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Abstract. The primal-dual hybrid gradient (PDHG) algorithm has been suc-
cessfully applied to a number of total variation (TV) based image reconstruc-

tion problems for fast numerical solutions. We show that PDHG can also effec-

tively solve the computational problem of image inpainting in wavelet domain,
where high quality images are to be recovered from incomplete wavelet coef-

ficients due to lossy data transmission. In particular, as the original PDHG
algorithm requires the orthogonality of encoding operators for optimal per-

formance, we propose an approximated PDHG algorithm to tackle the non-

orthogonality of Daubechies 7-9 wavelet which is widely used in practice. We
show that this approximated version essentially alters the gradient descent

direction in the original PDHG algorithm, but eliminates its orthogonality re-

striction and retains low computation complexity. Moreover, we prove that the
sequences generated by the approximated PDHG algorithm always converge

monotonically to an exact solution of the TV based image reconstruction prob-

lem starting from any initial guess. We demonstrate that the approximated
PDHG algorithm also works on more general image reconstruction problems

with total variation regularizations, and analyze the condition on the step sizes

that guarantees the convergence.

1. Introduction.

1.1. Total variation wavelet inpainting. Image inpainting refers to a class of
image processing tasks that recover high quality images from incomplete or cor-
rupted data in the image domain or a transform domain. Suppose u is the image
to be recovered, we follow the standard treatment to vectorize the image u into a
vector in RN by stacking its columns, where N is the number of pixels in u. Then
the inpainting problem can be generally formulated as

(1) f = SAu+ n,

where A ∈ RN×N represents the transform under the domain of which data is
acquired, f ∈ Rm is the acquired data, n is the observation noise in f , and S ∈
Rm×N is a binary selection matrix that represents the subsampling pattern in the
transformed domain of Au. Regions that are not selected by S are considered
damaged or corrupted, and they need to be recovered.

When A is identity matrix, the damage happens to pixel values directly. This
is the inpainting problem in the image domain, which was initially addressed by
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Bertalmio et al. in [3] and Mansou et al. [30]. The term image inpainting was first
coined in [3]. Since then, it has received considerable attentions in the imaging com-
munity, see, e.g. [17, 16, 23, 6]. In [3], the authors proposed to smoothly propagate
information from the surrounding areas into the inpainting domain. Later, Ballester
et al. [1] developed a variational inpainting model based on a joint cost functional
that incorporates the regularization on gradient vector field to interpolate miss pixel
values in the image domain. In [17], Chan and Shen used total variation as regu-
larization to recover image with missing pixel values. Chan et al. also introduced
an inpainting technique using an Eulers elastica energy-based variational model for
image inpainting in [15]. For better synthesis of textures in images, Efros and Leung
suggested to incorporate information from pixels with similar neighborhood [22]. In
[4], Bertalmio et al. proposed to separate the structure and texture components of
an image and apply different techniques to reconstruct both. In recent years, frame-
based regularization method, which uses the 1-norm for sparse frame coefficients, is
also proposed for image inpainting [7, 8]. The methods mentioned above all focus
on inpainting (1) in the image domain.

Image inpainting in the transform domain, however, is significantly different from
the inpainting problem in the image domain mentioned above. In this case, the
transform matrix A is no longer the identity matrix, and missing data in the trans-
form domain can usually affect pixels in certain regions or even the entire image
domain of u. Therefore, approaches based on diffusion or interpolation in the image
domain are not appropriate since there are no well defined inpainting regions. In
this paper, we consider a specific image inpainting problem in the wavelet domain,
called wavelet inpainting [18]. Wavelet inpainting is an important imaging task in
real world due to the increasing popularity of the JPEG2000 image compression
standard. In JPEG2000 data format, images are stored and transferred in terms
of wavelet coefficients. As data loss is inevitable during signal transmissions, it is
important to recover images from incomplete wavelet coefficients. In other words,
one needs to solve for a clean image u ∈ RN from (1) given f , a subset of wavelet
coefficients of u under the wavelet transform A.

