functions Fi (x) = |aTi x − bi |2 for i = 1, · · · ,m. Least
squares are widely used under implicit assumption that the noise in data follows
independent and identically distributed Gaussian.
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2. The least �1 norm F(x) = ‖Ax − b‖1. This can be decomposed into simple
functions Fi (x) = |aTi x − bi |. The �1 norm is robust to outliners as it is arising
from the modeling of noise by Laplacian distribution (sometimes called double
exponential distribution).

3. The Poisson noise where F(x) = ∑m
i=1

(
aTi x − bi log(aTi x + c)

)
. This is derived

from the log-likelihood of independent Poisson noise bi ∼ Poisson(aTi x + c) for
i = 1, · · · ,m where c is the given base intensity.

4. Logistic regression where F(x) = ∑m
i=1 log

(
1 + exp(−biaTi x)

)
. For positivity

test, ai is the feature vector of sample i and bi ∈ {−1, 1} is its class label. The
solution x returns a classifier.

The cases above cover a majority of image reconstruction problems in real-world
applications. In some other cases, although closed form solutions to the subproblems
are not available, one can readily derive a routine (usingNewton’smethod for instance)
to calculate the solution easily.

1.2 Our Contribution

The contributions of this paper are in two phases. First, we propose a consensus
optimization model to break image reconstruction problem down to multiple sub-
problems which involve relatively simple functions and can be solved efficiently. In
particular, the subproblems usually have closed form solution and can readily han-
dle non-differentiable objectives. Examples include general least squares data fidelity
term ‖Ax − b‖2, �1 data term ‖Ax − b‖1, data term derived from likelihood function
of Poisson distribution and logistic regression for arbitrary matrix A, which cover a
large variety of signal/image processing and machine learning applications. More-
over, the computation can be easily carried out in parallel under both centralized and
decentralized settings. Second, we integrate the merits of primal-dual formulation of
TV to tackle its non-differentiability issue and alternate direction method of multipli-
ers (ADMM) to deal with consensus constraints. Different from classical primal-dual
and ADMM methods, the proposed algorithm only approximately solves all the pri-
mal variables and dual variables (of both primal-dual formulation of TV term and
the Lagrangian of consensus constraints) in each iteration so that the per-iteration
complexity remains low. Nevertheless, the iterates generated by the algorithm are still
proved to be convergent, and the rate is also given in terms of the (perturbed) gap
function value.

1.3 Proposed Algorithm

In this paper, we propose and analyze a fast numerical algorithm for solving the
optimization problem (1.1) by introducing consensus constraints. Depending on the
restrictions by specific application, there are two types of consensus constraints that
can be adopted: centralized version and decentralized version.

Centralized Version If there is a center computing cluster (fusion center) that can
efficiently communicate with parallel computing units, or there is a shared memory

123
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that can be easily accessed by these units, then one can introduce auxiliary variables
wi as local copy of unit i , and require that all wi equal to x stored at fusion center [5].
Hence the following consensus minimax problem can be proposed:

min
x∈X,wi

{
m∑

i=1

Fi (wi ) + max
y∈Y

[〈Kx, y〉 − J ∗(y)
] : wi = x, i = 1, 2, · · · ,m

}
, (1.5)

where the maximization is due to Fenchel transform J (Kx) = maxy∈Y [〈Kx, y〉 −
J ∗(y)] to overcome the non-differentiability issue of J , which is a commonly used
technique for solving TV-based image reconstruction in recent years [8,11,18,23,
44]. More importantly, in this case, the i-th parallel computing unit can store partial
data corresponding to Fi , and implement solvers for wi and Lagrangian multiplier
ui (shown later). In each iteration, the updated wi and ui are acquired by the center
cluster to compute x and y stored in a shared memory, which are then used by the
parallel units to update their wi and ui in the next iteration.

Decentralized Version In this case, neither a central computing cluster nor a shared
memory is available, and often the communication between parallel units can be
restrictively limited. For example, in large-size wireless sensor network G(V, E), the
sensor nodes in V (also as computing units) form the network such that each node can
only exchange information with a small amount of neighbor nodes due to excessive
battery power consumption or data loss in long-distance signal transmission. Namely,
nodes k and l can communicate only if (k, l) ∈ E . To properly address this issue,
we need to set consensus constraints different from (1.1). In particular, one of the
possible choices is to introduce auxiliary variable xi j (= x ji ) for each edge (i, j) in
the undirected network as [39] and impose constraints.

wi = xi j , w j = xi j , for all (i, j) ∈ E . (1.6)

Due to this constraint, wi of all nodes in a connected network should be equal. Hence
we can rewrite (1.1) as the following consensus minimax problem:

min
wi ,xi j

{
m∑

i=1

[
Fi (wi )+ 1

m
max
yi∈Y

[〈Kwi , yi 〉− J ∗(yi )
]] : wi = xi j , ∀i ∈ V, (i, j) ∈ E

}
.

(1.7)

In this case, we can readily show that the proposed algorithm only requires exchanging
updates between neighbor nodes. We also point out that each node i will privately
compute its own dual variable yi which may not converge to a consensus. However,
this does not affect the consensus ofwi , and it can be readily shown that yi ∈ ∂ J (Kw)

for all i upon convergence, where w is the consensual value of all wi and xi j . In the
end, onlyw (aswi retrieved from any node i) is returned by the algorithm as a solution
to (1.1).

