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A series of projects are presented to provide advanced mathematical models

and numerical algorithms that improve the accuracy, robustness and efficiency of the

compressed sensing reconstruction technique in magnetic resonance imaging and

inverse consistent image regisration.

Chapter one introduces a novel variational model that enforces the sparsity of the

underlying image in terms of its spatial finite differences and representation with respect

to a dictionary. The dictionary is trained using prior information to improve accuracy in

reconstruction. In the meantime the proposed model enforces the consistency of the

underlying image with acquired data by using the maximum likelihood estimator of the

reconstruction error in partial k-space to improve the robustness to parameter selection.

Moreover, a simple and fast numerical scheme is provided to solve this model.

In chapters two and three we develop fast numerical algorithms for solving total

variation and `1 (TVL1) based image reconstruction with application in partially parallel

MR imaging. Our algorithms use variable splitting method to reduce computational cost.

Moreover, the Barzilai-Borwein step size selection method is adopted in our algorithms

for much faster convergence. Theoretical and experimental results on clinical partially

parallel imaging data demonstrate that the proposed algorithm requires much fewer

iterations and/or less computational cost than recently developed operator splitting and
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Bregman operator splitting methods, which can deal with a general sensing matrix in

reconstruction framework, to get similar or even better quality of reconstructed images.

Chapter four introduces a novel variational model for inverse consistent deformable

image registration. The proposed model deforms both source and target images

simultaneously, and aligns the deformed images in the way that the forward and

backward transformations are inverse consistent. To avoid the direct computation

of the inverse transformation fields, our model estimates two more vector fields by

minimizing their invertibility error using the deformation fields. Moreover, to improve the

robustness of the model to the choice of parameters, the dissimilarity measure in the

energy functional is derived using the likelihood estimation.

The experimental results on clinical data indicate the efficiency of the proposed

method with improved robustness, accuracy and inverse consistency. These methods

are aimed to benefit the practical usage of medical imaging techniques.
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CHAPTER 1
A NOVEL METHOD AND FAST ALGORITHM FOR MR IMAGE RECONSTRUCTION

VIA LEARNT DICTIONARIES

Outline

The aim of this work is to improve the accuracy, robustness and efficiency of the

compressed sensing reconstruction technique in magnetic resonance imaging. We

propose a novel variational model that enforces the sparsity of the underlying image

in terms of its spatial finite differences and representation with respect to a dictionary.

The dictionary is trained using prior information to improve accuracy in reconstruction.

In the meantime the proposed model enforces the consistency of the underlying image

with acquired data by using the maximum likelihood estimator of the reconstruction

error in partial k-space to improve the robustness to parameter selection. Moreover, a

simple and fast numerical scheme is provided to solve this model. The experimental

results on both synthetic and in vivo data indicate the improvement of the proposed

model in preservation of fine structures, flexibility of parameter decision, and reduction

of computational cost.

1.1 Backgrounds in Compressive Magnetic Resonance Imaging

Magnetic resonance (MR) imaging is a technique that allows visualization of

structures and functions of a body by non-invasive and non-ionizing means. It provides

better contrast between the different soft tissues than most other modalities. However,

MR imaging takes much longer acquisition time than many other imaging modalities,

which limits its applications. To reduce acquisition time, the most common and feasible

approach is by acquiring only partial k-space data, followed by adequate reconstruction

techniques to obtain images with well-preserved quality.

The idea of reconstructing images from partial data coincides with the compressed

sensing (CS), a technique used in signal/image processing. CS can accurately recover a

signal/image using data with significantly less measurements than regular, provided the

sparsity of the underlying signal/image and a sophisticated reconstruction procedure.
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Recently, the application of this technique in medical imaging has become a hot

research topic, and shown promising results [16–18, 21, 22, 27, 42, 46, 50, 68]. In

particular, the redundancy of the MR data acquired in the frequency domain, i.e. the

k-space, and implicit sparsity in MR images have motivated many researchers to study

the application of CS to fast MR imaging (CS-MRI).

CS-MRI has the advantage of producing high quality reconstruction of MR images

from partial Fourier data. Recent study has shown that the key to the success of

CS-MRI is a combination of the sparsity of the underlying image under an appropriate

domain, the k-space trajectory that provides incoherent undersampling artifacts, and

an adequate nonlinear reconstruction method that enforces both the sparsity and data

consistency of the underlying image [26, 38, 50]. A great progress of researches on

CS-MRI has been made. However, for clinical applications, radiologists often demand

improvements on accuracy, robustness, and efficiency of the current CS-MRI algorithms.

The desired improvements include the ability of removing artifacts while preserving

important diagnostic information (in particular, sharp edges and fine structures), the

robustness to the choice of parameters, and the speed of reconstructions.

In this paper, we propose a novel variational model and a fast numerical algorithm

for MR image reconstruction with highly undersampled data, which tackles the three

problems mentioned above as follows.

• Accuracy
The proposed model enforces the sparsity of the underlying image in terms of
its spatial finite differences and representation by a dictionary trained using prior
information. Thus, improvement on accuracy of reconstruction can be achieved.

• Robustness
The proposed model enhances the data consistency by the approach of maximum
likelihood estimation for the discrepancy between the reconstruction and acquired
data in k-space. This leads to an automatically optimized weighting parameter
which makes the parameter selection more flexible.

• Efficiency

13



To make the proposed model clinically applicable, we also provide a simple and
fast numerical algorithm to solve the model. The main computations involve only
shrinkage, matrix-vector multiplication and fast Fourier transform (FFT).

The background and brief introduction of our contributions to these issues are provided

in the following three subsections.

1.1.1 Trained Dictionaries as Sparsifying Transforms

Since sparsity is the key to the success of CS and consequent reconstructions,

many researches exploited the transforms under which images have their sparse

representations [50]. The theory of CS indicates that once such transforms were found,

an image can be accurately recovered using a set of random measurements with

cardinality much less than the original resolution of the image [18, 26].

In recent years, finite difference operator and wavelet transforms have been

widely used as such sparsifying transforms for MR images [34, 50]. In [34], the

authors proposed a total variation (TV) based model to reconstruct MR images from

partially acquired k-space data. Their model works well for piecewise constant or very

homogeneous images [59]. For images with inhomogeneous intensity, TV based models

may not work well when the undersampling rate is high. In [50], Lustig et al. proposed

a model that minimizes the Besov together with TV norms of the underlying image,

subjected to a data consistency constraint:

min
u
TV (u) + µ‖Ψ>u‖1, s.t. ‖Fpu − fp‖2 < σ, (1–1)

where ‖ · ‖1 is the `1 norm, TV (u) , ‖Du‖1 is the (anisotropic) TV semi-norm of

u, Ψ is the Haar wavelet transform, the superscript > denotes (conjugate) transpose of

matrices. In the constraint, Fp denotes the undersampled Fourier operator corresponding

to the customized k-space sampling pattern, fp is the partially acquired k-space data,

and σ is an estimate of acquisition error. As proved in [18, 26], minimizing `1 norm

subjected to data consistency yields sparse solutions. Therefore, model (1–1) in

fact leads to a reconstructed image that has sparse gradient and wavelet transform
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coefficients. Simulations in [50] showed very promising results using model (1–1).

However, image quality degrading and the loss of diagnostic information may happen

in reconstructions using TV and wavelet transforms as they may eliminate some fine

structures and/or useful local information in the recovered images. As an alternate, we

propose to use the dictionaries trained using prior information as sparsifying transforms

to tackle this problem.

A recent boost of the study on dictionary design shows the great potential of

using dictionaries in signal/image processing. Dictionary is usually formed as a set of

overcomplete bases and its elements/atoms have much smaller sizes than the image

size. On the contrary, wavelet transform has a set of complete bases with elements

of the same size as image itself, and therefore can be treated as a special case of

dictionary. Furthermore, a dictionary can be properly trained such that its prototype

signal-atoms are more adequate to sparsely represent objective signals than wavelet.

A number of researches have shown the benefits of using dictionaries for sparse

representation; see, e.g. [46, 62].

In this work, we train a dictionary by applying K -SVD algorithm to a database

consisting of patches extracted from images acquired from the same sequence but

perhaps different subjects. Then the trained dictionary A, as shown in Figure 1-1, is

used to reconstruct other MR images under the same acquisition sequence with similar

structures. The database used for training consists of 4096 patches extracted from four

MR brain images (but excludes the image to be reconstructed). Each block represents

an atom of size 8 × 8. Atoms are sorted by ascending the variances of intensities.

Details on the training and reconstruction processes are provided in the following

sections. Comparison of the accuracy of sparse representations using wavelet transform

and the trained dictionary A is shown in Figure 1-2. Results by using dictionary has

has better preserved edges and fine structures because dictionary absorbed prior

knowledge by learning features of this type of images during the training process [2].
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Moreover, the dictionary training and representation processes are stable and robust as

shown in our experimental results in section 1.4.

Figure 1-1. Dictionary trained by K -SVD algorithm.

In both sparse representations by wavelet and trained dictionary in Figure 1-2,

images are represented by picking up the largest 12.5% transform coefficients. Bottom

images are corresponding zoomed-in square area shown on the top left image. Left

column: reference. Middle column: representation by wavelet, with RMSE 5.74% and

SNR 22.3. Right column: representation by trained dictionary A shown in Figure 1-1,

with RMSE 4.36% and SNR 24.7.

1.1.2 Likelihood Estimate as Data Fidelity Measure

To improve the robustness to the parameter selection, we use the likelihood

estimation of the reconstruction error as the data fidelity measure. The reconstruction

error is the difference between the partially acquired data and the Fourier transform of

the reconstruction at sampled k-space locations, i.e. Fpu − fp in (1–1). In previously

proposed CS-MRI algorithms, least squares, i.e. the sum of squared difference

(SSD) ‖Fpu − fp‖22, is a commonly used data consistency measure. For instance,
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A B C

D E F

Figure 1-2. Compare the accuracy of sparse representations by wavelet and trained
dictionary.

the unconstrained version of model (1–1) solves for the reconstruction by

min
u
TV (u) + µ‖Ψ>u‖1 +

λ

2
‖Fpu − fp‖22, (1–2)

where the parameter λ is crucial to the reconstruction results: an improperly large

weight for the data fidelity term results in serious residual artifacts, whereas an

improperly small weight results in damaged edges and/or fine structures. In this work,

we tackle this problem by treating the reconstruction errors at all pixels as samples

independently drawn from a Gaussian distribution with mean zero and variance σ2

to be optimized. By maximum likelihood estimate (MLE) approach, the weight on

‖Fpu − fp‖22/2 becomes λ/σ2 rather than a prescribed λ. Since σ is to be optimized,

it is updated during iterations (in fact, it is the standard deviation of the reconstruction
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error, see (1–17) below). When the reconstruction error reduces, the weight λ/σ2 on

‖Fpu− fp‖22 increases, and hence the accuracy is improved. This automatically optimized

weighting feature makes the choice of λ much more flexible.