The inpainting problem (1), either in image domain or transform domain, is
underdetermined in general and hence presents infinitely many solutions. There-
fore, one needs to employ appropriate regularization to obtain desirable images.
Inspired by the great success of TV regularization in image reconstruction, Chan et
al. proposed two models in [18] to recover image u, depending whether the collected
wavelet coefficients f are contaminated by noise or not, respectively:

• Model I (Noisy data)

(2) min
u

{
αTV (u) +

1

2
‖Asu− f‖2

}
.

• Model II (Noiseless data)

(3) min
u
TV (u), subject to Asu = f.

In (2) and (3), we let As := SA and ‖ · ‖ = ‖ · ‖2 for notation simplicity. The TV
norm of u in the discrete setting can be represented by

(4) TV (u) := max
p∈X

pTDu =

N∑
i=1

‖Diu‖,
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where D = (DT
x , D

T
y )T ∈ R2N×N is the discrete gradient operator, and Dx, Dy ∈

RN×N are the discrete partial derivative operators along the x and y axes, respec-
tively. The superscript T denotes the transpose (or conjugate) of a matrix (or an
operator). The matrix Di ∈ R2×N constitutes the i-th rows of Dx and Dy. The
variables u and p are then called the primal and dual variables, respectively. The
admissible set X of the dual variable p is defined by

(5) X := {p = (p1, · · · , pN , pN+1, · · · , p2N )T ∈ R2N : ‖(pi, pN+i)
T ‖ ≤ 1,∀i}.

It has been shown that models (2) and (3) can efficiently recover images with well
preserved edges from very limited wavelet coefficients. However, the computational
difficulty hinders their applications since the objective functions in these two models
are nonsmooth due to the TV norm and the constraint involved in model (3).
Motivated by the computation challenge, the main goal of this paper is to design
numerical algorithms that can efficiently find the solutions for the models.

1.2. Related algorithms. There have been extensive researches conducted in re-
cent years to solve minimization problems as in (2). We refer them to TV-L2
algorithms as the objective function in such minimization problems consists of a
TV regularization term and a quadratic (L2) data fidelity term. In the pioneer
work of TV based image restoration [33], Rudin et al. modified the TV norm by
adding a small perturbation ε > 0 such that TVε(u) :=

∑
i(‖Diu‖2 + ε)1/2, which

becomes differentiable. Then the authors employed explicit gradient descent flow to
the minimization problem with this modified TV norm to obtain an approximated
solution. In [34], Vogel et al. proposed a fixed point iteration scheme that updates
the image via a semi-implicit gradient descent scheme.

In recent years, variable splitting technique has become very popular. The key
idea of variable splitting is introducing auxiliary variables to separate the computa-
tion difficulties, such that the subproblems of all variables can be effectively solved
and the overall performance is optimized, see, e.g. [35, 37, 27, 36, 39, 20]. For
instance, the split Bregman algorithm developed by Goldstein and Osher in [27]
utilizes the form TV (u) =

∑
i ‖Diu‖ in (2), then introduces variables wi to substi-

tute Diu and convert the model (2) to a minimization problem of variables wi and
u subject to wi = Diu for all i. The Bregman iterative regularization method [31] is
adopted to tackle the constraints. The combined split Bregman algorithm involves
only two-dimensional soft shrinkage to update w and a least squares problem to
solve for u in each iteration. It was later shown to be equivalent to the alternating
direction method (ADM) of multipliers applied to the augmented Lagrangian of the
constrained minimization [5, 21, 25, 26].

However, solving the least squares subproblem of u in the split Bregman itera-
tion algorithm requires the inverse of DTD+ ξATs As for some constant ξ > 0. Such
computation has low complexity only if there are fast transforms available to diago-
nalize DTD+ ξATs As. However, this condition is known to hold for only few types
of image reconstruction problems such as denosing, deblurring and single-channel
magnetic resonance image (MRI) reconstruction etc. In these cases, the matrix
DTD + ξATs As can be diagonalized by fast Fourier transform (or discrete cosine
transform) if the image u is assumed to have periodic (symmetric) boundary condi-
tion. For the wavelet inpainting problem (2), this condition is not satisfied. Later,
variations of the split Bregman algorithms are developed to eliminate the restric-
tions and work on more general form of As [41, 24, 38, 20] where only computations
of As and ATs are needed.