In this paper, we focus on the centralized version (1.5), as the implementation and
convergence analysis can be readily modified and applied to the decentralized version
(1.7). The proposed algorithm is called COMMON, an abbreviation of consensus
minimax optimization, and is summarized in Algorithm 1.
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Distributed and Consensus Optimization 121

Algorithm 1 Primal-dual algorithm for COnsensus MiniMax OptimizatioN (COM-
MON) (1.5).
Initialize x0 = w0

i = u0i = 0 for i = 1, · · · ,m, and y0 = ȳ0 ∈ Y .
for t = 0, 1, 2, · · · do

xt+1 = ΠX

⎛

⎝(1 + αδm)−1

⎛

⎝αδ

m∑

i=1

(wt
i + uti

δ
) + xt − αKT ȳt

⎞

⎠

⎞

⎠ , (1.8)

wt+1
i =

(
I + (δ + γ −1)−1∂Fi

)−1 (
(δ + γ −1)−1(δxt+1 − uti + γ −1wt

i )
)

, ∀i, (1.9)

ut+1
i = uti − δ(xt+1 − wt+1

i ), ∀i, (1.10)

yt+1 = ΠY

(
yt + βKxt+1

)
, (1.11)

ȳt+1 = 2yt+1 − yt . (1.12)

end for

We point out that a major advantage of COMMON is that the subproblems can
be easily solved in parallel: ΠX (x) corresponds to projection onto X that describes
a box constraint [ξ, η] or a non-negativity constraint, which can be implemented as
component-wise proximity operatormax(ξ,min(η, x)) ormax(0, x), respectively; the
functions Fi in (1.9) are simple or their proximity operators defined in (1.4) can be
easily computed, for which a few examples are shown below; ΠY in (1.11) is again a
projection onto Y , which is a simple threshold function for TV regularization, namely,
(ΠY (y))i = yi/max(1, ‖yi‖), where yi ∈ R

2 is the i-th component of y ∈ R
2n [44].

Therefore solutions of these subproblems require O(n) computation complexity and
hence the algorithm readily scale to problems of larger sizes.

Hereweprovide someexamples that the proximity operator in (1.9) canbe evaluated
or calculated easily, according to the four cases listed in the previous subsection as
follows. Note that simple shifting or change of variables can be combined with the
results below to obtain proximity operators (I + μ−1∂Fi )−1.

1. Least squares. The proximity operator of Fi reduces to solving the following
minimization with some given a ∈ R

n , b ∈ R, and μ > 0,

min
w

{
1

2
|aTw − b|2 + μ

2
‖w‖2

}
, (1.13)

which has a closed form solution w∗ = ab
μ+‖a‖2 .
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2. The �1 norm. The proximity operator of Fi reduces to solving the following min-
imization with some given a ∈ R

n , b ∈ R, and μ > 0,

min
w

{
|aTw − b| + μ

2
‖w‖2

}
, (1.14)

which has a closed form solution w∗ = −sign(b)max(0, |b| − ‖a‖2
μ

) a
‖a‖ if a 	= 0

and 0 otherwise.
3. The Poisson error. The proximity operator of Fi reduces to solving the following

minimization with some given a ∈ R
n , c ∈ R, and μ > 0,

min
w

{
aTw − log(aTw + c) + μ

2
‖w‖2

}
, (1.15)

which has a unique closed form solution w∗ = −bμ−‖a‖2+
√

(‖a‖2+bμ)2+4μ‖a‖2
2μ‖a‖2 a if

a 	= 0 and 0 otherwise.
4. Logistic regression. The proximity operator of Fi reduces to solving the following

minimization with some given a ∈ R
n , b ∈ {−1, 1}, and μ > 0,

min
w

{
log

(
1 + exp(−baTw)

)
+ μ

2
‖w‖2

}
. (1.16)

Theproblemhas the solutionof formw∗ = rba
‖a‖ ,where the scalar r canbe computed

from minr�0{log(1 + e−‖a‖r ) + μr2

2 } in a few iterations using Newton’s method.

As we can see, the updates of wi and ui can be carried out in parallel. Since the
computation for all variables are either direct or simple, the per-iteration computation
complexity of COMMON is very low. In terms of memory cost, COMMON requires
auxiliary variables {wi }mi=1 and {ui }mi=1, each of these two has merely the same size
of the sensing matrix A and can be distributed to parallel computing units as A, e.g.,
ai , wi , ui are stored in the i-th unit, for i = 1, 2, · · · ,m. In certain applications, the
matrix A can be large and sparse, and the variables wi and ui can be stored as sparse
vectors as well since only the components with the same support of ai are non-zero
or updated. Moreover, the computations involve individual rows ai of A only, not the
columns of A during the operations of AT in traditional optimization methods.

The idea of using consensus constraints can be readily applied tomore general cases
where variable splitting can help to decouple difficulties in solving the problem as a
whole. In those cases, after auxiliary variables are properly introduced, the alternating
minimizations of the variables become easy to solve. This technique can efficiently
reduce the per-iteration computational cost and potentially improve the performance
of an iterative scheme.

1.4 Related Work

In recent years, there has been a large amount of research conducted to deal with
the non-smooth optimization problems, i.e., with TV regularization. In particular,
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many recent advances avoid smoothing the non-differentiable TV norm using ADMM
[16,20] and primal-dual methods, mostly under the assumption that F(x) is relatively
simple. After introducing auxiliary variable to substitute the Kx in the non-smooth J
function in (1.1), ADMM is applied to alternately minimize the objective with respect
to the variable x and auxiliary variable, so that the subproblems can be solved easily
and overall convergence is fast. See e.g., [6,17,21,22,41,43] and references therein.

More recently, several algorithms that utilize the primal-dual formulation of TV
norm have been developed to solve (1.1) where F is a simple function. For example,
to solve the image denoising problem modeled by F(x) = 1

2‖x − b‖2, where b is
an input noisy image, Chambolle [7] provided a semi-implicit gradient descent algo-
rithm using the idea of Lagrange multipliers to solve the dual problem. In [44], an
efficient primal-dual hybrid gradient (PDHG) algorithm was proposed to solve (1.1)
and applied to image denoising and deblurring where the proximity operator of F can
be easily computed using fast Fourier transforms. Different from themethod in [7] that
only solves the dual problem, PDHG alternately updates the primal and dual variables
in each iteration with an adaptive proximal step, which is very efficient for TV-based
image reconstruction problems. Moreover, a slightly modified version of the PDHG
algorithm is developed [18] and showed equivalent to the split inexact Uzawa method
[43]. They also proved a convergence result for PDHG applied to TV denoising with
some restrictions on the PDHG step-size parameters. More comprehensive study on
the convergence of PDHG is presented in [4,8,23]. In particular, Chambolle et al. [8]
established a convergence rate ofO(LK /t)when the domains of primal and dual vari-
ables are both bounded, where t is iteration number and LK is the Lipschitz constant of
the operator K . We remark here that the primal-dual methods are also closely related
to the Douglas–Rachford splitting method [15,27] and a pre-conditioned version of
ADMM, see e.g., [8,17,23,30] for detailed reviews on the relationship between the
primal-dual methods and those algorithms.