1.1.3 Fast Numerical Algorithms for Solving CS-MRI Models

Despite that dictionaries are more adequate in signal/image reconstructions, the

computational cost is higher than that using wavelet transform due to the redundancy of

dictionaries and overlapping of patches to be represented. Also, the non-differentiability

of TV and `1 norms brings difficulties to fast solutions of CS-MRI models. There have

been many numerical algorithms developed to solve TV and `1 regularized minimization

problems, more recent developments can be found in [19, 34, 64, 67, 78, 79] and

[11, 14, 36, 41, 52, 66] and references therein. Our approach in this work is closely

related to the algorithm developed in [67], in which Yang et al. introduced a simple and

fast method to solve model (1–2) with isotropic TV norm of u defined by

TV (u) ,
N∑
i=1

‖Diu‖2. (1–3)

In (1–3) u ∈ RN is the vector formed by stacking all columns of the image vertically,

N is the total number of pixels in the image, and Di ∈ R2×N represents the gradient

operator at the i -th element in the vector of u. To overcome the non-differentiability of TV

and `1 norms, they introduced auxiliary variables and used a classical quadratic penalty

method which yields an alternating minimization scheme. By diagonalizing the gradient

operator using Fourier transform, they made the main computation of the algorithm

involving only soft shrinkage and fast Fourier transform. However, their algorithm cannot

be directly applied to the models using dictionary A since it requires the orthogonality

of Ψ in (1–2). Therefore the development of efficient algorithms involving the use of

a dictionary is still a remaining problem. In this paper, we show that a simple trick on

selecting patches from the underlying image can be used to overcome this difficulty.
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Based on the method in [67] and this trick, we provide a simple and fast numerical

algorithm that can be applied to reconstruction models involving dictionaries.

1.1.4 Organization

The rest of this paper is organized as follows. A detailed description of the proposed

model is given in 4.2. In section 4.4, a fast algorithm to solve the proposed model

and its derivation are provided. Experimental results on synthetic and in vivo data are

presented in section 1.4. The last section concludes the paper.

1.2 Proposed Model

Before going into details of the proposed model, we address the notations used

throughout the rest of the paper. First of all, all vectors in this paper are column vectors.

Let u ∈ RN be the underlying reconstruction as in (1–3), and F be the discrete Fourier

transform, which can be treated as an N × N unitary matrix. Let P ∈ Rp×N denote

the binary matrix that selects certain rows of F according to the k-space sampling

pattern. Then Fp , PF is the undersampled Fourier transform. Let fp ∈ Cp be the

partially acquired k-space data and use ‖ · ‖ to denote Euclidean norm ‖ · ‖2 of vectors

henceforth. The notation (· ; ·) represents a matrix formed by stacking its arguments

vertically.

In this paper, all patches have size
√
n×
√
n and are often to be treated as n-vectors

unless otherwise noted (in our experiments n = 64). The dictionary A ∈ Rn×K consists

of K n-vectors as atoms. Binary matrix Rj ∈ Rn×N extracts the j-th patch of u, and forms

the patch Rju as an n-vector. All patches {Rju}Jj=1 cover the entire image u and may

overlap.

1.2.1 Sparse Representation Using Trained Dictionary

To improve the accuracy of reconstruction, especially the ability of preserving

diagnostic information, we here propose to use a trained dictionary instead of wavelet as

the sparsifying transform in MR image reconstructions. We chose the recently proposed

dictionary design method, termed as K -SVD algorithm, to perform the dictionary
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training. K -SVD is an iterative method that alternates between sparse coding of the

examples based on the current dictionary and a process of updating the dictionary

atoms to better fit the given database. The output is a trained dictionary that can

represent all signals in the database under strict sparsity constraints and error tolerance.

Interested readers are referred to [2, 30] for details.

Our procedure of forming a database and applying K -SVD algorithm to train an

adaptive dictionary for MR image reconstruction is depicted as follows.

1. Collect a number of MR images acquired using the same sequence as that for the
image to be reconstructed, but from different subjects. The training images and the
image to be reconstructed are preferred to be the same body parts to get a better
sparse representation. Using the same acquisition sequence ensures that they
have similar contrast.

2. Decompose the training images to
√
n ×
√
n patches, and discard those patches

with constant intensity. Then randomly choose 8K patches from the remaining
patches, where K is the number of atoms in the dictionary to be trained.

3. Train a dictionary A by applying K -SVD algorithm to that 8K patches with the
overcomplete DCT matrix as the initial. The resulting trained dictionary has K
elements, i.e. A ∈ Rn×K .

In our experiments, we set n to 64 and K to 512/256 for brain/chest MR data. The

dictionary trained for brain image reconstruction is illustrated in Figure 1-1. The

dictionary A we obtain from this training procedure can adequately represent any

patches of brain MR images (e.g. from different subjects or the same subject in different

periods) acquired under the same sequence. In particular, each patch Rju of u can be

sparsely represented by A. Namely, there exist representation coefficients αj ∈ RK such

that

‖αj‖0 < n < K s.t. Aαj ≈ Rju, j = 1, · · · , J,

where ‖ · ‖0 counts the number of nonzero components of its argument. Therefore,

the sparsity of u under the representation of A can be used as a regularization in the
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reconstruction. That is, we enforce the following into our model

min
α

J∑
j=1

(
‖αj‖1 +

ν

2
‖Aαj − Rju‖2

)
, (1–4)

where α = (α1; · · · ;αJ) ∈ RKJ . This is in fact the relaxed form of sparse-land problem

with `0-norm substituted by `1-norm. The reason why we use `1 instead of `0 is that

minimizing the non-convex `0 is generally a NP-hard problem and hence is not tractable

in practice. Moreover, it has been proved that minimization problems with `1 and `0

share the same solution under certain conditions [18, 26].

Note that if J = 1, R1 = I (the identity matrix) and A = Ψ (the wavelet transform),

then (1–4) reduces to ‖Ψ>u‖1 as in (1–2) when the difference in the quadratic is exactly

0. Namely, wavelet is a special case of dictionary.

1.2.2 Likelihood Estimate for the Data Consistency

One difficulty of applying the unconstrained energy minimization problem (1–2)

for MR image reconstruction is in determining the weighting parameter that balances

the data consistency and image sparsity. The reconstruction results are sensitive to

the choice of this parameter. To tackle this problem, we derive the data consistency

measure, the so-called data fidelity, from maximum likelihood estimate (MLE) approach.

Let ω = (ω1, · · · ,ωp)> ∈ Cp be the reconstruction error in k-space, which is the

difference between the Fourier transform of the reconstruction u and the acquired data

fp at the sampled k-space locations:

fp = Fpu + ω.

Consider {ωl}pl=1 as independent random samples drawn from a normal distribution of

mean zero and variance σ2 to be determined. Therefore, the joint probability density

function (pdf) of {ωl}pl=1, which is also the likelihood of σ, becomes

L(σ|ω) =
p∏
l=1

(
1√
2πσ
e−ω

2
l /2σ

2

)
=
(
2πσ2

)−p/2
e−‖ω‖2/2σ2.
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Thus, the negative log-likelihood is

− logL(σ|ω) = ‖ω‖2/2σ2 + p log
√
2πσ. (1–5)

Substituting ω by Fpu − fp, and omitting the constant p log
√
2π, we obtain a MLE based

consistency estimation with the partially acquired data:

F (u,σ, fp) = ‖Fpu − fp‖2/2σ2 + p logσ. (1–6)

This is a generalization of the least square estimation, which is just the case where

σ ≡ 1. We will use (1–6) as data fidelity term in our energy functional.

1.2.3 Variational Model for MR Image Reconstruction from Undersampled Data

Now we are ready to present our model. We propose to use TV and sparse

representation by trained dictionary as regularization and MLE (1–6) as data consistency

measure. Our model is formulated as an unconstrained minimization problem

min
u,α,σ
TV (u) + µ

J∑
j=1

(
‖αj‖1 +

ν

2
‖Aαj − Rju‖2

)
+ λF (u,σ, fp), (1–7)

where TV (u) is the TV norm of u defined as in (1–3), the summation over α is the

regularization of u using the sparsity under representation by dictionary A, and

F (u,σ, fp) is MLE data consistency measure (1–6). By using MLE based approach,

σ is also optimized along with u. In (1–7) the weight on ‖Fpu − fp‖2 versus the sparsity

of the underlying image is λ/σ2 rather than λ only. In the Euler-Lagrange (EL) equations

associated with the proposed energy function below, one can see that σ is the standard

deviation of the reconstruction error ω. Hence, when the construction error ω decreases,

the weight λ/σ2 on minimizing `2 norm of ω increases automatically, which makes the

choice of the initial weighting parameter λ more flexible. This flexibility dramatically

reduces the difficulty of parameter decision and improves the applicability of CS.

Moreover, our experimental results below show that this automatically updated weighting

makes faster convergence, and better accuracy in reconstruction.
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1.3 Algorithm

There minimization problem (1–7) is closely related to the well-known TV and `1

based signal/image reconstruction problems. Since the non-differentiability of TV and

`1 terms bring a difficulty in computations, there have been a number of numerical

algorithms developed to efficiently solve this type of problems. The algorithm provided

in this section is inspired by the work in [64, 67], which uses the variable splitting and

classical quadratic penalty technique in optimization to make the computation fast and

stable.

1.3.1 A Fast Algorithm for Solving the Proposed Model

We first introduce two auxiliary variables w = (w>
1 ;w

>
2 ; · · · ;w>

N ) ∈ RN×2 and

β = (β1; β2; · · · ; βJ) ∈ RKJ where wi ∈ R2 and βj ∈ RK for all i = 1, · · · ,N and

j = 1, · · · , J. Then we consider the minimization problem equivalent to (1–7):

min
u,w ,α,β,σ

N∑
i=1

‖wi‖+ µ
J∑
j=1

(
‖βj‖1 +

ν

2
‖Aαj − Rju‖2

)
+ λF (u,σ, fp)

s.t. wi = Diu, βj = αj , ∀ i = 1, · · · ,N, j = 1, · · · , J. (1–8)

Relaxing the equality constraint and penalizing their violations by quadratic functions, we

obtain an unconstrained version of (1–8):

min
u,w ,α,β,σ

N∑
i=1

φ(wi ,Diu) + µψ(β,α) +
J∑
j=1

µν

2
‖Aαj − Rju‖2 + λF (u,σ, fp) (1–9)

where functions φ and ψ are defined as

φ(s, t) = ‖s‖+ η

2
‖s − t‖2, s, t ∈ R2

and

ψ(s, t) = ‖s‖1 +
θ

2
‖s − t‖2, s, t ∈ RKJ

for given η, θ > 0. With η, θ gradually increasing, solving (1–9) lead to approximations to

the solution of (1–8).
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The minimization (1–9) can be carried out in a much faster and more stable manner

than (1–7): first, for fixed u and α, the minimization with respect to w and β can be

carried out in parallel:

wi = S2(Diu), i = 1, · · · ,N, (1–10)

where S2(t) is the two-dimensional (2D) shrinkage that minimizes φ(s, t) for fixed t:

S2(t) , max
{
‖t‖ − 1

η
, 0

}
· t
‖t‖
, t ∈ R2.

Moreover, we have

β = Sc(α) (1–11)

where Sc(t) is the componentwise shrinkage that minimizes ψ(s, t) for fixed t =

(t1, · · · , tKJ)> ∈ RKJ :

Sc(t) = (S(t1), · · · ,S(tKJ))>

and

S(x) = max{x − 1/θ, 0} · sign(x), x ∈ R,

with assumption 0 · (0/0) = 0. Both computational costs for w and β are linear in N.