Inverse Problems and Imaging Volume 7, No. 3 (2013), 1031–1050
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In recent years, algorithms based on the primal-dual formulation of TV norm
in (4) has been extensively studied as they appear to outperform many previous
methods in term of computation efficiency. The algorithms reformulate the problem
as a minimax problem

(6) min
u

max
p∈X

{
αpTDu+

1

2
‖Asu− f‖2

}
,

and alternately solve for the primal variable u and dual variable p in each iteration.
The first primal-dual algorithm for TV based image reconstruction was proposed by
Chan et al. in [19] to solve Euler-Lagrange equations using Newton’s method. This
leads to a quadratic convergence rate and highly accurate solutions; however, the
cost per iteration is high since the method explicitly uses second-order information
and the inversion of a Hessian matrix is required. In [9], Chambolle used the dual
formulation of the TV denoising problem, namely (2) with A = S = I, and provided
an efficient semi-implicit gradient descent algorithm for the dual variable. However,
the method does not naturally extend to more general cases as in (2) with other As.
In [43], Zhu and Chan proposed a primal-dual hybrid gradient (PDHG) method.
PDHG alternately updates the primal and dual variables u and p using gradient
descent and gradient ascend schemes, respectively. The PDHG algorithm is shown
to be more efficient than the split Bregman algorithm in many image reconstruction
problems. Since [43], there have been a number of researchers exploited the PDHG
algorithm and its convergence behavior. See, e.g. [24, 10, 28] and references therein.
More importantly, PDHG only requires the inverse of I + ξATs As. We will show
later that the PDHG algorithm naturally fits the wavelet inpainting problem (2) if
the wavelet A is orthogonal, and it is computationally effective.

The study of TV-L2 algorithms has inspired many computation methods for TV
wavelet inpainting problem (2). In [18], Chan et al. used the traditional gradient
descend schemes to solve for the optimal solutions of (2) and (3). In [42], the authors
proposed to solve the minimization problem (2) using operator splitting and the
resulting algorithm involves a TV denoising solver in each iteration. Recently, Chan
et al. developed a series of algorithms to tackle the TV wavelet inpainting problem
[12, 14, 13]. In [12], a fast optimization transfer algorithm (OTA) is developed. OTA
introduces an auxiliary variable v to substitute Au in (2), and form an unconstrained
minimization problem by adding ‖v − Au‖2 to the cost function. Then the u and
v are solved by alternating direction minimizations. Since OTA involves a TV
denoising-type subproblem in each iteration, the authors employed Chambolle’s
method [9] as the subproblem solver. The authors also demonstrated that only
a few inner iterations of the subproblem solver should be proceeded for overall
efficiency.

The algorithm developed in [14] combines the split Bregman and the splitting
fashion in [12] so that the subproblems in each iteration have closed form solutions
and hence inner iterations are eliminated. The authors used the ADM algorithm to
solve the resulting constrained minimization problem. In each iteration, the com-
putational cost includes two wavelet transforms that migrate from image domain to
wavelet domain and vice versa, and two fast Fourier transforms that solve the linear
system involving the inverse of I + ξDTD. The algorithm in [13] is derived from
the optimality condition of the minimax problem and can be viewed as a variation
of the PDHG algorithm.
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In this paper, we show that the original PDHG algorithm works immediately on
the TV wavelet inpainting problem (2) if the wavelet transform A is orthogonal, and
hence all existing results on the PDHG algorithm including step size selection can
be applied. In this case, the PDHG algorithm only requires two wavelet transforms
per-iteration. This is the same to the algorithm in [13]. On the other side, compared
to the present work, the algorithm in [13] requires more computations due to an
extra correction step of the dual variable p and a tighter restriction on the step sizes
to ensure convergence.

Furthermore, for a general transform A which is not orthogonal, the PDHG
can not be applied directly. We propose an approximated PDHG algorithm to
solve the computational problem of the unconstrained minimization in (2) as well
as the constrained one in (3) with A being the widely used biorthogonal wavelet
transforms. In addition, we extend our results to the image reconstruction problems
where A has arbitrary form, or even the data fidelity term in (2) is not quadratic.