However, it is worth noting that all the methods discussed above assume a very spe-
cial structure of fidelity term F (e.g., simple) to achieve high efficiency. For general
convex and continuously differentiable F function, linearization of F can be adopted
so that the subproblem is easy to solve. For example, the Bregman operator splitting
(BOS)method [43] replaces F(x) by F(xt )+〈∇F(xt ), x−xt 〉 and computes approx-
imate solution in each iteration. This method is later shown to be equivalent to inexact
Uzawa method proposed in [1]. The BOS algorithm adopts a restrictive step-size pol-
icy for convergence, and hence performs less efficiently when compared to variable
step sizes based on Barzilai-Borwein method [3] and backtracking as developed in
[11,42]. The linearization idea can also be adopted in the primal-dual framework to
overcome the non-simplicity of F(x) term (1.1). In particular, Chen et al. [12] devel-
oped an accelerated scheme using the Nesterov’s idea [34–36] to reachO( LK

t + LF
t2

),

so that the convergence rate does not suffer too much of the Lipschitz constant LF

due to linearization. It is expected that this rate is optimal based on the observations
that the convergence rate of first-order method for smooth objective function F(x)
solely is at most O(LF/t2) [37], whereas that of solving minx∈X maxy∈Y 〈Kx, y〉 is
at most O(LK /t) for bounded Y and linear bounded operator K [33]. Nevertheless,
these approaches are categorized as first-order methods as they apply the aforemen-
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tioned approximation of F and require gradient of the F term during the iterations.
However, in many applications of signal/image processing and machine learning, the
F term is usually structured and can be decomposed to simple functions. The proposed
method utilizes this feature to tackle the large F term without approximation of F or
computation of its gradient, and the resulting scheme can be well suited for distributed
computing.

On the other hand, besides satisfactory performance in solving TV-based image
reconstructions, ADMM actually works well empirically for a variety of convex opti-
mization problems that involve equality constraints. Therefore, it is shown to be well
suited to distributed and consensus optimization arising in signal and image process-
ing, statistics, and machine learning [5]. In addition, during the past few years there
are growing interests in solving consensus problem over network [2,5,9,32]. The goal
is to perform consensus averaging or optimization on the network such that all nodes
reach the same value upon convergence. The computation is usually required to be
decentralized since a fusion center may not be available for the nodes to communi-
cate freely [10,25,26,39]. However, non-smooth image reconstruction problem has
not been considered in the literature in this field. As we can see in the previous sub-
section, in particular the minimizations (1.13)–(1.16) arising in formulation of many
real-world applications, the consensus constraints can overcome the issue of dealing
with the large-scale complex data fidelity term as awhole, and the original problem can
break down to multiple subproblems involving relatively simple minimizations that
can be solved easily. More importantly, the resulting algorithm COMMON solves the
F(x) term exactly through the consensus approach and avoids linearization of F(x)
completely. Therefore, it also enjoys O(LK /t) convergence rate. Moreover, COM-
MON can readily handle non-smooth functions F(x) which appear frequently in �1
and sparsity-based optimization problems such as (1.14), without approximation of
F(x) by smooth functions as in other gradient-based optimization approaches.

2 Convergence Analysis

In this section, we establish the convergence of COMMON and provide an estimate
of its convergence rate. To start with, we write the optimization problem (1.5) into the
following general form,

min
x,w

max
y,u

{
L(x, w; y, u) + δ

2
‖Bx − w‖2

}
, (2.1)

where (x, w) is the pair of primal variables and x, wi ∈ R
n for each i = 1, · · · ,m,

and (y, u) is the pair of dual variables and y ∈ R
2n and ui ∈ R

n for each i . The
Lagrangian L(x, w; y, u) is defined by

L(x, w; y, u) = F(w) + H(x) − J ∗(y) + 〈Kx, y〉 − 〈u, Bx − w〉, (2.2)

where H(x) is a proper, convex, and l.s.c. function, and B is a bounded linear operator
with induced operator norm LB . Note that if we set w = (wT

1 , · · · , wT
m)T, u =

(uT1 , · · · , uTm)T, B = (I, · · · , I )T, and H(x) to the indicator function of set X such
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that H(x) = 0 if x ∈ X and ∞ otherwise, then we return to the consensus minimax
problem (1.5). For decentralized version (1.7), one can modify matrix B such that the
constraints wi = xi j for all i ∈ V and (i, j) ∈ E can be represented by Bx = Cw

where x is composed of all xi j and w of all wi . In this case, the multiplier u contains
all ui j (note here ui j and u ji may be different), each having the same size as xi j and
is corresponding to constraint xi j − wi = 0. Then we can apply similar alternating
minimization scheme below where every node i will only need to exchange wi and
ui j with its neighbors j and hence the computation is decentralized.

As can be seen, the steps (1.8) to (1.12) in Algorithm 1 implement the following
scheme (2.3)–(2.7) to solve the minimax problem (1.5).

xt+1 = argmin
x∈X

{
H(x) + 〈Kx, ȳt 〉 + δ

2
‖Bx − wt − ut

δ
‖2 + 1

2α
‖x − xt‖2

}
, (2.3)

wt+1 = argmin
w∈W

{
F(w) + δ

2
‖Bxt+1 − w − ut

δ
‖2 + 1

2γ
‖w − wt‖2

}
, (2.4)

ut+1 = ut − δ(Bxt+1 − wt+1), (2.5)

yt+1 = argmin
y∈Y

{
J ∗(y) − 〈Kxt+1, y〉 + 1

2β
‖y − yt‖2

}
, (2.6)

ȳt+1 = 2yt+1 − yt , (2.7)

where X , W , and Y are the domains of variables x , w, and y, respectively. This
scheme alternately solves for the primal variables x and w, and dual variables y and
u. However, different from traditional primal-dual algorithms which solve the primal
variable (x, w) together thoroughly (which usually require an extensive number of
inner iterations) before moving onto dual variable (y, u) and vice versa, COMMON
updates each variable immediately after a new value of previous variable is computed.
This approach avoids inner iterations and ensures that the per-iteration computation
complexity remains low. Meanwhile, a convergence analysis needs to be established
as those for traditional primal-dual methods do not apply.