Secondly, for fixed u and β, we can have α = (α1; · · · ;αJ) by solving the following

minimization problem:

min
α

J∑
j=1

(
θ‖αj − βj‖2 + ν‖Aαj − Rju‖2

)
. (1–12)

The solution can be obtained by setting αj as

αj = V (θI + νΛ)
−1V> (θβj + νA>Rju

)
(1–13)

where the diagonal matrix Λ and orthogonal matrix V come from the eigendecomposition

A>A = VΛV>. This decomposition does not drag the computation since the dictionary
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A is prepared before any experiments, and hence, V and Λ can be pre-computed. Also

the largest dimension K of A is usually much less than N, and it can be seen that the

number of nonzero eigenvalues can never exceed n. As a result, the computations

of αj ’s can be carried out in parallel, and each of them only involves matrix-vector

multiplication.

Thirdly, for fixed w , α and σ, the minimization of u is

min
u
‖wx −Dxu‖2 + ‖wy −Dyu‖2 +

J∑
j=1

γ‖Aαj − Rju‖2 + ξ‖Fpu − fp‖2, (1–14)

Here Dx ,Dy are N-square matrices formed by the top and bottom rows of Di ∈ R2×N ,

i = 1, · · · ,N, and hence Dxu,Dyu represent the gradient of u along the x and y

directions, respectively. wx and wy are the first and second column of w , respectively,

and γ = µν/η, ξ = ξ(σ) = λ/ησ2. Thus the Euler-Lagrange equation of (1–14) yields

Lu = r , (1–15)

where

L = D>
x Dx +D

>
y Dy +

J∑
j=1

γR>
j Rj + ξF>

p Fp

and

r = D>
x wx +D

>
y wy +

J∑
j=1

γR>
j Aαj + ξF>

p fp.

Under the periodic boundary condition for u, the finite difference operators Dx and Dy

are block circulant matrices with circulant blocks and hence can be diagonalized by

Fourier matrix F . Thus, D̂x = FDxF> and D̂y = FDyF> are diagonal. Also, periodic

boundary condition enables us to extract patches that cover each pixel m times, where

m = n/d2 and d is the sliding distance between all concatenated patches. Usually, we fix

the patch size as 8 × 8, i.e. n = 64, and choose (d ,m) = (8, 1) or (4, 4). Since
∑
j R

>
j Rj

is a diagonal matrix with the i -th diagonal entry counting the number of times the i -th
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pixel was covered by patches, we have
∑
j R

>
j Rj = mI , where I is the identity matrix. So

multiplying F on both sides of (1–15) gives

L̂F(u) = r̂ , (1–16)

where

L̂ = D̂>
x D̂x + D̂

>
y D̂y +mγI + ξP

>P

is a diagonal matrix since P>P is diagonal, and

r̂ = D̂>
x F(wx) + D̂>

y F(wy) + γF(uα) + ξP>fp

where uα =
∑
j R

>
j Aαj is an ”image” assembled using patches that are represented by

dictionary A and α.

Finally, the computation of first variation of F (u,σ, fp) gives an update of σ in each

iteration:

σ =
√
‖Fpu − fp‖2/p. (1–17)

Therefore, similar to the algorithm developed in [67], the main computation of our

algorithm for the CS model using a dictionary also involves only shrinkage, matrix-vector

multiplication and fast Fourier transform.

1.3.2 Numerical Algorithm and Convergence Analysis

Based on the discussion above, we are ready to propose the fast algorithm used

for solving model (1–7). Note that the solution to (1–7) can be approximated by solving

(1–9) with continuation on the penalty parameters η and θ [36]. For stopping criterion,

we let ”res” be the maximum absolute/norm value of increments of w ,α, β, u, and

terminate each inner loop once res < ε for a prescribed error tolerance ε, then update

u and start a new loop with doubled η and θ. The upper bound 212 for η, θ is chosen

empirically so it is sufficiently large that solutions to (1–9) is a close approximation
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of (1–7). Based on derivations above, we summarize the algorithm for our model as

Algorithm 1.

Algorithm 1 MR Image Reconstruction via Sparse Representation (recMRI)
Input P, fp, and µ, ν,λ, ε > 0. Initialize u = F>

p fp, η = θ = 26 and α = 0.
while η, θ < 212 do

repeat
Given u and α, compute w and β using (1–10) and (1–11).
for j = 1 to J do

Given u and β, compute αj using (1–13).
end for
Given w and α, compute u by solving (1–16) and update σ by (1–17).

until res < ε
return uη,θ

u ← uη,θ, (η, θ)← (2η, 2θ)
end while

The proof of the convergence of the proposed algorithm 5 is similar to the one given

in [64] with slight modifications, and thus is omitted here.

1.4 Experimental Results

In this section, we present the experimental results of the proposed model (1–7)

using Algorithm 5 and the comparisons with that resulting from using wavelet transform

on both synthetic and in vivo MR data. All implementations involved in the experiments

were coded in MATLABrv7.3 (R2006b), except the shrinkage and wavelet transform

operators, which were coded in C++. Computations were performed on a GNU/Linux

(version 2.6.16) workstation with IntelrCore 2 CPU at 1.86GHz and 2GB memory.

1.4.1 Improvement on Accuracy by Using Dictionaries

To show the improvement on the accuracy of reconstructions by using dictionaries

as sparsifying transforms, we applied model (1–2), which uses wavelet as the sparsifying

transform, and the proposed model (1–7) to three data sets. The three data sets are:

the default Shepp-Logan phantom image provided by MATLAB R©, a 2D axial brain

MR image and a 2D chest MR image. The sampling masks used for these three

data sets are depicted in Figure 3-1, where white pixels indicate sampled locations
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in k-space. In Figure 3-1, the masks are for (a) phantom (b) brain image and (c)

chest image, respectively. We used pseudo radial mask for phantom, and Cartesian

mask undersampling phase encoding (PE) lines for in vivo data to simulate random

acquisition. All of the k-space data in the simulated pseudo-radial trajectory is located

on Cartesian grid.

In practice, CS-MRI algorithm prefers random acquisition trajectory that can lead

to incoherent artifacts aliasing. However, the trajectory of the acquired data in each

echo time (TE) is limited by the MR system, and hence true random acquisition is

not possible. In recent years, acquisition schemes that are feasible and can produce

incoherent aliasing artifacts are developed, e.g. radial and spiral trajectories. In our

experiments, for simplicity, we used pseudo sampling masks which can simulate

randomness in acquisition for demonstration purpose.

A SR=8.4% B SR=34.0% C SR=25.0%

Figure 1-3. Sampling masks used with sampling ratios (SR).

1.4.1.1 Results of Phantom Reconstruction

The default Shepp-Logan phantom of size 256 × 256 is shown in Figure 1-4A.

Then a full k-space data was simulated by the 2D Fast Fourier transform (fft2 in

MATLAB) of the phantom. We used the pseudo radial mask (shown in Figure 1-3A) to

the full k-space data and added complex valued Gaussian random noise with standard

deviation (of magnitude) 3.2 to simulate the partially acquired data fp. Direct using
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FFT of zero filling unscanned k-space locations results in notorious artifact aliasing, as

shown in Figure 1-4B.

Then we applied model (1–2) with Haar wavelet and model (1–7) with an overcomplete

discrete cosine transform (DCT) consisting of 256 atoms of size 8 × 8 [2] as the

dictionary to the partial data fp. The parameters we used for both models were

(µ,λ, ε) = (1, 103, 10−3) and the parameter ν was set to 1. Figure 1-4 shows the

following: (a) Reference image. (b) Zero-filling. (c) Reconstruction by model (1–2) with

Haar wavelet (d) Reconstruction using overcomplete DCT dictionary. The results by

using wavelet and dictionary have corresponding RMSEs are 2.47% and 2.18%, and

SNR are 32.9 and 34.5, respectively.

1.4.1.2 Results of Brain Image Reconstruction

The second test is on an axial brain MR image. The 2-dimentional multi-slice data

set was collected on a 3T GE system (GE Healthcare, Waukesha, Wisconsin, USA)

using the T1 FLAIR sequence (FOV 220mm, matrix size 512 × 512, TR 3060ms, TE

126ms, flip angle 90◦, slice thickness 5mm, number of averages 1) with an 8-channel

head coil (Invivo Corporation, Gainesville, FL, USA). Phase encoding direction was

anterior-posterior. The imaging process output a high resolution and SNR image of size

512 × 512, which were used as the reference image in our experiment, as shown in

Figure 1-5A.

The simulated full k-space data in our experiment was obtained by the Fourier

transform of this reference image, and then was artificially undersampled using the

Cartesian mask shown in Figure 1-3B, which led to the partial k-space data fp. The

zoomed-in of the square area in Figure 1-5A is shown in Figure 1-5B.

Figure 1-5 shows the following: (a) Reference. (b) Zoomed-in of square area in the

reference image. (c) Zoomed-in of reconstruction by zero-filling unscanned k-space

locations. (d) Zoomed-in of low resolution (LR) image reconstructed by 34.0% central

PE lines, with RMSE 10.32% and SNR 17.2. (e) Zoomed-in of reconstruction obtained
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A Reference B Zero-Filling

C Wavelet Rec. D Dictionary Rec.

Figure 1-4. Reconstructed phantom image from simulated partial k-space data.

using wavelet as sparsifying transform, RMSE is 8.52% and SNR is 20.7. (f) Zoomed-in

of reconstruction obtained using trained dictionary shown in Figure 1-1, RMSE is 7.74%

and SNR is 22.0.

With only 34.0% data for reconstruction, strong aliasing artifacts can be observed in

the image reconstructed by zero-filling unscanned k-space locations, and the zoomed-in

is shown in Figure 1-5C.
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In this experiment the database used for training a dictionary consists of 4096 8× 8

patches extracted randomly from four 2D brain MR images of different normal subjects

(excluding the one to be reconstructed one) with the same acquisition sequence. The

trained dictionary A ∈ R64×512, as shown in Figure 1-1, consists of 512 atoms of size

8× 8.

We applied model (1–2) with Haar wavelet and model (1–7) with this trained

dictionary to the partial Fourier data fp for brain MR image reconstruction. The

parameters λ, µ and ε were set to 2e+3, 1 and 5e-4 in model (1–2) and (1–7), respectively.

The parameter ν in model (1–7) was set to 106. The zoomed-in area of the reconstructed

images by model (1–2) and proposed model (1–7) are shown in Figure 1-5E and 1-5F,

respectively. The RMSEs of reconstructions are 8.52% for model (1–2) and 7.74% for

proposed model (1–7), and SNRs are 20.7 and 22.0, respectively. It can be seen that the

image reconstructed by model (1–2) has oil-painting effect. On the contrary, the image

reconstructed by the proposed model has better preserved fine structures. This further

confirms the higher accuracy obtained by the proposed method.

We also simulated a low resolution (LR) image by using the 34.0% central PE lines

(i.e. all white vertically lines in the middle in Figure 1-3B), which has RMSE 10.32% and

SNR 17.2.