The rest of this paper is organized as follows. In the next section, we show how
to solve the TV wavelet inpainting problem using PDHG algorithm. Then we pro-
posed an approximated PDHG algorithm to solve (2) and (3) with biorthogonal
wavelet transform. Section 3 show the convergence of the approximated PDHG
algorithm. In Section 4, we present the numerical results using several real image
wavelet inpainting problems. We extend PDHG to more general image reconstruc-
tion problems with nonlocal TV and nonquadratic data fidelity term in Section 5.
The last section concludes the paper.

2. Algorithms.

2.1. The PDHG algorithm. In this section, we first quote the original PDHG
algorithm, and show that it works immediately on the wavelet inpainting problem
(2) if A is orthogonal. The PDHG algorithm first employs the primal-dual formula-
tion of TV norm (4) to (2), and solves for the saddle point of the following minimax
problem

(7) min
u

max
p∈X

Φ(u, p) :=

{
αpTDu+

1

2
‖Asu− f‖2

}
.

Here, Φ is the objective function that is convex with respect to the primal variable
u and concave with respect to the dual variable p. The PDHG procedure iterates
in the following scheme:

pk+1 = arg max
p∈X

{
Φ(uk, p)− 1

2τk
‖p− pk‖2

}
(8)

p̃k+1 = pk+1 + θ(pk+1 − pk)(9)

uk+1 = arg min
u

{
Φ(u, p̃k+1) +

1

2σk
‖u− uk‖2

}
(10)

starting from an initial guess (u0, p0). In other words, the PDHG algorithm al-
ternately applies gradient ascend scheme to p and gradient descent scheme to u.
In (8) and (10), τk and σk behave as the step sizes for p and u respectively. The
combination parameter θ is set to 0 in the original PDHG paper [43], and then 1
in [11] for provable convergence. In view of the objective function Φ(u, p) in (7),
we obtain closed form solutions for the subproblems in (8) and (10) as follows: the
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solution in (8) has closed form as

(11) pk+1 = ΠX(pk + τkDu
k),

where ΠX is the projection to the admissible set X. Note that X is closed and
convex set in R2N , the operation ΠX is given by

(12)
(
(ΠX(p))i , (ΠX(p))N+i

)T
=

(pi, pN+i)
T

max{1, ‖ (pi, pN+i)
T ‖}

, i = 1, · · · , N.

Namely, ΠX projects the 2-vector (pi, pN+i)
T onto the Euclidean unit ball {z ∈

R2 : ‖z‖ ≤ 1} in R2 for i = 1, · · · , N . Therefore, the computation in (8) has very
low complexity (linear in terms of N) and can be easily carried out in parallel.

The remaining problem is then to solve the problem (10) effectively. One can
readily see that the objective function in (10) is least squares:

(13) α(p̃k+1)TDu+
1

2
‖Asu− f‖2 +

1

2σk
‖u− uk‖2,

and the normal equation of uk+1 is

(14)
(
I + σkA

TSTSA
)
uk+1 = uk − ασkDT p̃k+1 + σkA

TST f.

Hence the key is to invert the matrix I +σkA
TSTSA in an effective manner. If the

encoding wavelet A used in the first place is orthogonal, namely ATA = I, we have

(15) I + σkA
TSTSA = AT (I + σkS

TS)A,

where the matrix I +σkS
TS is diagonal since S is merely a binary selection matrix

that strikes some rows of the identity matrix. Therefore the inverse of (15) can be
easily obtained, and the solution to (10) is

(16) uk+1 = AT (I + σkS
TS)−1

(
A(uk − ασkDT p̃k+1) + σkS

T f
)
,

for which the main computation involves two (forward and backward) wavelet trans-
forms A and AT .

2.2. Approximated PDHG algorithm. In this subsection, we consider solving
the noiseless model (3) which has a linear constraint Asu = f , with a biorthogonal
wavelet transform A. Such considerations are necessary in practice since wavelet
coefficients are either received or lost but not contaminated by noises during data
transmission. Also, the widely used wavelet transform is Daubechies 7-9 which is
biorthogonal, meaning that there exists B 6= A such that BTA = I. It is obvious
that the PDHG presented in Section 2.1 can not be applied directly because equa-
tions (15) and (16) are no longer true. Therefore, we need modifications to solve
these two issues.

To tackle the constraint in (3), we first utilize the augmented Lagrangian method
by introducing the multiplier λ. That is, we solve the saddle point problem

(17) max
λ

min
u

{
TV (u)− λT (Asu− f) +

β

2
‖Asu− f‖2

}
.