To prove convergence and estimate the rate, we first introduce a useful gap func-
tion to access solution quality of (2.1). Let z = (x, w; y, u) denote the primal-dual
variables, and Z := X × W × Y × U be the domain of (x, w; y, u). Then we define
function Q(z̃; z) for z̃, z ∈ Z as follows,

Q(z̃, z) = L(x̃, w̃; y, u) − L(x, w; ỹ, ũ), (2.8)

where L(x, w; y, u) is defined in (2.2). Note that Q(·, z) is a convex function for any
fixed z ∈ Z . Also Q(z̃, z) = −Q(z, z̃). Moreover, Q(z̃, z) � 0 (or Q(z, z̃) � 0) for
all z ∈ Z if and only if z̃ is a saddle point of L(x, w; y, u). Therefore, it is natural to
define the gap function as follows if the feasible set Z is bounded:
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g(z̃) = sup
z∈Z

Q(z̃, z). (2.9)

In particular, it can be readily shown that [F(x̃)+ J (K x̃)]−[F(x∗)+ J (Kx∗)] � g(z̃)
for all z̃ = (x̃, w̃; ỹ, ũ) ∈ Z if x∗ is optimal for the primal problem of (2.1). If the
feasible set Z is unbounded, the gap function (2.9) is not well defined even if z̃ is close
to an optimal solution. In this case, it is shown that there always exists a perturbation
vector v such that

g̃(z̃, v) = sup
z∈Z

{Q(z̃, z) − 〈v, z̃ − z〉} (2.10)

is well defined [30]. As an alternate to (2.9), we will show that the proposed algorithm
returns a nearly optimal solution with small gap g̃(z̃, v) with small perturbation v in
the Z unbounded case.

Theorem 2.1 Suppose (x̂, ŵ; ŷ, û) is a saddle point of L(x, w; y, u) defined in (2.2),
and the parameters satisfy α, β, γ, δ > 0 and αβL2

K < 1. Then the sequence
{(xt , wt ; yt , ut )}t generated by COMMON satisfies the following conditions:

1. For any t, the distance from iterate (xt , wt ; yt , ut ) to (x̂, ŵ; ŷ, û) is bounded:

1

2α
‖x̂ − xt‖2 + 1

2γ
‖ŵ − wt‖2 + 1

2β
‖ŷ − yt‖2 + 1

2δ
‖û − ut‖2 � CD2(ẑ, z0),

(2.11)

where the constant C � (1 − √
αβLK )−1 and D2(ẑ, z0) is set to

1

2

(
1

α
+ δL2

B

)
‖x̂−x0‖2+ 1

2γ
‖ŵ−w0‖2+ 1

2β
‖ŷ−y0‖2+ 1

2δ
‖û−u0‖2. (2.12)

2. There exists a saddle point (x∗, w∗; y∗, u∗) of L(x, w; y, u), such that the entire
sequence (xt , wt ; yt , ut ) converges to (x∗, w∗; y∗, u∗) as t → ∞.

Proof We first observe that the optimality conditions of the minimization problems
(2.3), (2.4), and (2.6) imply the inequalities for all feasible x ∈ X, w ∈ W, y ∈ Y as
follows, due to the convexity of functions H , F , and J ∗:

H(xt+1) − H(x) �
〈
KT ȳt + δBT((Bxt+1 − wt ) − ut )

+ xt+1 − xt

α
, x − xt+1

〉
, (2.13)

F(wt+1)−F(w) �
〈
−δ(Bxt+1 − wt+1) + ut + wt+1 − wt

γ
,w − wt+1

〉
, (2.14)

J ∗(yt+1) − J ∗(y) �
〈
−Kxt+1 + yt+1 − yt

β
, y − yt+1

〉
. (2.15)
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Meanwhile, due to the definition of Q(z̃, z) in (2.8), we have

Q(zt+1; z) = L(xt+1, wt+1; y, u) − L(x, w; yt+1, ut+1)

=
[
F(wt+1) + H(xt+1) − J ∗(y) + 〈Kxt+1, y〉
− 〈u, Bxt+1 − wt+1〉

]
−

[(
F(w) + H(x)

− J ∗(yt+1) + 〈Kx, yt+1〉−〈ut+1, Bx − w〉
)]

. (2.16)

Applying the inequalities (2.13), (2.14), and (2.15) to (2.16), we obtain that

Q(zt+1; z) � 〈KT ȳt + δBT((Bxt+1 − wt ) − ut ), x − xt+1〉
− 〈δ(Bxt+1 − wt+1) − ut , w − wt+1〉 + 〈−Kxt+1, y − yt+1〉
+ 〈Kxt+1, y〉 − 〈u, Bxt+1 − wt+1〉 − 〈Kx, yt+1〉 + 〈ut+1, Bx − w〉
+ hα(x, xt , xt+1) + hγ (w,wt , wt+1) + hβ(y, yt , yt+1), (2.17)

where for notation simplicity, we introduced an h function defined by

hα(x, xt , xt+1) := 1

α
〈xt+1 − xt , x − xt+1〉

= 1

2α

(
‖x − xt‖2 − ‖x − xt+1‖2 − ‖xt − xt+1‖2

)
, (2.18)

and hγ (w,wt , wt+1) and hβ(y, yt , yt+1) are defined in a similar manner.
We collect the terms on inner product terms involving y, yt , ȳt , and yt+1 on the

right side of (2.17), and be aware of (2.7), to get

〈KT ȳt , x − xt+1〉 − 〈Kxt+1, y − yt+1〉 + 〈Kxt+1, y〉 − 〈Kx, yt+1〉
= 〈ȳt , K (x − xt+1)〉 − 〈yt+1, K (x − xt+1)〉
= 〈yt − yt+1, K (x − xt+1)〉 + 〈yt − yt−1, K (x − xt+1)〉
= −〈yt+1 − yt , K (x − xt+1)〉 + 〈yt − yt−1, K (x − xt )〉