1.4.1.3 Results of Chest Image Reconstruction

We also validate the proposed method on chest MR images. In this experiment the

dictionary was trained by slices extracted from a three-dimensional (3D) MR chest data

set, that consists of 19 adjacent 2D image slices of size 256×256 near the thorax region.

Our procedure of training a dictionary is as follows: we randomly chose four slices and

decomposed them into non-overlapping patches of size 8 × 8, and discarded those

patches with homogeneous intensities, and then use K -SVD on the remaining patches

to train a dictionary A ∈ R82×256 with 256 atoms. It is worth noting that if additional data

(e.g. chest MR data scanned from different subjects but the same sequence, which
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are usually available in clinical applications) were available, one can readily construct

a dictionary that is comparable to the one we trained using adjacent slices, and obtain

similar reconstruction results as we showed below.

To demonstrate the improved accuracy by using dictionary, we randomly chose a 2D

slice shown in Figure 1-6A, which is different from the four used as training slices. Then

we artificially downsampled its k-space data using a Cartesian mask with 25% sampling

ratio, as shown in Figure 1-3C. Zero-filling the unscanned k-space locations results in

severe artifacts as shown in Figure 1-6B with RMSE 15.59%. We again simulated a low

resolution (LR) image, as shown in Figure 1-6D, by using the 25.0% central PE lines,

which has RMSE 14.44% and SNR 15.4. From the corresponding error map Figure

1-6G, i.e. the absolute difference to the reference image, we can see the potential loss

of edges and diagnostic information.

The reconstructions performed by using model (1–2) with Haar wavelet and

model (1–7) with the trained dictionary are shown in Figure 1-6E and 1-6F, and the

corresponding RMSEs are 12.04% and 8.48%, and SNRs are 17.3 and 20.1. In both

cases λ, µ and ε were set to 1e+4, 2.5 and 1e-5, respectively. Parameter ν in model

(1–7) was set to 105. The error maps of these two reconstructions are shown in Figure

1-6H and 1-6I, respectively. It can be seen that the image reconstructed by the proposed

model (1–7) has lower artifacts level and better preserved edges. This experiment

demonstrates again the advantages of using prior information to define the sparsifying

transformation, which results in higher accuracy of reconstructions.

In Figure 1-6: (a) Reference image. (b) Zero-filling unscanned locations, RMSE

is 15.59% and SNR is 14.2. (d) LR image obtained by using central PE lines, RMSE is

14.44% and SNR is 15.4. (e) Reconstruction by model (1–2) with Haar wavelet, RMSE

is 12.09% and SNR is 17.1. (f) Reconstruction by proposed model (1–7) with trained

dictionary, RMSE is 8.48% and SNR is 20.1. Figures (g), (h) and (i) are corresponding

error maps of (d), (e) and (f) to the reference image (a).
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1.4.2 Improvement on Robustness (to Parameter Selection) and Efficiency

To demonstrate the improvement on the robustness of the proposed model

(1–7) with respect to the choice of parameter λ, we tested the reconstruction of the

Shepp-Logan phantom using model (1–2) with SSD and the proposed model (1–7)

using MLE as as data consistency measures on various choices of λ. The resulting

RMSEs are shown in Table 1-1. From the changes of RMSEs, we can see the model

with MLE as data consistency measure generated similarly good results whereas

the model with SSD failed when λ went improperly large. This result shows that the

proposed model with MLE data consistency measure is much less sensitive to the

choice of λ and hence makes the reconstruction more robust.

Table 1-1 also shows the CPU time (in seconds) for phantom reconstruction using

three different algorithms: nonlinear conjugate gradient (CG) algorithm for model (1–2),

algorithm 5 recMRI for model (1–7) with the term involving dictionary

J∑
j=1

(
‖αj‖1 +

ν

2
‖Aαj − Rju‖2

)
replaced by Haar wavelet term ‖Ψ>u‖1, and algorithm 5 recMRI for model (1–7) with

overcomplete DCT as dictionary. Here the wavelet transforms were generated using

optimized DWT package for MATLAB R©It can be seen that the proposed numerical

method was over 2.6 times faster than conjugate gradient based method. The dictionary

based sparse representation consistently produced images with lower RMSE than

wavelet based method, but it takes longer reconstruction time due to the redundancy of

dictionaries. Moreover, using optimized discrete wavelet transform (DWT) package in

MATLAB R©makes the computation for wavelet based model even faster. Therefore, we

expect an improvement on speed by code optimization when using dictionaries.

1.4.3 Robustness of Dictionary Training and Reconstruction

In the experiment on brain MR image reconstruction in section 1.4.1.2, the patches

used by K -SVD algorithm were randomly extracted from the four training images.
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Table 1-1. Comparison of results of phantom reconstructions using nonlinear conjugate
gradient (CG) for model (1–2) with Haar wavelet, algorithm recMRI with Haar
wavelet, and recMRI for model (1–7) with overcomplete DCT dictionary.

Method CG(Wavelet*) recMRI(Wavelet*) recMRI(Dictionary)
λ RMSE Obj CPU RMSE Obj CPU RMSE Obj CPU

1e+2 5.93% 12.13 86.3 7.93% 13.98 28.2 5.21% 11.79 211
1e+3 2.47% 11.92 71.6 2.52% 12.11 27.7 2.18% 10.92 199
1e+4 5.05% 3.147 71.4 4.98% 3.025 26.9 3.47% 2.540 198
1e+5 25.9% 2.271 87.1 5.93% 1.375 27.0 3.67% 1.116 201
1e+6 37.0% 2.165 81.2 6.16% 1.129 28.7 5.52% 1.091 212

Different patches may lead to different trained dictionary using K -SVD algorithm, and

hence may impact the consequent reconstructions. Therefore it is important to verify

that the dictionary training and reconstruction process are robust to certain level of

variability on the training database used in K -SVD algorithm. In this experiment, we

repeated 10 times of the entire process from forming a data set of training image to

using trained dictionary in brain MR image reconstruction as described in section

1.4.1.2. The difference is that, in each run, the 4096 training images are randomly

chosen from a pool of patches (around 50, 000) extracted from images acquired under

the same sequence as that used for the image to be reconstructed. Therefore, the

training patches used in one run are different from those in another. The RMSEs and

SNRs of reconstruction results are shown in Table 1-2. Meanwhile, when we directly

Table 1-2. Experimental results of 10 runs of dictionary training and brain image
reconstruction as in 1.4.1.2.

Runs 1 2 3 4 5 6 7 8 9 10
RMSE(%) 7.74 7.77 7.65 7.81 7.83 7.78 7.79 7.79 7.72 7.68

SNR 22.0 21.8 22.6 21.6 21.6 21.8 21.7 21.7 22.1 22.5

used the overcomplete DCT instead of the trained dictionary in the reconstruction

(1–7), the reconstruction had RMSE 8.27% and SNR 21.1. Table 1-2 indicates that the

K -SVD algorithm and the consequent reconstructions using trained dictionaries can

consistently generate good results despite that the training patches may vary. Therefore,

the proposed scheme using dictionaries trained by K -SVD algorithm in MR image

reconstruction is stable and robust, and hence has great practical potential.
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A Reference B Zoomed-In Reference

C Zoomed-In Zero-Filling D Zoomed-In LR

E Zoomed-In Wavelet F Zoomed-In Dictionary

Figure 1-5. Reconstruction of brain MR Image.
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A Reference B Zero-Filling

D LR Rec. E Wavelet Rec. F Dictionary Rec.

G LR error map H Wavelet error map I Dictionary error map

Figure 1-6. Reconstructions of chest MR image using model (1–2) and (1–7).
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CHAPTER 2
COMPUTATIONAL ACCELERATION FOR MR IMAGE RECONSTRUCTION IN

PARTIALLY PARALLEL IMAGING

Outline

In this paper, we present a fast numerical algorithm for solving total variation and `1

(TVL1) based image reconstruction with application in partially parallel MR imaging. Our

algorithm uses variable splitting method to reduce computational cost. Moreover, the

Barzilai-Borwein step size selection method is adopted in our algorithm for much faster

convergence. Experimental results on clinical partially parallel imaging data demonstrate

that the proposed algorithm requires much fewer iterations and/or less computational

cost than recently developed operator splitting and Bregman operator splitting methods,

which can deal with a general sensing matrix in reconstruction framework, to get similar

or even better quality of reconstructed images.

2.1 Backgrounds in Total Variation Based Image Reconstruction

In this paper we develop a novel algorithm to accelerate the computation of total

variation (TV) and/or `1 based image reconstruction. The general form of such problems

is

min
u

{
α‖u‖TV + β‖Ψ>u‖1 +

1

2
‖Au − f ‖2

}
, (2–1)

where ‖·‖TV is the total variation, ‖·‖1 and ‖·‖ ≡ ‖·‖2 are the `1 and `2 norms (Euclidean

norms), respectively. For notation simplicity we only consider two dimensional (2D)

images in this paper, whereas the method can be easily extended to higher dimensional

cases. Following the standard treatment we will vectorize an (2D) image u into

one-dimensional column vector, i.e. u ∈ CN where N is the total number of pixels in

u. Then, the (isotropic) TV norm is defined by

‖u‖TV =
∫
Ω

|Du| =
N∑
i=1

‖Diu‖ (2–2)
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where for each i = 1, · · · ,N, Di ∈ R2×N has two nonzero entries in each row

corresponding to finite difference approximations to partial derivatives of u at the

i -th pixel along the coordinate axes. In (2–1), α, β ≥ 0 (α + β > 0) are parameters

corresponding to the relative weights of the data fidelity term ‖Au − f ‖2 and the terms

‖u‖TV and ‖Ψu‖1. Model (2–1) has been widely applied to image reconstruction

problems. Solving (2–1) yields a restored clean image u from an observed noisy or

blurred image f when A = I or a blurring matrix, respectively. In compressive sensing

(CS) applications, A is usually a large and ill-conditioned matrix depending on imaging

devices or data acquisition patterns, and f represents the under-sampled data. In CS

Ψ = [ψ1, · · · ,ψN ] ∈ CN×N is usually a proper orthogonal matrix (e.g. wavelet) that

sparsifies underlying image u.

2.1.1 Partially Parallel MR Imaging

The CS reconstruction via TVL1 minimization (2–1) has been successfully applied

to an emerging MR imaging application known as partially parallel imaging (PPI). PPI

uses multiple RF coil arrays with separate receiver channel for each RF coil. A set

of multi-channel k-space data from each radiofrequency (RF) coil array is acquired

simultaneously. The imaging is accelerated by acquiring a reduced number of k-space

samples. Partial data acquisition increases the spacing between regular subsequent

read-out lines, thereby reducing scan time. However, this reduction in the number

of recorded Fourier components leads to aliasing artifacts in images. There are two

general approaches for removing the aliasing artifacts and reconstructing high quality

images: image domain-based methods and k-space based methods. Various models

in the framework of (2–1) have been employed as image domain-based reconstruction

methods in PPI [15, 29, 54–57, 60, 70, 73]. Sensitivity encoding (SENSE) [54, 55] is one

of the most commonly used methods of such kind. SENSE utilizes knowledge of the coil

sensitivities to separate aliased pixels resulted from undersampled k-space.
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The fundamental equation for SENSE is as follows: In a PPI system consisting of

J coil arrays, the under-sampled k-space data fj from the j-th channel relates to the

underlying image u by

PF(Sj � u) = fj , j = 1, · · · , J, (2–3)

where F is the Fourier transform, P is a binary matrix representing the under-sampling

pattern (mask), and Sj ∈ CN is the sensitivity map of the j-th channel in the vector form

as u. The symbol � is the Hadamard (or componentwise) product between two vectors.