To be consistent with the notations in parameters above, we let 1/β → α and
λ/β → λ. These changes of notations do not affect our solution to (3) and the final
value of λ is not of interests. By completing the square and replacing TV (u) by the
primal dual formulation of TV as in (4), we obtain

(18) max
λ

min
u

max
p∈X

{
Φ(u, p, λ) := αpTDu+

1

2
‖Asu− f − λ‖2 −

1

2
‖λ‖2

}
.
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In the setting of classical Lagrangian multiplier method, the inner minimax problem
with respect to u and p needs to be solved thoroughly, then the obtained u is used
to update the multiplier λ, followed by solving the inner minimax problem with
respect to u and p again, etc. Obviously this requires extensive computations for
inner iterations on (8) and (10), which is not optimal from the practical point of
view. Alternatively, we propose to use the following scheme

pk+1 = arg max
p∈X

{
Φ(uk, p, λk)− 1

2τk
‖p− pk‖2

}
,(19)

p̃k+1 = pk+1 + θ(pk+1 − pk),(20)

uk+1 = arg min
u

{
Φ(u, p̃k+1, λk) +

1

2σk
‖u− uk‖2Q

}
,(21)

λk+1 = λk − (Asu
k+1 − f).(22)

where ‖u‖2Q := uTQu and Q is a symmetric positive definite matrix to be selected
properly in different applications. This is as if only one inner iteration is applied
to the minimax problem with respect to u and p in (18) for fixed λk, and then
immediately updates λk. We will show in the next section that under certain
conditions the scheme (19)–(22) converges to a solution of (3). Note that the
minimax problem (18) reduces to (2) if λ is set to the constant 0 and not ever
updated. Without loss of generality, we consider the case for noiseless model (3)
with λ being updated.

The differences of the approximated PDHG algorithm (19)–(22) to the original
one (8)–(10) are mainly in the update of λ in (22), and more importantly, the altered
gradient descent direction Q−1∇uΦ in (21) instead of ∇uΦ in the original PDHG
(10). As a consequence, the normal equation in (21) becomes

(23)
(
Q+ σkA

T
s As

)
uk+1 = Quk − ασkDT p̃k+1 + σkS

TAT (f + λk).

We have seen from (15) that the original PDHG algorithm (10) requires the orthog-
onality of A to solve the u subproblem effectively and attain optimal performance
overall. However, this condition does not hold in many practical applications since
the most widely used Daubechies 7-9 wavelet in image encoding is biorthogonal. In
this case, the wavelet transform matrix A is not orthogonal and hence ATA 6= I.
Instead, A has a dual basis matrix B 6= A that BTA = I. To overcome this dif-
ficulty, one can choose Q = ATA. With the computations in (19) unchanged, we
observe that the normal equation (21) of u becomes
(24)
(ATA+ σkA

T
s As)u = AT (I + σkS

TS)Au = ATAuk −ασkDT p̃k+1 + σkA
T
s (f + λk).

Hence the solution can be obtained by

(25) uk+1 = BT (I + σkS
TS)−1

(
Auk − ασkBDT p̃k+1 + σkS

T (f + λk)
)
,

where the computation complexity remains as two wavelet transforms BT and B,
since Auk is a by-product of the previous iteration.

3. Convergence analysis. Convergence of the original PDHG algorithm (8)–(10)
has been explored by several groups [24, 10, 28]. In particular, He and Yuan in [28]
rewrite the PDHG algorithm (8)–(10) in the form of a long-established proximal
point algorithm (PPA) [29, 32] and hence convergence results easily follow as PPA
is essentially in a contraction fashion. We use this idea to prove that the scheme
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in (19)–(22) with approximated term in Q-norm and multiplier λ is also convergent
and the limit is a solution to the minimax problem (18).

Lemma 3.1. Let D be the gradient operator and Q, τk, σk, θ be defined as in (19)–
(22), then

(26)

( 1
τk
I αD

αθDT 1
σk
Q

)
is positive definite if

(27) τkσk <
4qN

(1 + θ)2α2‖DTD‖
,

where qN > 0 is the minimal eigenvalue of Q.