−〈yt − yt−1, K (xt+1 − xt )〉. (2.19)

Then we collect the other inner product terms on the right side of (2.17) and get the
following:

〈δ(Bxt+1 − wt ) − ut , B(x − xt+1)〉 − 〈δ(Bxt+1 − wt+1) − ut , w − wt+1〉
− 〈u, Bxt+1 − wt+1〉 + 〈ut+1, Bx − w〉, (2.20)
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which can be rewritten as follows due to the relation in (2.5),

〈−ut+1 + δ(wt+1 − wt ), B(x − xt+1)〉 + 〈ut+1, w − wt+1〉
−〈u, Bxt+1 − wt+1〉 + 〈ut+1, Bx − w〉

= 〈ut+1 − u, Bxt+1 − wt+1〉 + δ〈wt+1 − wt , B(x − xt+1)〉
= 1

δ
〈u − ut+1, ut+1 − ut 〉 + δ〈B(xt+1 − xt ), B(x − xt+1)〉

+〈(ut+1 − ut ) − (ut − ut−1), B(x − xt+1)〉
= hδ(u, ut , ut+1) + hδ−1(Bx, Bxt , Bxt+1) + 〈ut+1 − ut , B(x − xt+1)〉

−〈ut − ut−1, B(x − xt )〉 + 〈ut − ut−1, B(xt+1 − xt )〉. (2.21)

Now we substitute (2.19) and (2.21) back into the estimate (2.17) and obtain the
following inequality:

Q(zt+1; z) � hα(x, xt , xt+1) + hγ (w,wt , wt+1) + hβ(y, yt , yt+1)

+ hδ(u, ut , ut+1) + hδ−1(Bx, Bxt , Bxt+1)

+〈ut+1 − ut , B(x − xt+1)〉 − 〈ut − ut−1, B(x − xt )〉
− 〈yt+1 − yt , K (x − xt+1)〉 + 〈yt − yt−1, K (x − xt )〉
− 〈yt − yt−1, K (xt+1 − xt )〉 + 〈ut − ut−1, B(xt+1 − xt )〉. (2.22)

Note that due to Cauchy-Schwartz inequality and Young’s inequality, there is

|〈yt−yt−1, K (xt+1−xt )〉| � LK ‖yt − yt−1‖‖xt+1 − xt‖
�

√
αβLK

2β
‖yt−yt−1‖2+

√
αβLK

2α
‖xt+1−xt‖2, (2.23)

and similarly that

|〈ut − ut−1, B(xt+1 − xt )〉| � 1

2δ
‖ut − ut−1‖2 + δ

2
‖Bxt+1 − Bxt‖2. (2.24)

Substituting the two estimates above into (2.22) and using the definition of h in
(2.18), we obtain

Q(zt+1; z) �
1

2α
(‖x − xt‖2 − ‖x − xt+1‖2) − 1 − √

αβLK

2α
‖xt − xt+1‖2

+ 1

2γ
(‖w − wt‖2 − ‖w − wt+1‖2) − 1

2γ
‖wt − wt+1‖2

+ 1

2β
(‖y−yt‖2−‖y−yt+1‖2)− 1

2β
(‖yt−yt+1‖2−√

αβLK ‖yt−yt−1‖2)

+ 1

2δ
(‖u − ut‖2 − ‖u − ut+1‖2) − 1

2δ
(‖ut − ut+1‖2 − ‖ut − ut−1‖2)

+ δ

2

(‖Bx − Bxt‖2 − ‖Bx − Bxt+1‖2)
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+ 〈ut+1 − ut , B(x − xt+1)〉 − 〈ut − ut−1, B(x − xt )〉
− 〈yt+1 − yt , K (x − xt+1)〉 + 〈yt − yt−1, K (x − xt )〉. (2.25)

Hence, taking the sum of j from 0 to t − 1 on both sides, we obtain

t−1∑

j=0

Q(z j+1; z) � 1

2α
(‖x − x0‖2 − ‖x − xt‖2) − 1 − √

αβLK

2α

t−1∑

j=0

‖x j − x j+1‖2

+ 1

2γ
(‖w − w0‖2 − ‖w − wt‖2) − 1

2γ

t−1∑

j=0

‖w j − w j+1‖2

+ 1

2β
(‖y − y0‖2 − ‖y − yt‖2) − 1

2β
‖yt−1 − yt‖2

− 1 − √
αβLK

2β

t−1∑

j=0

‖y j − y j−1‖2

+ 1

2δ
(‖u − u0‖2 − ‖u − ut‖2) − 1

2δ
‖ut − ut−1‖2

+ δ

2
(‖Bx − Bx0‖2 − ‖Bx − Bxt‖2)

+ 〈ut − ut−1, B(x − xt )〉 − 〈yt − yt−1, K (x − xt )〉, (2.26)

where we use convention that y−1 = y0 and u−1 = u0. We further note that

|〈yt − yt−1, K (x − xt )〉| �
√

αβLK

2β
‖yt − yt−1‖2 +

√
αβLK

2α
‖x − xt‖2 (2.27)

and that

|〈ut − ut−1, B(x − xt )〉| � 1

2δ
‖ut − ut−1‖2 + δ

2
‖Bx − Bxt‖2. (2.28)

Therefore, submitting the above two inequalities into (2.26), we obtain

t−1∑

j=0

Q(z j+1; z) � 1

2α
‖x − x0‖2 − 1 − √

αβLK

2α
‖x − xt‖2

−
t−1∑

j=0

1 − √
αβLK

2α
‖x j − x j+1‖2

+ 1

2γ
(‖w − w0‖2 − ‖w − wt‖2) − 1

2γ

t−1∑

j=0

‖w j − w j+1‖2
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+ 1

2β
(‖y−y0‖2−‖y−yt‖2)− 1−√

αβLK

2β

t∑

j=0

‖y j −y j+1‖2

+ 1

2δ
(‖u − u0‖2 − ‖u − ut‖2) + δ

2
‖Bx − Bx0‖2. (2.29)

Substituting a saddle point ẑ = (x̃, w̃; ỹ, ũ) of Lagrangian L above, which yields
Q(z j+1, ẑ) � 0, ∀ j , we obtain

0 � 1

2α
‖x̂ − x0‖2 − 1 − √

αβLK

2α
‖x̂ − xt‖2 −

t−1∑

j=0

1 − √
αβLK

2α
‖x j − x j+1‖2

+ 1

2γ
(‖ŵ − w0‖2 − ‖ŵ − wt‖2) − 1

2γ

t−1∑

j=0

‖w j − w j+1‖2

+ 1

2β
(‖ŷ − y0‖2 − ‖ŷ − yt‖2) − 1 − √

αβLK

2β

t∑

j=0

‖y j − y j+1‖2

+ 1

2δ
(‖û − u0‖2 − ‖û − ut‖2) + δ

2
‖Bx̂ − Bx0‖2, (2.30)

since αβL2
K < 1. Hence the conclusion (2.11) follows.