In early works on SENSE, the reconstruction was obtained by solving a least squares

problem

min
u∈CN

J∑
j=1

‖Fp(Sj � u)− fj‖2, (2–4)

where Fp is the undersampled Fourier transform defined by Fp , PF . Denote

A =



FpS1

FpS2
...

FpSJ


and f =



f1

f2
...

fJ


, (2–5)

where Sj , diag(Sj) ∈ CN×N is the diagonal matrix with Sj ∈ CN on the diagonal,

j = 1, · · · , J. Then problem (3–48) can be expressed as

min
u∈CN
‖Au − f ‖2, (2–6)

and then solved by conjugate gradient (CG) algorithm. However, due to the ill-conditioning

of the encoding matrix A, it has been shown in [57] that the CG iteration sequence

often exhibits a ”semi-convergence” behavior, which can be characterized as initially

converging toward the exact solution and later diverging. Moreover, the convergence

speed is low, when the acceleration factor is high.

Recently, total variation (TV) based regularization has been incorporated into

SENSE to improve reconstructed image quality and convergence speed over the

39



un-regularized CG method ([15, 73]). TV based regularization can be also considered

as forcing the reconstructed image to be sparse with respect to spatial finite differences.

This sparsity along with the sparsity of MR signals under wavelet transforms have been

exploited in [44], where the framework (2–1) has been employed to reconstruct MR

images from under-sampled k-space data.

There have been several fast numerical algorithms for solving (2–1) that will be

briefly reviewed in the next section. However, computational acceleration is still an

important issue for certain medical applications, such as breath-holding cardiac imaging.

For the application in PPI the computational challenging is not only from the lack of

differentiability of the TV and `1 terms , but also the inversion matrix A in (2–5) which has

large size and is severely ill-conditioned.

The main contribution of this paper is to develop a fast numerical algorithm for

solving (2–1) with general A. The proposed algorithm incorporates the Barzilai-Borwein

(BB) method into a variable splitting framework for optimal step size selection. The

numerical results on partially parallel imaging (PPI) problems demonstrate much

improved performance on reconstruction speed for similar image quality.

2.1.2 Previous Work

In reviewing the prior work on TVL1-based image reconstruction, we simplify (2–1)

by taking β = 0. It is worth pointing out here that TV has much stronger practical

performance than `1 in image reconstructions, yet harder to solve because the gradient

operators involved are not invertible as Ψ in the `1 term.

With β = 0, the image reconstruction is equivalent to solving the problem

min
u∈CN

{
α
N∑
i=1

‖Diu‖+
1

2
‖Au − f ‖2

}
. (2–7)

Early work on algorithms for (3–6) used gradient descent methods with explicit [59]

or semi-implicit schemes [43, 63] in which the TV norm was replaced by a smooth
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approximation

‖u‖TV ,ε =
N∑
i=1

√
‖Diu‖2 + ε. (2–8)

However, the choice of ε > 0 is crucial to the reconstruction results and convergence

speed. A large ε encourages fast convergence rate, but fails to preserve high quality

details such as edges in the restored image; a small ε better preserves fine structure in

the reconstruction at the expense of slow convergence.

In [64, 67], a method is developed based on the following reformulation of (3–6):

min
u,w

{
α

N∑
i=1

‖wi‖+
1

2
‖Au − f ‖2 : wi = Diu,∀ i

}
(2–9)

Then the linear constraint was treated with a quadratic penalty

min
u,w

{
α
N∑
i=1

‖wi‖+ ρ‖Du − w‖2 +
1

2
‖Au − f ‖2

}
, (2–10)

where w ∈ C2N is formed by stacking the two columns of (w1, · · · ,wN)>, and D =

(Dx ;Dy) ∈ C2N×N . Dx and Dy are the horizontal and vertical global finite difference

matrices (N-by-N), i.e. they consist of the first and second rows of all Di ’s, respectively.

For any fixed ρ, (3–10) can be solved by alternating minimizations. If both D>D and A>A

can be diagonalized by the Fourier matrix, as they would if A is either the identity matrix

or a blurring matrix with periodic boundary conditions, then each minimization involves

shrinkage and two fast Fourier transforms (FFTs). A continuation method is used to

deal with the slow convergence rate associated with a large value for ρ. The method,

however, is not applicable to more general A.

In [34] Goldstein and Osher developed a split Bregman method for (3–9). The

resulting algorithm has similar computational complexity to the algorithm in [64]; the

convergence is fast and the constraints are exactly satisfied. Later the split Bregman

method was shown to be equivalent to the alternating direction method of multipliers
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(ADMM) [13, 28, 32, 33] applied to the augmented Lagrangian L(w , u; p) defined by

α
N∑
i=1

‖wi‖+
1

2
‖Au − f ‖2 + 〈p,Du − w〉+ ρ

2
‖Du − w‖2, (2–11)

where p ∈ C2N is the Lagrangian multiplier. Nonetheless, the algorithms in [34, 64,

67] benefit from the special structure of A, and they lose efficiency if A>A cannot be

diagonalized by fast transforms. To treat a more general A, the Bregman operator

splitting (BOS) method [75] replaces ‖Au − f ‖2 by a proximal-like term δ‖u − (uk −

δ−1A>(Auk − f ))‖2 for some δ > 0. BOS is an inexact Uzawa method that depends

on the choice of δ. The advantage of BOS is that it can deal with general A and does

not require the inversion of A>A during the computation. However, BOS is relatively

less efficient than the method presented in this paper, even if δ is chosen optimally. The

comparison of our method with the BOS algorithm will be presented in Section 2.4.

There are also several methods developed to solve the associated dual or

primal-dual problems of (3–6) based on the dual formulation of the TV norm:

‖u‖TV = max
p∈X

〈p,Du〉, (2–12)

where X = {p ∈ C2N : pi ∈ C2, ‖pi‖ ≤ 1,∀ i} and pi extracts the i -th and (i +N)-th entries

of p. Consequently, (3–6) can be written as a minimax problem

min
u∈CN
max
p∈X

{
α〈p,Du〉+ 1

2
‖Au − f ‖2

}
. (2–13)

In [20], Chan et al. proposed to solve the primal-dual Euler-Lagrange equations using

Newton’s method. This leads to a quadratic convergence rate and highly accurate

solutions; however, the cost per iteration is much higher since the method explicitly

uses second-order information and the inversion of a Hessian matrix is required. In [19],

Chambolle used the dual formulation of the TV denoising problem (3–6) with A = I , and

provided an efficient semi-implicit gradient descent algorithm for the dual. However, the

method does not naturally extend to the case with more general A. Recently, Zhu and
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Chan [78] proposed a primal-dual hybrid gradient (PDHG) method. PDHG alternately

updates the primal and dual variables u and p. Numerical results show that PDHG

outperforms methods in [19, 34] for denoising and deblurring problems, but its efficiency

again relies on the fact that A>A can be diagonalized by fast transforms. Later, several

variations of PDHG, referred to as projected gradient descent algorithms, were applied

to the dual formulation of image denoising problem in [79] to make the method more

efficient. Further enhancements involve different step-length rules and line-search

strategies, including techniques based on the Barzilai-Borwein method [9].

Another approach that can be applied to (3–6) in the imaging context (2–1) with a

general A is the operator splitting (OS) method. In [51] the OS idea of [47] is applied

to image reconstruction in compressed magnetic resonance imaging. The OS scheme

rewrites (3–6) as

min
u
α
∑
i

h(Diu) +
1

2
‖Au − f ‖2 (2–14)

where h(·) , ‖ · ‖. Then the optimal conditions for (2–14) are

w ∗
i ∈ ∂h(Diu∗), δ1αD

>
i w

∗
i + δ1A

>(Au∗ − f ) = 0, (2–15)

where ∂h(z) is the subdifferential of h at some point z defined by a set

∂h(z) , {d ∈ CN : h(y)− h(z) ≥ 〈d , y − z〉,∀ y}.

The theory of conjugate duality gives the equivalency y ∈ ∂h(z)⇔ z ∈ ∂h∗(y), ∀y , z ,

where h∗(y) , supv {〈y , v〉 − h(v)}. Hence the first condition in (2–15) can be written as

0 ∈ δ2h∗(w ∗
i ) + (w

∗
i − t∗i ), t∗i = δ2Diu

∗ + w ∗
i (2–16)

and then the first one leads to

w ∗
i ∈ ∂h ((t∗i − w ∗

i )/δ2) = ∂h(t∗i − w ∗
i ), (2–17)
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where the equality is due to h(·) = ‖ · ‖. (2–17) is equivalent to

w ∗
i = argmin

wi

{
h(t∗i − wi) +

1

2
‖wi‖2

}
(2–18)

that projects t∗i onto the unit ball in R2. Then, combining (2–18) and the last equalities in

(2–15) and (2–16), the OS scheme iterates the following for a fixed point (which is also a

solution to (3–6)): 

tk+1i = w ki + δ2Diu
k , ∀i

w k+1i = argmin
wi

{
‖tk+1i − wi‖+

1

2
‖wi‖2

}
, ∀i

uk+1 = δ1α
∑
i

D>
i w

k+1
i + δ1A

>(Auk − f ) + uk

OS is efficient for solving (2–1) with general A when all the parameters are carefully

chosen. However it is still not as efficient as our method even under its optimal settings.

The comparison of our method with the OS algorithm [51] will be given in Section 2.4.

2.1.3 Organization

The rest of this paper is organized as follows. In Section 2.2 we present the

proposed algorithm with detailed derivations. Section 2.3 describes our experiment

design and the clinical data used in this paper. Section 2.4 compares our algorithm

to BOS [75] and operator splitting [51] on PPI data. Finally, we conclude the paper in

Section 2.5.

2.2 Proposed Algorithm

In this paper, we develop a fast and simple algorithm to numerically solve problem

(2–1). Note that the computational challenge of (2–1) comes from the combination of

two issues: one is possibly huge size and of the inversion matrix A, and the other one is

the non-differentiability of the TV and `1 terms.

As discussed earlier, despite that there were some fast algorithms proposed

recently to solve image restoration problems similar to (2–1), their efficiency relies on

a very special structure of A such that A>A can be diagonalized by fast transforms,
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which is not the case in most medical imaging problems, such as that in (2–5) in PPI

application.