Proof. For any p ∈ R2N and u ∈ RN , we have

(pT , uT )

( 1
τk
I αD

αθDT 1
σk
Q

)(
p
u

)
=
‖p‖2

τk
+
‖u‖2Q
σk

+ (1 + θ)αpTDu

≥‖p‖
2

τk
+
qN‖u‖2

σk
− (1 + θ)α

√
‖DTD‖‖p‖‖u‖

≥
(

2
√
qN/τkσk − (1 + θ)α

√
‖DTD‖

)
‖p‖‖u‖,

(28)

where we used Cauchy-Schwartz inequality. Therefore, matrix defined in (26) is
positive definite if (27) holds.

Theorem 3.2. Any sequence generated by the approximated PDHG algorithm (19)–
(22) with θ = 1 and step sizes satisfying (27) converges to a solution of the minimax
problem (18).

Proof. A solution (u∗, p∗, λ∗) to (18) is a saddle point that satisfies the optimality
condition

−α(p− p∗)TDu∗ ≥ 0, ∀p ∈ X
αDT p∗ −ATs λ∗ = 0,

−Asu∗ + f = 0.

(29)

On the other hand, the sequence {(pk, uk, λk)} generated by the approximated
PDHG algorithm (19)–(22) solves the corresponding minimization problems in each
iteration and hence satisfies

(p− pk+1)T
(
−αDuk +

1

τk
(pk+1 − pk)

)
≥ 0, ∀p ∈ X(30)

αDT p̃k+1 +ATs (Asu
k+1 − f − λk) +

1

σk
Q(uk+1 − uk) = 0,(31)

λk+1 − λk +Asu
k+1 − f = 0,(32)

where p̃k+1 = 2pk+1 − pk as θ = 1. We plug (32) into (31) and obtain

(33) αDT p̃k+1 −ATs λk+1 +
1

σk
Q(uk+1 − uk) = 0.
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For notation simplicity, we define
(34)

z =

pu
λ

 ∈ X×RN×Rm, F (z) =

 −αDu
αDT p−ATs λ
Asu− f

 , M =

 1
τk
I αD 0

αDT 1
σk
Q 0

0 0 I

 .

Then, the optimality condition (29) can be simply written as

(35) (z − z∗)TF (z∗) ≥ 0, ∀z ∈ X × RN × Rm.

and (30), (33), and (32) can be written together as

(36) (z − zk+1)T
(
F (zk+1) +M(zk+1 − zk)

)
≥ 0, ∀z ∈ X × RN × Rm.

In addition, it can be easily verified that

(37) (z − z∗)T (F (z)− F (z∗)) = 0, ∀z ∈ X × RN × Rm.

Now we set z → z∗ in (36) and z → zk+1 in (35) and (37), and then combine the
three inequalities to obtain

(38) (zk − z∗)TM
(
zk − zk+1

)
≥ (zk − zk+1)TM

(
zk − zk+1

)
.

If the step sizes satisfy the condition in (27), M is symmetric positive definite and
hence

‖zk+1 − z∗‖2M = ‖zk − z∗‖2M − 2(zk − z∗)TM(zk − zk+1) + ‖zk − zk+1‖2M
≤ ‖zk − z∗‖2M − ‖zk − zk+1‖2M .

(39)

Hence, the norm ‖zk − z∗‖M is nonincreasing. Two immediate consequences are
that zk is bounded and ‖zk− zk+1‖2M → 0. The first one implies that there exists a
subsequence {zkj} that converges to a limit point ẑ <∞. The second one indicates
that {zkj+1} also converges to ẑ. Placing {zkj} in (19)–(22), and let j →∞, we can
see that ẑ satisfy the optimality condition and hence is in the place of z∗ in (35),
(36) and (37). As a subsequence converge to ẑ and ‖zk − ẑ‖M is non-increasing,
the entire sequence {zk} also converges (in M -norm) to ẑ, which is a saddle point
of (18) since it satisfies the optimality condition (35).