Now we are left to prove that the entire sequence (xt , wt , yt , ut ) converges
to some saddle point. First of all, the boundedness of (xt , wt , yt , ut ) in (2.11)
implies the existence of subsequence (xtk , wtk , ytk , utk ) that converges to a limit point
(x∗, w∗, y∗, u∗). Furthermore, the estimate in (2.30) implies boundedness of series∑

t ‖xt+1 − xt‖2, ∑
t ‖wt+1 − wt‖2, and ∑

t ‖yt+1 − yt‖2, from which we con-
clude that limt (xt+1 − xt ) = 0, limt (w

t+1 − wt ) = 0, and limt (yt+1 − yt ) = 0.
Hence limt (Bxt+1 − Bxt ) = 0 and limt (ut+1 −ut ) = 0. Substituting (xt , wt , yt , ut )
by (xtk , wtk , ytk , utk ) in (2.3)–(2.6), and taking limit k → ∞, we can see that
(x∗, w∗, y∗, u∗) is a saddle point of the minimax problem (2.1).

Now we substitute z = (x, w; y, u) by this saddle point z∗ = (x∗, w∗, y∗, u∗) in
(2.25), and take the sum of j from tk to t − 1 for t > tk to get

0 � 1

2α
(‖x∗ − xtk‖2 − ‖x∗ − xt‖2) − 1 − √

αβLK

2α

t−1∑

j=tk

‖x j − x j+1‖2

+ 1

2γ
(‖w∗ − wtk‖2 − ‖w∗ − wt‖2) − 1

2γ

t−1∑

j=tk

‖w j − w j+1‖2

+ 1

2β
(‖y∗ − ytk‖2 − ‖y∗ − yt‖2)

− 1

2β

t−1∑

j=tk

(‖y j − y j+1‖2 − √
αβLK ‖y j − y j−1‖2)
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+ 1

2δ
(‖u∗ − utk‖2 − ‖u∗ − ut‖2) − δ

2
(‖Bx∗ − wtk‖2 − ‖Bx∗ − wt‖2)

− 〈yt − yt−1, K (x∗ − xt )〉 + 〈ytk − ytk−1, K (x∗ − xtk )〉.

Therefore, letting k → ∞, we know tk → ∞ and hence terms such as ‖x∗ − xtk‖2
and all summations (due to boundedness of infinite sum) above vanish. Hence we
conclude that (xt , wt , yt , ut ) → (x∗, w∗, y∗, u∗) as t → ∞.

In the case that Z = X × W × Y × U is bounded, we can use the gap function
(2.9) to access solution quality and derive convergence rate. More precisely, suppose
that there are bounds D2

X , D2
W , D2

Y , and D2
U that satisfy

sup
x1,x2∈X

‖x1 − x2‖2 � D2
X , sup

w1,w2∈W
‖w1 − w2‖2 � D2

W ,

sup
y1,y2∈Y

‖y1 − y2‖2 � D2
Y , sup

u1,u2∈U
‖u1 − u2‖2 � D2

U . (2.31)

Then we have the following result which indicates O(1/t) convergence rate in terms
of gap function of averaged iterate z̃t1.

Theorem 2.2 Let zt = (xt , wt , yt , ut ) be the sequence generated by Algorithm 1,
and that z̃t1 = (

∑t
j=1 z

j )/t , then

g(z̃t1) � 1

2t

(
(α−1 + δL2

B)D2
X + γ −1D2

W + β−1D2
Y + δ−1D2

U

)
. (2.32)

Proof Since Q(z̃, z) is a convex function with respect to z̃ for every fixed z, we know
that

t Q(z̃t1, z) �
t−1∑

j=0

Q(z j+1, z). (2.33)

Then substituting z by z∗ in (2.29), we obtain that

t Q(z̃t1, z
∗) � 1

2α
‖x∗ − x0‖2 + 1

2γ
‖w∗ − w0‖2 + 1

2β
‖y∗ − y0‖2

+ 1

2δ
‖u∗ − u0‖2 + δ

2
‖Bx∗ − Bx0‖2. (2.34)

By the definition of domain bounds in (2.31), we conclude with (2.32).

If one of the domains X , W , Y , and U is unbounded, then Z is unbounded. In this
case, we use a perturbed gap function (2.10) to estimate the rate of convergence of z̃t1
to an optimal solution as t → ∞. First, we derive the following estimate:

Theorem 2.3 Let ẑ = (x̂, ŵ; ŷ, û) be a saddle point of (2.1), then

g̃(z̃t1, v
t ) � D2(z̃t1, z

0)

t
, (2.35)
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where the perturbation vector vt satisfies

‖vt‖ �
√
2

t

[√
α−1 + δL2

B +
(√

α(α−1 + δL2
B) + 2

√
δLB + 2

√
βLK

) √
C

+
(√

β−1 +
√

γ −1 +
√

δ−1

)
(1 + √

C)

]
D(ẑ, z0), (2.36)

the distance D(·, ·) is defined as in (2.12), and C � (1 − √
αβLK )−1 is a constant.