To tackle the computational problem of (2–1), we first introduce auxiliary variables

wi and zi to transform Diu and ψ>
i u out of the non-differentiable norms:

min
w ,z ,u

{
α
∑
i

‖wi‖+ β
∑
i

|zi |+
1

2
‖Au − f ‖2

}
,

wi = Diu, zi = ψ>
i u,∀ i = 1, · · · ,N,

(2–19)

which is clearly equivalent to the original problem (2–1) as they share the same

solutions u. To deal with the constraints in (2–19) brought by variable splitting, we

form the augmented Lagrangian defined by

L(w , z , u; b, c)

= α
∑
i

(
‖wi‖ − ρ〈bi ,wi −Diu〉+

ρ

2
‖wi −Diu‖2

)
+ β

∑
i

(
|zi | − ρci(zi − ψ>

i u) +
ρ

2
|zi − ψ>

i u|2
)

+
1

2
‖Au − f ‖2,

(2–20)

where b ∈ C2N and c = (c1, · · · , cN)> ∈ CN are Lagrangian multipliers. Here bi ∈ C2

extracts the i -th and (i + N)-th entries of b. For notation simplicity we used the same

parameter ρ > 0 for all constraints in (2–20). The method of multipliers iterates the

minimizations of Lagrangian L in (2–20) with respect to (w , z , u) and the updates of the

multipliers b and c : 
(w k+1, zk+1, uk+1) = arg min

w ,z ,u
L(w , z , u; bk , ck)

bk+1i = bki − (w k+1i −Diuk+1), ∀ i

ck+1i = cki − (zk+1i − ψ>
i u
k+1), ∀ i

(2–21)

It is proved that the sequence {(w k , zk , uk)}k generated by (2–21) converges to the

solution of (2–19) with any ρ > 0.
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Since the updates of bk and ck are merely simple calculations, we now focus on the

minimization of L(w , z , u; bk , ck) in (2–21). First we introduce functions

φ1(s, t) = |s|+ (ρ/2) · |s − t|2, s, t ∈ C (2–22)

and

φ2(s, t) = ‖s‖+ (ρ/2) · ‖s− t‖2, s, t ∈ C2. (2–23)

By completing the squares in (2–20), we find the equivalency

arg min
w ,z ,u
L(w , z , u; bk , ck) ≡

arg min
w ,z ,u

{
α
∑
i

φ2(wi ,Diu + b
k
i ) + β

∑
i

φ1(zi ,ψ
>
i u + c

k
i )

+
1

2
‖Au − f ‖2

} (2–24)

because the objective functions in these two minimizations are equal up to a constant

independent of (w , z , u).

To solve (2–24) we first rewrite the objective function in a simpler way. Let x =

(w ; z ; u) and B = (0, 0,A), and define functions Jk(x) ≡ Jk(w , z , u) by

Jk(x) , α
∑
i

φ2(wi ,Diu + b
k
i ) + β

∑
i

φ1(zi ,ψ
>
i u + c

k
i ), (2–25)

and data fidelity H(x) by

H(x) = (1/2) · ‖Bx − f ‖2. (2–26)

Then problem (2–24) (or equivalently, the minimization subproblem in (2–21)) can be

expressed as

xk+1 = argmin
x
{Jk(x) + H(x)} , (2–27)

We further introduce Qδ(x , y) defined by

Qδ(x , y) , H(y) + 〈∇H(y), x − y〉+
δ

2
‖x − y‖2, (2–28)

46



which is a linearization of H(x) at point y plus a proximity term ‖x − y‖2/2 penalized

by parameter δ > 0. It has been shown in [66] that the iterative sequence {xk+1,l}l

generated by

xk+1,l+1 = argmin
x

{
Jk(x) +Qδk+1,l (x , x

k+1,l)
}

(2–29)

converges to the solution xk+1 of (2–27) with any initial xk+1,0 and proper choice of δk+1,l

for l = 0, 1, · · · 1 . Interestingly, we found that in practice the optimal performance can

be consistently achieved if only iterating (2–29) once to approximate the solution xk+1 in

(2–27).

Therefore, we substitute the first subproblem in (2–21) by

xk+1 = argmin
x

{
Jk(x) +Qδk (x , x

k)
}
, (2–30)

where δk is chosen based on the Barzilai-Borwein (BB) method as suggested in [66]. BB

method handles ill-conditioning much better than gradient methods with a Cauchy step

[3]. In the BB implementation, the Hessian of the objective function is approximated by a

multiple of the identity matrix. We employ the approximation

δk = argmin
δ

∥∥(∇H(xk)−∇H(xk−1))− δ(xk − xk−1)∥∥2 , (2–31)

and get

δk = 〈∇H(xk)−∇H(xk−1), xk − xk−1〉/‖xk − xk−1‖2. (2–32)

This makes the iteration (2–30) exhibit a certain level of quasi-Newton convergence

behavior.

1 e.g. for fixed k , any limit point of {xk+1,l}l is a solution of (2–27) when δk+1,l was
chosen such that the objective function Jk(xk+1,l) + H(xk+1,l) monotonically decreases
as l →∞ [66].
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

w k+1i =argmin
wi

{
‖wi‖+

ρ

2
‖wi −Diuk − bki ‖2 +

δk
2α
‖w − w k‖2

}
, ∀ i ;

zk+1i =argmin
zi

{
|zi |+

ρ

2
|zi −Ψ>

i u
k − cki |2 +

δk
2β
|zi − zki |2

}
, ∀ i ;

uk+1 =argmin
u

{
αρ‖Du − w k+1‖2 + βρ‖Ψ>u − zk+1‖2 + δk

∥∥u − (uk − δ−1k A>(Auk − f )
)∥∥2} ;

bk+1i =bki − (w k+1i −Diuk+1), ∀ i ;
ck+1i =cki − (zk+1i − ψiuk+1), ∀ i ;
δk+1 =‖A(uk+1 − uk)‖2/

(
‖w k+1 − w k‖2 + ‖zk+1 − zk‖2 + ‖uk+1 − uk‖2

)
.

(2–35)

From the definition of Jk and Qδk , (2–30) is equivalent to

(w k+1, zk+1, uk+1) = arg min
w ,z ,u
Φk(w , z , u) (2–33)

where the objective Φk(w , z , u) is defined by

Φk(w , z , u)

, α
∑
i

φ2(wi ,Diu + b
k
i ) + β

∑
i

φ1(zi ,ψ
>
i u + c

k
i )

+
δk
2

(
‖w − w k‖2 + ‖z − zk‖2 +

∥∥u − uk + δ−1k A>(Auk − f )∥∥2)
(2–34)

Theoretically, an iterative scheme can be applied to obtain the solution (w k+1, zk+1, uk+1)

of (2–33). However, here we propose only to do one iteration followed by the updates

of bk , ck and δk in (2–21). This is an analogue to the split Bregman method and ADMM

applied to the augmented Lagrangians, and leads to the optimal performance of (2–21).

In summary, we propose a scheme as in (2–35) for solving the minimization problem

(2–19).

The updates of bk+1 and ck+1 in (2–35) are merely simple calculations. In (2–35),

δk+1 is derived from (2–32) with H defined in (2–26), and also has an explicit form that
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can be quickly computed 2 . Next, we show that w k+1i and zk+1i can be obtained by soft

shrinkages by the following theorem.

Theorem 2.1. For given d-vectors t1, t2 ∈ Rd and positive numbers a1, a2 > 0, the

solution to minimization problem

min
s∈Rd

{
‖s‖+ a1

2
‖s− t1‖2 +

a2
2
‖s− t2‖2

}
(2–36)

is given by the shrinkage of a weighted sum of t1 and t2:

Sd(t1, t2; a1, a2) , shrinkd

(
a1t1 + a2t2
a1 + a2

,
1

a1 + a2

)
(2–37)

where shrinkd is the d-dimensional soft shrinkage operator defined by

shrinkd(t,µ) , max{‖t‖ − µ, 0} ·
t

‖t‖
. (2–38)

with convention 0 · (0/‖0‖) = 0.

Proof. By completing the squares, the minimization problem (2–36) is equivalent to

min
s∈Rd

{
‖s‖+

(
a1 + a2
2

)
·
∥∥∥∥s− a1t1 + a2t2a1 + a2

∥∥∥∥2
}
, (2–39)

because the objective functions are the same up to a constant independent of s.

Minimizations of form (2–39) have a well known explicit solver shrinkd and hence the

conclusion follows.

According to Theorem 2.1, w k+1i and zk+1i in (2–35) can be obtained by

w k+1i = S2
(
Diu

k + bki ,w
k
i ; ρ,αk

)
(2–40)

2 The main computations for updating δk are norm evaluations (no A operation
needed since Auk has been computed in the u-step and can be saved for use in δ-step
in (2–35)).
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and

zk+1i = S1
(
ψ>
i u
k + cki , z

k
i ; ρ, βk

)
(2–41)

where αk = δk/α and βk = δk/β. Therefore the computational costs for (2–40) and

(2–41) are linear in terms of N.

The u-subproblem in (2–35) is a least squares problem. The optimal condition of

this problem reads

Lku = rk (2–42)

where

Lk = αρD>D + βρI + δk I (2–43)

and

rk = αρD>w k+1 + βρΨ>zk+1 + δku
k − A>(Auk − f ). (2–44)

Under periodic boundary condition, the matrix D>D is block circulant and hence can be

diagonalized by Fourier matrix F . Let Λ = F>D>DF which is a diagonal matrix, then

apply F on both sides of (2–42) to obtain

L̂kFu = r̂k (2–45)

where

L̂k = αρΛ + βρI + δk I and r̂k = Frk . (2–46)

Note that L̂k can be ”trivially” inverted because it is diagonal and positive definite.

Therefore, uk+1 can be easily obtained by

uk+1 = F>(L̂−1k Frk). (2–47)

As all variables in (2–35) can be quickly solved, we propose Algorithm 2, called

TVL1rec, to solve problem (2–19). As discussed above, w and z can be updated using

soft shrinkages and hence the computational costs are linear in terms of N. The update

of u involves two fast Fourier transforms (FFTs) which has computational complexity
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Algorithm 2 TVL1 Reconstruction Algorithm (TVL1rec)
Input α, β, ε and ρ. Set u0 = c = 0, b = 0, δ0 = 1, k = 0.
repeat

Given uk , compute w k+1 and zk+1 using (2–40) and (2–41);
Given w k+1 and zk+1, compute uk+1 using (2–47);
Update bk , ck and δk as in (2–35);
k ← k + 1

until ‖uk − uk−1‖/‖uk‖ < ε.
return uk

N logN and two operations of A (one is A>). Therefore, unlike most recently developed

algorithms, our algorithm can deal with arbitrary matrix A and even more general H

with nonlinear constraint (as long as H is convex and ∇H is computable). Also, the per

iteration computation of the proposed algorithm is very cheap, and thanks to the BB step

size δk , the convergence speed is significantly improved compared to other two modern

methods BOS and OS, as shown in Section 2.4.

2.3 Method

Experiments were designed to test the effectiveness of the proposed algorithm

TVL1rec on PPI reconstructions. To demonstrate the potential in clinic applications,

the three data sets used in the experiments were acquired by commercially available

8-element head coils. For comparison, we also implemented the Bregman operator

splitting algorithm (BOS) [75] and a compressive MR image reconstruction algorithm

based on operator splitting (OS) [51] for solving (2–1).

2.3.1 Data Acquisition

The first data set (top left in Figure 2-2), termed by data1, is a set of sagittal

Cartesian brain images acquired on a 3T GE system (GE Healthcare, Waukesha,

Wisconsin, USA). The data acquisition parameters were FOV 220mm2, size 512×512×8,

TR 3060ms, TE 126ms, slice thickness 5mm, flip angle 90◦, and phase encoding direction

was anterior-posterior.