Remark 1. In Theorem 3.2, we showed that the approximated PDHG algorithm
(19)–(22) converges if θ = 1. In the case that θ ∈ [−1, 1), M defined in (34) is still
positive definite provided the step size condition (27), but not symmetric anymore.
Nevertheless, the inequality (38) still holds, and one can choose any symmetric
positive definite matrix W and obtain

(40)
(
W (zk − z∗)

)T (−W−1M(zk − zk+1)
)
≤ −(zk − zk+1)TM

(
zk − zk+1

)
≤ −c‖zk − zk+1‖2 < 0

for some constant c > 0 due to the fact that M is positive definite (even not
symmetric). This implies that −W−1M(zk − zk+1) is a descent direction. Thus,
one can correct the output zk+1 of the approximated PDHG algorithm by

(41) z̄k+1 = zk − tkW−1M(zk − zk+1)
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for some step size tk, and use z̄k+1 as the input of the next iteration in (19)–(22).
It can be readily show that

‖z̄k+1 − z∗‖2W
= ‖zk − z∗‖2W − 2tk(zk − z∗)TM(zk − zk+1) + t2k‖W−1M(zk − zk+1)‖2W
≤ ‖zk − z∗‖2W − 2ctk‖zk − zk+1‖2 + t2k‖MTW−1M(zk − zk+1)‖2.

(42)

Hence, there exists an interval of tk that guarantees the decay ‖zk+1 − z∗‖2W <
‖zk − z∗‖2W . For instance, one can choose tk as

(43) tk = c‖zk − zk+1‖2/‖MTW−1M(zk − zk+1)‖2.

More detailed discussion on tk can be found in [28]. In summary, the corrected
sequence {z̄k} monotonically converges to z∗ in W -norm. In practice, the matrix
W can be set to diag(I/τk, Q/σk, I) for ease of computation.

Remark 2. In the case of θ = 1, there is no correction step needed for the approxi-
mated PDHG algorithm, and Theorem 3.2 indicates the convergence of scheme (19)–
(22). Moreover, if A is orthogonal, the step size condition (27) yields τkσk < 1/8α2

for the approximated PDHG algorithm due to the fact that ‖DTD‖ = 8 and
‖ATA‖ = 1. In contrast, the primal dual algorithm proposed in [13] requires an
additional correction step of the dual variable p and more strict step size constraint
τkσk < 1/16α2. Moreover, the approximated PDHG algorithm proposed in this
paper fits to more general TV based image reconstruction problems as shown later,
and the theoretical results such as Theorem 3.2 can directly apply.

4. Numerical results. In this section, we test the approximated PDHG (APDHG)
algorithm (19)–(22) on a set of real images to see its efficiency in TV wavelet inpaint-
ing. All the algorithms are coded and tested in MATLAB computing environment
on a Linux PC with AMD Athlon 5000+ Dual Core processor (only one core is used
in computation) at 2.6GHz and 4GB of memory.

4.1. Comparison algorithms. We compare the performance of APDHG with sev-
eral recently developed TV image reconstruction algorithms on wavelet inpainting
problem. As the matrix ATs As cannot be diagonalized easily if A is not orthogo-
nal, we select the algorithms that do not require the inverse of I + ξATs As. More
specifically, we choose the Algorithm (A2) in [41] and the algorithm proposed in
[38] for comparison. The algorithm in [41] utilizes the idea of Bregman operator
splitting [40] and replace ‖Asu− f‖2 by ‖u− (uk− δATs (Asu

k− f))‖2/δ in the split
Bregman algorithm [27]. We denote this algorithm by BOS. The algorithm in [38]
which we refer to as SBB integrates the Barzilai-Borwein step size selection method
[2] into the split Bregman scheme and achieves significant improvement over BOS.
The schemes of BOS and SBB can be unified as follows,

wk+1
i = max{‖Diu

k + bki ‖ − 1/2ρ, 0}(Diu
k + bki )/‖Diu

k + bki ‖ i = 1, · · · , N,

uk+1 =
(
ρDTD + λδkI

)−1 (
ρDT (wk+1 − bk) + λδku

k − λATs (Asu
k − f)

)
,

bk+1
i = bki − (wk+1

i −Diu
k+1) i = 1, · · · , N,

(44)

The main computation complexity in (44) is As and ATs , and two FFT to invert
the matrix ρDTD + λδkI. In addition, BOS requires δ ≤ ‖ATs As‖ = ‖STS‖ = 1,
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Table 1. Test images

No. Image Size N
1 barbara 256× 256
2 cameraman 256× 256
3 boat 512× 512
4 man 512× 512

whereas SBB compute Barzilai-Borwein step sizes by

(45) δk = ‖Asuk+1 −Auk‖2/‖uk+1 − uk‖2

and hence δk ≥ 1. The SBB algorithm is shown to be much more efficient than the
BOS algorithm as the former retains low computation complexity while significantly
reduces the number of iterations to reach the same level of accuracy. For more details
of these two comparison algorithms, we refer interested readers to [41, 38, 20]. It is
worth pointing out that both BOS and SBB literally work for any operator As as
long as As and ATs are computable.