Proof We first note the following identity:

‖x − x0‖2 − ‖x − xt‖2
= ‖(x − x̃ t1) − (x0 − x̃ t1)‖2 − ‖(x − x̃ t1) − (xt − x̃ t1)‖2
= ‖x0 − x̃ t1‖2 − ‖xt − x̃ t1‖2 + 2〈x0 − xt , x̃ t1 − x〉, (2.37)

where x̃ t1 = (
∑t

j=1 x
j )/t . Similar definition and identity hold for ỹt1, w̃

t
1, and ũ

t
1. Due

to convexity of Q(·, z), we deduce from (2.26) that

t Q(z̃t1, z) � 1

2α
(‖x̃ t1 − x0‖2 − ‖x̃ t1 − xt‖2) + 1

α
〈x0 − xt , x̃ t1 − x〉

+ 1

2γ
(‖w̃t

1 − w0‖2 − ‖w̃t
1 − wt‖2) + 1

γ
〈w0 − wt , w̃t

1 − w〉

+ 1

2β
(‖ỹt1−y0‖2−‖ỹt1−yt‖2)+ 1

β
〈y0−yt , ỹt1 − y〉 − 1

2β
‖yt−1 − yt‖2

+ 1

2δ
(‖ũt1 −u0‖2 −‖ũt1 − ut‖2)+ 1

δ
〈u0−ut , ũt1−u〉 − 1

2δ
‖ut − ut−1‖2

+ δ

2
(‖Bx̃t1 − Bx0‖2 − ‖Bx̃t1 − Bxt‖2) + δ〈Bx0 − Bxt , Bx̃t1 − Bx〉

+ 〈ut − ut−1, B(x − x̃ t1)〉 + 〈ut − ut−1, B(x̃ t1 − xt )〉
− 〈yt − yt−1, K (x − x̃ t1)〉 − 〈yt − yt−1, K (x̃ t1 − xt )〉. (2.38)

Meanwhile, we have that

|〈ut − ut−1, B(x̃ t1 − xt )〉| � 1

2δ
‖ut − ut−1‖2 + δ

2
‖B(x̃ t1 − xt )‖2 (2.39)

and that

|〈yt − yt−1, K (x̃ t1 − xt )〉| �
√

αβLK

2β
‖yt − yt−1‖2 +

√
αβLK

2α
‖x̃ t1 − xt‖2. (2.40)
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Substituting the two inequalities above into (2.38), we obtain

t Q(z̃t1; ẑ) � D(z̃t1, ẑ)−〈(α−1+δBTB)(x0 − xt ), x̃ t1− x〉
+〈BT(ut−ut−1)− KT(yt − yt−1), x̃ t1 − x〉+〈γ −1(w0− wt ), w̃t

1 − w〉
+〈β−1(y0 − yt ), ỹt1 − y〉 − 〈δ−1(u0 − ut ), ũt1 − u〉, (2.41)

from which the estimate (2.35) follows with vt defined by

vt = 1

t

⎛

⎜⎜⎝

(α−1 + δBTB)(x0 − xt ) + BT(ut − ut−1) − KT(yt − yt−1)

γ −1(w0 − wt )

β−1(y0 − yt )
δ−1(u0 − ut )

⎞

⎟⎟⎠ . (2.42)

Now we are left to derive the estimate (2.36). By the setting (2.42), we have

vt � 1

t

[
(α−1 + δBTB)‖x0 − xt‖ + LB‖ut − ut−1‖ + LK ‖yt − yt−1‖

+ γ −1‖w0 − wt‖2 + β−1‖y0 − yt‖ + δ−1‖u0 − u0‖)]. (2.43)

Note that by the definition of (2.12) and the bound (2.11), there is

‖x0 − xt‖ � ‖x0 − x̂‖ + ‖xt − x̂‖
�

√
2(α−1 + δL2

B)−1D(ẑ, z0) + √
2αCD(ẑ, z0)

�
√
2

(√
(α−1 + δL2

B)−1 + √
αC

)
D(ẑ, z0). (2.44)

Similarly, there are

‖w0 − wt‖ �
√
2γ (1 + √

C)D(ẑ, z0), (2.45)

‖y0 − yt‖ �
√
2β(1 + √

C)D(ẑ, z0), (2.46)

‖u0 − ut‖ �
√
2δ(1 + √

C)D(ẑ, z0). (2.47)

Furthermore, it can be readily shown that

‖ut − ut−1‖ � ‖ut − û‖ + ‖ut−1 − û‖ � 2
√
2δCD(ẑ, z0), (2.48)

‖yt − yt−1‖ � ‖yt − ŷ‖ + ‖yt−1 − ŷ‖ � 2
√
2βCD(ẑ, z0). (2.49)

Substituting estimates (2.44)–(2.49) into (2.43), we conclude with the bound of vt in
(2.36).
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3 Numerical Tests

In this section, we present the numerical results of COMMONon the reconstruction
of a Shepp-Logan phantom of various sizes n: 212, 214, 216 (i.e., 64× 64, 128× 128,
and 256 × 256, respectively). With a pre-computed attenuation matrix A (of two
sizes m = 210 and m = 214), and the phantom x , we simulate three types of noises
which follow Guassian, Laplacian (double exponential), and Poisson distributions,
respectively. For the Gaussian and Laplacian noise, the standard deviation is set to
0.1. That is, noise b = Ax + n, where n ∼ N (0, 0.12) and n ∼ Laplace(0.1−1),
respectively. For the Poisson case, the noisy data bi ∼ Poisson(aTi x + 1) indepen-
dently where ai denotes the i-th row of A. The data fidelity term F in (1.1) is then
constructed using the A, b and these three noise models. Now we apply the proposed
algorithm to solve (1.1) as F(x) can be decomposed as (1.2) with each Fi defined
according to these noise models. For the three noise modes, we choose the weight-
ing parameter of TV term as 10−3, 10, 10−1 by empirical experiments, for which the
reconstructed image has nearly optimal quality with satisfactory noise-to-ratio level.
The distributed computation is simulated in MATLAB R2013b (v8.2) and performed
on a desktop computer with Intel Quad-Core 3.7 GHz Processor and 32 GB of mem-
ory.