The second data set (left in Figure 2-4) is a Cartesian brain data set acquired on a

3.0T Philips scanner (Philips, Best, Netherlands) using T2-weighted turbo spin echo (T2
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Figure 2-1. The k-space masks used for the three data sets tested in the experiments.

TSE) sequence. The acquisition parameters were FOV 205mm2, matrix 512 × 500 × 8,

TR 3000ms, TE 85ms, and the echo train length was 20. To avoid similar comparison plot

due to the same data size, we reduce the image to 256× 250× 8 and obtain full k-space

data of this same size, termed by data2.

The last one (right of Figure 2-4), denoted by data3, is a radial brain data set

acquired on a 1.5T Siemens Symphony system (Siemens Medical Solutions, Erlangen,

Germany). The acquisition parameters were FOV 220mm2, matrix 256 × 512 × 8 (256

radial lines), slice thickness 5mm, TR 53.5ms, TE 3.4ms, and flip angle 75◦.

All three data sets were fully acquired, and then artificially down-sampled using

the masks in Figure 3-1 for reconstruction. Figure 3-1 shows, from left to right, the

Cartesian mask with net reduction factor 3, pseudo random mask with reduction factor

4, and radial mask with 43 (out of 256) projections, i.e. reduction factor 6. The reference

images in our experiments were obtained by fully acquired k-space. A summary of the

data information is in Table 2-1. In Table 2-1, ”Cart.Sag.” means ”Cartesian sagittal brain

image”, and ”Rad.Axi.” stands for ”radial axial brain image”. The column P in Table 2-1

present the mask number (refer to Figure 3-1).
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Table 2-1. Tests number, data information and parameters.
No. Image Abbrev. Size(×8) P (α, β)
1 Cart.Sag. data1 512× 512 1 (1e-5∼1e-2,0)
2 Cart.Sag. data2 256× 250 2 (1e-4,5e-5)
3 Rad.Axi. data3 256× 512 3 (1e-4,5e-5)

2.3.2 Test Environment

All algorithms were implemented in the MATLABrprogramming environment

(Version R2009a, MathWorks Inc., Natick, MA, USA). The sparsifying operator Ψ

is set to Haar wavelet transform using Rice wavelet toolbox with default settings.

The experiments were performed on a Dell Optiplex desktop with Intel R©Dual Core

2.53 GHz processors (only 1 core was used in computation), 3GB of memory and

WindowsTMoperating system.

Theoretically the choice of ρ does not effect the convergence of TVL1rec. This is

also demonstrated by our experiments since the results are not sensitive to ρ for a large

range. Therefore in all experiments we set ρ to a moderate value 10. Algorithm 2 is

automatically terminated if the relative change of uk is less than a prescribed tolerance

ε. In all of our experiments, we set ε = 10−3. Note that smaller ε leads to slightly better

accuracy at the cost of more iterations and longer computational time. Other parameter

settings are shown in the next section. For all algorithms tested in this paper, the

sensitivity maps Sj ’s were estimated from the central 32 × 32 k-space data (which was

a subset of the acquired partial data) and then fixed during the reconstructions, and the

initial u0 was set to 0.

The reconstruction results were evaluated qualitatively by zoomed-in regions of the

reconstructed images, and quantitatively by relative error (to the reference image) and

CPU times. Reference and reconstructed images corresponding to data1 and data3

were brightened by 3 times, and those corresponding to data2 were brightened by 2

times, to help visual justifications.
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2.4 Comparison Algorithms and Results

2.4.1 Comparison with BOS

In the first experiment, we use data1 with a Cartesian sampling pattern (left in

Figure 3-1) to undersample k-space data. We compare TVL1rec with BOS which also

solves (2–1) via a variable splitting framework (2–19). To simplify comparison, we here

set β = 0 in (2–1) and focus on the computational efficiency of two algorithms in solving

(2–1).

The BOS algorithm solves (2–1) by iterating

sk+1 =uk − δ−1A>(Auk − f )

w k+1i =argmin
wi

{
‖wi‖+

ρ

2
‖wi −Diuk − bki ‖2

}
, ∀ i

uk+1 =argmin
u
{αρ‖Du − w k+1 + bk‖2 + δ

∥∥u − sk+1∥∥2}
bk+1i =bki − (w k+1i −Diuk+1), ∀ i

(2–48)

and converges if δ ≥ ‖A>A‖2, i.e. the largest eigenvalue of A>A. In SENSE applications,

the magnitudes of sensitivity maps are usually normalized into [0, 1]. Therefore from

the definition of A in (2–5), we have δ ≥ ‖A>A‖2 = 1 and hence set δ = 1 for optimal

performance of BOS. With β = 0, TVL1rec only updates w , u, b and δ in (2–35). As can

be seen, the per iteration computational costs for BOS and TVL1rec are almost identical:

the main computations consist of one shrinkage, A, A> and two FFTs (including one

inverse FFT). Therefore the computation cost for a complete reconstruction is nearly

proportional to the number of iterations required by BOS and TVL1rec. In this paper, we

set the stopping criterion of BOS the same as TVL1rec, namely the computation will be

automatically terminated when the relative change of the iterate uk is less than ε = 10−3.

Table 2-2 shows the performance results of TVL1rec and BOS on data1 for different

values of TV regularization parameter α. In Table 2-2, we list the following quantities: the

relative error of the reconstructed images to the reference image (Err), the final objective
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function values (Obj), the number of iterations (Iter), and the CPU time in seconds

(CPU).

Table 2-2. Results of BOS and TVL1rec on data1.
BOS TVL1rec

α Err Obj Iter CPU Err Obj Iter CPU
1e-5 8.1% .281 33 75.1 7.2% .252 7 18.6
1e-4 7.4% 1.01 17 38.9 7.1% .860 11 26.7
1e-3 7.4% 6.00 39 88.2 7.3% 5.98 7 16.0
1e-2 11.5% 41.0 63 142.1 10.6% 40.7 7 15.9

From Table 2-2, we can see that both BOS and TVL1 are able to stably recover the

image from 34% k-space data. This is further demonstrated by Figure 2-2, where both

method generated images very close to the reference image. Despite that there are

few observable aliasing artifacts due to Cartesian undersampling, the details such as

edges and fine structures were well preserved in both reconstructions, as can be seen

in the zoomed-ins in the right column of Figure 2-2. In terms of accuracy, TVL1rec gives

slightly better reconstruction quality in the sense of lower relative error and objective

values.

In terms of efficiency, we found that TVL1rec significantly outperforms BOS by

requiring much fewer iterations (and hence less CPU time) to obtain the similar or even

better image quality, as shown in Table 2-2. Compared to BOS, TVL1rec is up to 9 times

faster and hence has much higher efficiency. Although two algorithms have almost the

same computational costs per iteration, TVL1rec benefits from the adaptive choice

of step sizes and readily outperforms BOS which uses fixed step size δ = ‖A>A‖2

throughout the computations. The adaptive step size selection makes TVL1rec exhibits

a quasi-Newton convergence behavior in some sense because δk I implicitly uses partial

Hessian (second order) information.

The adaptive step size selection not only leads to higher efficiency but also better

stableness of TVL1rec. As shown in Table 2-2, for a large range of α in [10−5, 10−2],

TVL1rec always requires 11 or fewer iterations to recover high quality images. In
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comparison, BOS appears to be quite sensitive to the choice of α: this is exemplified

by the last row (α = 10−2) of Table 2-2, where BOS required much more iterations than

usual; meanwhile, TVL1rec benefits from the optimal step size in each iteration and

readily approximates the solution in only few iterations.

In Figure 2-2, the right column shows the zoomed-in (square in data1) of images

in the left column. From top to bottom of Figure 2-2, they are the reference image,

reconstructed image using BOS (Err=7.4%), and reconstructed image using TVL1rec

(Err=7.1%), respectively.

The better performance of TVL1rec over BOS relies on two phases: one is that

TVL1rec imposes proximity terms not only for u but also for w and z in (2–35), which

lead to better choices of the updates w k+1 and zk+1; the other one is the adoption of

BB method for optimal penalty parameters δk selection, which affects the updates of all

variables as in (2–35) and leads much improved convergence speed.

2.4.2 Comparison with OS

For data2 and data3, we compare TVL1 with OS [51] for solving (2–1) with both TV

and `1 terms (α = 10−4, β = α/2). The OS scheme of [51], with a minor correction, is as

follows: 

sk+1 =Ψ
(
uk − (d1/λ) ·

(
D>w k + λA>(Auk − f )

))
,

tk+1i =w ki + d2Diu
k , ∀i ,

uk+1 =Ψ
(
sign(sk+1)�max{|sk+1| − d1τ/λ, 0}

)
,

w k+1i =min(1, ‖tk+1i ‖) · tk+1i /‖tk+1i ‖2, ∀i .

(2–49)

where sk ∈ CN , tki and w ki ∈ C2, i = 1, · · · ,N, w k ∈ C2N is formed by stacking

the two columns of matrix (w k1 , · · · ,w kN)>, and the ”max” and ”sign” operations in the

computation of uk+1 are componentwise operations corresponding to shrinkage. The

main computational cost per iteration in the OS scheme corresponds to the following

operations: a 2D shrinkage during the computation of w k+1, a projection during the

computation of uk+1, two wavelet transforms during the computation of sk+1 and uk+1, A
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and A> during the computation of sk+1. In [51] it is shown that for d1, d2 > 0 in certain

ranges, the OS scheme converges to a fixed point which is also a solution of (2–1). The

iterations were stopped when either the following conditions were satisfied:

‖uk+1 − uk‖2/max{1, ‖uk‖2} < ε1

(f k − f k+1)/max{1, f k} < ε2
√
τc/τt ,

(2–50)

where f k is the objective value of (2–1) at uk , τc and τt are the current and target values

of τ respectively and ε1 and ε2 are prescribed stopping tolerances.

Since OS has multiple tuning parameters that affect the convergence speed and

image quality: larger di ’s and εi ’s lead to faster convergence but result in larger relative

error, whereas smaller di ’s and εi ’s yield monotonic decreases in objective values and

better image quality at the cost of much longer computation. Based on the selection by

the authors and several tries, we chose moderate values d1 = d2 = 1, ε1 = 10−4 and

ε2 = 10
−3 which appear to give a best compromise between convergence speed and

image quality of the OS scheme. The results on data2 and data3 are shown in Figure

2-4, and the comparison on relative errors and objective values (both in logarithmic)

are plotted in logarithmic scale in Figure 2-5. In Figure 2-4, the left column and right

column correspond to the results for data2 and data3, respectively. In the left column

(results of data2), they are reference, reconstructed images by OS (Err=7.6%) and

TVL1rec (Err=4.6%). In the right column (results of data3) from top to bottom, they

are reference, reconstructed images by OS (Err=6.7%) and TVL1rec (Err=6.1%). The

horizontal label is chosen as CPU time because the per iteration computational costs for

OS and TVL1rec are slightly different.