4.2. Numerical results. We test APDHG algorithm for models (2) and (3), de-
noted by APDHG (2) and APDHG (3), respectively. We also compare the per-
formance with BOS and SBB on a set of natural images. The name and size of
images are listed in Table 4.2. The intensities of images are scaled to [0, 1]. We
used Daubechies 7-9 wavelet and discard 50% wavelet coefficients randomly for all
test images. In numerical implementation, we simply use wavelet transform A to
substitute the dual transform B, but still keep BT whenever needed. The recon-
struction results are shown in this section and also quantitatively evaluated by the
peak signal to noise ratio (PSNR) defined by

(46) PSNR := 20 log10

(√
N‖ū‖∞
‖u− ū‖

)
,

where u and ū represent the reconstructed and the original images, respectively.
In addition, we plot the value of objective function (Obj) in (2) versus CPU time
in seconds (CPU Time). Note that the Obj vs CPU Time is not meant to reflect
the performance of the APDHG (3) algorithm for the constrained model (3) whose
objective differs from (2).

The original cameraman image is shown in Figure 1(a). With 50% wavelet co-
efficients randomly missing, the corrupted image obtained by the inverse wavelet
transform is shown in Figure 1(b), where the damages appear across the entire im-
age domain. The reconstructed images by the BOS [41], SBB [38], and APDHG
(2) and APDHG (3) are shown in Figures 1(c), 1(d), 1(e) and 1(f), respectively.
Due to the over strict condition on step sizes, the BOS algorithm does not improve
image quality much and hence there are still many corrupted regions in the recon-
structed image, as shown in Figure 1(c). The SBB algorithm appears to be efficient
as most of damaged regions are repaired, however, some stripe-shaped artifacts also
present in the reconstructed image, as shown in Figure 1(d). The APDHG results
in Figures 1(e) and 1(f) are more plausible as they recover the cameraman image
well without obvious artifacts. In particular, the reconstructed image in Figure 1(f)
looks more similar to the original image in Figure 1(a), especially that the natural
shading in the sky is well preserved. On the contrary, the same region in Figure
1(e) obtained by APDHG (2) is completely smoothed out. Figures 2(a) and 2(b)
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show the evolution of objective function value (given in (2)) and the PSNR of the
BOS, SBB, and APDHG algorithms. Due to the over strict limitation on step sizes,
the BOS algorithm converges very slowly compared to the other algorithms. SBB
algorithm converges very fast but exhibits significant oscillations during the compu-
tation process. The APDHG algorithm converges for both models (2) and (3). The
reconstruction of barbara image (Figure 3(a)) follows the same strategies as for the
cameraman image. There are 50% wavelet coefficients randomly missing, resulting
in a corrupted image shown in Figure 3(b). The reconstructed images by BOS,
SBB, and APDHG for models (2) and (3) are shown in Figures 3(c), 3(d), 3(e), and
3(f), respectively. Again the SBB reconstruction has some artifacts appeared in
the recovery, whereas the APDHG returns images much closer to the original one.
Other tests in Figures 5 and 7 yield similar conclusions as the previous two tests.

5. Conclusion. We propose the approximated PDHG algorithm (19)–(22) for TV
based image reconstruction problems (2) and (3). We show that the algorithm
works effectively for the TV wavelet inpainting problem. Moreover, the algorithm
can be extended to work on more general TV based image reconstruction problems.
Convergence of the proposed algorithm is also discussed.
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Figure 5. Inpaiting results of boat.
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Figure 6. Objective value and PSNR versus CPU time of boat image.
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Figure 7. Inpaiting results of man.
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Figure 8. Objective value and PSNR versus CPU time of man image.
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