To test the efficiency of dealing with data term with consensus optimization, we
compareCOMMONwith two recent numerical algorithms:Bregmanoperator splitting
(BOS) [43] and BOS with variable step (BOSVS) sizes [11]. BOS and BOSVS are
designed to solve non-smooth image reconstruction problem with TV regularization
and general data fidelity term. The difference between BOS and classical ADMM (or
well known as the split Bregman method in imaging community) is that the data term
F(x) is approximated by F(xt )+〈∇F(xt ), x − xt 〉with an additional proximity term
1
2α ‖x − xt‖2 in BOS, where α � 1/‖∇F(x)‖∞ is a fixed step size for guaranteed
convergence. The BOSVS algorithm relaxes this restrictive step size bound and uses
inexact line search to find optimal step size in each iteration, still with guaranteed
convergence. The performance of BOSVS is shown to be much better than BOS in
practice. Note that BOS and BOSVS both require that the data fidelity term F(x) is
differentiable. Therefore, in the case of Laplacian noise where F(x) = ‖Ax − b‖1,
we use smooth approximation Fε(x) := ∑m

i=1(|aTi x − bi |2 + ε)1/2 with ε = 10−6

in BOS and BOSVS. For all comparison algorithms, we simply set the termination
criterion to ‖xt − xt−1‖/‖xt‖ < 10−5 in experiments. We also point out here that the
termination criterion ofCOMMONcan be setmore sophisticatedly using the perturbed
gap function as in Theorem 2.3.

The numerical results of the reconstructions by the three comparison algorithms
are given in Tables 1, 2, and 3 below. In each table, the following outputs of the
three comparison algorithms are given: the objective value (Obj) of (1.1), total iter-
ation (Itr) number until termination criterion is met, and the relative error (Err) of
final output xt to the original image x , i.e., ‖xt − x‖/‖x‖. For each of the two
sampling sizes m, we test reconstruction of three different image sizes n. Table 1
shows the performance of BOS, BOSVS, and COMMON on the reconstruction of x
given b corrupted by Gaussian noise. As we can see, COMMON consistently returns
image of good quality (<3% relative error) with the least number of iterations, while
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Table 1 Numerical result on image reconstruction where data is corrupted by Gaussian noise: the iteration
number (Itr), the objective function (Obj) values (1.1), and relative errors (Err) to original image of the
outputs by comparison algorithms BOS, BOSVS, and COMMON

m n BOS BOSVS COMMON

Obj Itr Err Obj Itr Err Obj Itr Err

210 212 3.57 324 0.038 3.41 67 0.031 3.37 41 0.029

214 212 3.64 167 0.035 3.47 35 0.030 3.46 23 0.027

210 214 3.99 647 0.037 3.79 122 0.031 3.88 57 0.023

214 214 4.14 402 0.032 3.98 65 0.028 3.94 43 0.022

210 216 4.33 805 0.030 4.32 211 0.024 4.32 65 0.023

214 216 4.81 648 0.029 4.78 97 0.021 4.79 52 0.020

Table 2 Numerical result on image reconstruction where data is corrupted by Laplacian noise: the iteration
number (Itr), the objective function (Obj) values (1.1), and relative errors (Err) to original image of the
outputs by comparison algorithms BOS, BOSVS, and COMMON

m n BOS BOSVS COMMON

Obj Itr Err Obj Itr Err Obj Itr Err

210 212 64.64 1 790 0.033 64.00 274 0.031 64.02 63 0.033

214 212 65.58 862 0.031 64.28 145 0.030 64.31 47 0.032

210 214 64.70 1 917 0.034 64.26 317 0.031 64.22 51 0.034

214 214 66.57 915 0.032 64.77 175 0.027 64.69 41 0.032

210 216 67.72 2 134 0.030 64.80 346 0.029 64.81 96 0.029

214 216 68.52 1 231 0.029 64.82 185 0.026 64.82 63 0.028

Table 3 Numerical result on image reconstruction where data is corrupted by Poisson noise: the iteration
number (Itr), the objective function (Obj) values (1.1) and relative errors (Err) to original image of the
outputs by comparison algorithms BOS, BOSVS, and COMMON

m n BOS BOSVS COMMON

Obj Itr Err Obj Itr Err Obj Itr Err

210 212 −792.4 763 0.052 −794.8 119 0.042 −792.9 64 0.043

214 212 −793.9 503 0.050 −796.5 78 0.043 −794.1 41 0.041

210 214 −793.7 1 005 0.052 −794.1 187 0.048 −795.6 102 0.043

214 214 −793.9 796 0.049 −796.2 74 0.040 −796.2 69 0.042

210 216 −795.2 1 257 0.058 −796.4 146 0.042 −796.3 131 0.049

214 216 −795.9 730 0.047 −799.1 83 0.039 −798.9 63 0.039

BOSVS takes a bit more iterations to get similar quality, and BOS is much less effi-
cient due to its restrictive step size policy. Similar results appear in the case of Laplace
noise and Poisson noise in Tables 2 and 3. In particular, COMMON is much more
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efficient in comparison to BOS and BOSVS in the Laplace noise case: COMMON
tackles the non-differentiability of �1 norm in F(x) adequately by consensus optimiza-
tion, such that the �1 minimization of type (1.14) can be solved exactly, whereas the
BOS and BOSVS require smoothing of the singularities of �1 norm and become less
efficient.

It is also worth noting that besides efficiency in convergence speed, COMMON
can be readily adopted for distributed computing which can significantly reduced
computational time in contrast to traditional methods. Moreover, COMMON can be
implemented for decentralized computation when a central cluster core or a shared
memory is unavailable in specific applications.

4 Concluding Remarks

We proposed and analyzed an efficient primal-dual algorithm for consensus mini-
max optimization, calledCOMMON, to solve a class of non-smooth image reconstruc-
tion problems. The algorithm is inspired by the observation that the data fidelity term
F(x) can often be expressed as sum of relatively simple functions due to physicalmod-
eling of data acquisition in a large number of real-world applications. Therefore, the
consensus constraints are introduced such that the computation can be easily deployed
for parallel computing and solved efficiently. COMMON iteratively solves the sub-
problems of primal variables and dual variables, such that the per-iteration complexity
is extremely low. Convergence analysis shows that COMMON has guaranteed con-
vergence, and the rate is O(1/t) in terms of the (perturbed) gap function where t is
iteration number.
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