From Figures 2-4 and 2-5 we can see that TVL1rec converges much faster than OS,

and achieved lower relative errors and objective values than OS overall. Therefore, it is

evident that TVL1rec can outperform OS scheme in efficiency as the former requires

much less computational time to reach the similar or even better image quality. It is also
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worth pointing out that both algorithms can further reduce the relative error slightly by

setting a tighter stopping criterion at the cost of more iteration numbers. Nevertheless,

the TVL1rec still can maintain lower relative error and objective value than OS during the

reconstruction process.

2.5 Concluding Remarks

This paper presents a fast numerical algorithm, called TVL1rec, for TVL1 minimization

problem (2–1) arising from CS reconstruction problems. The proposed algorithm

incorporates the Barzilai-Borwein (BB) method into a variable splitting framework to

optimize the selection of step sizes. The optimal step sizes exploit partial Hessian

information and hence lead to a quasi-Newton convergence behavior of TVL1rec.

Experimental results demonstrate the outstanding efficiency of the proposed algorithm

in CS-PPI reconstruction.

We compared TVL1rec to another two recently developed algorithms BOS [75] and

OS [51] which also solve the minimization problem (2). The common property of these

algorithms is that they can deal with general sensing matrix A, and even nonlinear data

fidelity term H(u) other than ‖Au − f ‖2 as long as H is convex and ∇H is computable.

Meanwhile, TVL1rec significantly outperforms the other two algorithms by taking

advantages of the optimal step size selection based on BB method. We hope TVL1rec

can be beneficial to PPI and other medical imaging applications.
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Figure 2-2. Comparison of BOS and TVL1rec on data1.
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Figure 2-3. Testing data used for the comparison of OS and TVL1rec for data2 and
data3.
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Figure 2-4. Reconstructions of data2 and data3 by OS and TVL1rec.
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Figure 2-5. Comparisons of OS and TVL1rec on data2 (blue solid lines) and data3
(black dashed lines).
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CHAPTER 3
A FAST ALGORITHM FOR TV IMAGE RECONSTRUCTION WITH APPLICATION TO

PARTIALLY PARALLEL MR IMAGING

Outline

This paper presents a fast algorithm for total variation-based image reconstruction.

The proposed method combines variable splitting and the classic penalty technique.

This reduces the image reconstruction problem to an unconstrained minimization

problem, which is solved by an alternating proximal minimization algorithm. One phase

of the algorithm solves a total variation (TV) denoising problem, and second phase

solves an ill-conditioned linear system. Linear and sublinear convergence results are

given, and an implementation based on a split Bregman scheme for the TV problem and

a Barzilai-Borwein method for the linear system is proposed. The algorithm is applied

to image reconstruction problems that arise in partially parallel magnetic resonance

imaging (PPI). Performance is compared to that of an operator splitting scheme.

3.1 Backgrounds in Optimization Methods for Nonsmooth Based Image
Reconstruction

In this paper we develop a new algorithm for total variation (TV) based image

reconstruction. The general form of such problems is

min
u∈CN
J(u) + H(u), (3–1)

where J is a convex and possibly nondifferentiable function, and H is convex and

continuously differentiable. In TV-based image reconstruction problems, J and H often

have the form

J(u) = ‖u‖TV + µ‖Ψu‖1 and H(u) = λ‖Au − f ‖22, (3–2)

where ‖ · ‖TV is the total variation, ‖ · ‖1 is the 1-norm, ‖ · ‖2 is the 2-norm (Euclidean

norm), A is a possibly large and ill-conditioned matrix describing the imaging device or

the data acquisition pattern, f is the measured data, and Ψ ∈ CN×N is an orthogonal

63



sparsifying matrix. λ and µ ≥ 0 are parameters corresponding to the relative weights

of the data fidelity term ‖Au − f ‖22 and the terms ‖u‖TV and ‖Ψu‖1 which control the

solution sparsity. Ψ projects u along a set of basis functions described by, for example,

wavelets or a dictionary [50, 69]. It is expected that many components of Ψu will vanish

at a solution of (4–15)–(3–2) for magnetic resonance images.

TV-based regularization was originally introduced by Rudin, Osher and Fetami

for image denoising in their pioneering work [59]. A significant advantage of TV

regularization is that the solution yields a restored clean image with well-preserved

edges. The TV and 1-norm terms in (3–2) lead to an underlying sparse solution of

Au = f . The lack of smoothness in both the TV and 1-norm terms makes the solution of

(4–15) difficult.

To cope with the lack of smoothness in J, we introduce an auxiliary variable v to

obtain the equivalent constrained problem

min J(v) + H(u) subject to u = v , u, v ∈ CN . (3–3)

The equality constrained problem is converted to an unconstrained problem using a

quadratic penalty:

min
u,v∈CN

J(v) + H(u) + α‖v − u‖22, (3–4)

where α > 0 is a parameter. The additional variable v allows us to treat the smooth

term H and the nondifferentiable term J somewhat independently. Starting from an initial

guess u0, we solve the penalized problem by first minimizing over v with u fixed, and

then minimizing over u with v fixed:

v k+1 = T (uk), T (u) , argminv∈CN J(v) + α‖v − u‖22 (TV)

uk+1 = L(v k+1), L(v) , argminu∈CN H(u) + α‖v − u‖22 (LS)

 (3–5)

Since J is convex, the (TV) subproblem is strongly convex in v . Likewise, since H is

convex, the (LS) subproblem is strongly convex in u. Hence, for any starting guess u0,
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the iteration sequence (v k , uk), k ≥ 1, exists and is unique. In the imaging context,

the first subproblem, denoted (TV), has the same form as TV-wavelet based image

denoising which has been extensively studied in the literature, and second subproblem

(LS) is a least squares problem. Both subproblems can be solved quickly.

In the literature, algorithms of the form (3–5) are called alternating proximal

minimization algorithms. References include [1, 7, 10]. The iterates converge to

a solution of (3–4), if a solution exists, according to [10, Cor. 4.5], for example. In

general, one needs to let α tend to infinity to obtain the solution of (4–15). However,

our numerical experience in partially parallel image reconstruction indicates that in this

application, a suitable approximation to the solution of (4–15) is generated using a fixed,

not very large α.

Our paper is organized as follows. In Section 3.2 we give an overview of TV-based

image reconstruction techniques. Section 3.3 studies the convergence rate of (3–5).

In Section 3.4 we present the algorithms that we have used to solve each of the

minimization problems in (3–5) when J and H are given by (3–2). Section 3.5 gives

an overview of an emerging magnetic resonance imaging technology known as partially

parallel imaging (PPI). Finally, Section 3.6 compares our algorithm to operator splitting

[51] using PPI generated images.

Notation. For a differentiable function, ∇f denotes the gradient of f , a row vector.

More generally, ∂J(x) denotes the subdifferential set at x , a set of row vectors. For

any matrix M, N (M) is the null space of M. xT denotes the conjugate transpose of the

vector x and 〈x , y〉 = xTy is the Euclidean inner product. ‖ · ‖p is the p-norm, and ‖ · ‖TV

is the discrete total variation semi-norm.

3.2 Related Work

In reviewing the prior work on TV-based image reconstruction, we simplify (3–2) by

taking µ = 0. With this simplification, the image reconstruction problem is equivalent to
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solving the problem

min
u∈CN
‖u‖TV + λ‖Au − f ‖22, (3–6)

where ‖ · ‖TV is the discrete (isotropic) TV semi-norm defined by

‖u‖TV ,
N∑
i=1

‖Diu‖2, (3–7)

where Di ∈ R2×N has two nonzero entries in each row corresponding to finite difference

approximations to partial derivatives along the coordinate axes, and N is the number

of pixels in the image. The early work on algorithms for (3–6) used gradient descent

methods with explicit [59] or semi-implicit schemes [43, 63] in which the TV norm was

replaced by a smooth approximation

‖u‖TV ,ε =
N∑
i=1

√
‖Diu‖22 + ε. (3–8)

The choice of ε > 0 was crucial to the reconstruction results and convergence speed.

A large ε encourages fast convergence rate, but fails to preserve high quality details

such as edges in the restored image; a small ε better preserves fine structure in the

reconstruction at the expense of slow convergence.

In [64, 67], a method is developed based on the following reformulation of (3–6):

min
u,w

N∑
i=1

‖wi‖2 + λ‖Au − f ‖22, subject to wi = Diu, i = 1, · · · ,N. (3–9)

The linear constraint was treated with a quadratic penalty

min
u,w

N∑
i=1

‖wi‖2 + β‖Du − w‖22 + λ‖Au − f ‖22, (3–10)

where w ∈ C2N and D is obtained by stacking the Di matrices. For any fixed β, (3–10)

can be solved by alternating minimizations. If both D>D and A>A can be diagonalized

by the Fourier matrix, as they would if A is either the identity matrix or a blurring matrix

with periodic boundary conditions, then each minimization involves shrinkage and
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a fast Fourier transform (FFT). A continuation method is used to deal with the slow

convergence rate associated with a large value for β. The method, however, is not

applicable to more general A.

In [34] Goldstein and Osher develop a split Bregman method for (3–10). The

resulting algorithm has similar computational complexity to the algorithm in [64]; the

convergence is fast and the constraints are exactly satisfied. Later the split Bregman

method was shown to be equivalent to the alternating direction method of multipliers

(ADMM) [13, 28, 32, 33] applied to the augmented Lagrangian

L(w , u, p) ,
N∑
i=1

‖wi‖2 + λ‖Au − f ‖22 + 〈p,Du − w〉+ β‖Du − w‖22. (3–11)

Nonetheless, the algorithms in [34, 64, 67] benefit from the special structure of A, and

they lose efficiency if ATA cannot be diagonalized by fast transforms. To treat a more

general A, the Bregman operator splitting (BOS) method [75] replaces ‖Au − f ‖22 by a

proximal-like term ‖u − (uk − δA>(Auk − f ))‖2/δ for some δ > 0. BOS is an inexact

Uzawa method that depends on the choice of δ. It is generally less efficient than split

Bregman.

There are also several methods developed to solve the associated dual or

primal-dual formulations of (3–6) based on the dual formulation of the TV norm:

‖u‖TV = max
p∈X

〈p,Du〉, where X = {p = (p1, ... , pN) : pi ∈ C2, 1 ≤ i ≤ N} (3–12)

Consequently, (3–6) can be written as a minimax problem

min
u∈CN
max
p∈X

〈p,Du〉+ λ‖Au − f ‖22. (3–13)

In [20], Chan et al. proposed to solve the primal-dual Euler-Lagrange equations using

Newton’s method. This leads to a quadratic convergence rate and highly accurate

solutions; however, the cost per iteration is much higher since the method explicitly

uses second-order information and the inversion of a Hessian matrix is required. In [19],
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Chambolle used the dual formulation of the TV denoising problem (3–6) with A = I , and

provided an efficient semi-implicit gradient descent algorithm for the dual. However, the

method does not naturally extend to the case with more general A. Recently, Zhu and

Chan [78] proposed a primal-dual hybrid gradient (PDHG) method. PDHG alternately

updates the primal and dual variables u and p. Numerical results show that PDHG

outperforms methods in [19, 34] for denoising and deblurring problems, but its efficiency

again relies on the fact that ATA can be diagonalized by fast transforms. Later, several

variations of PDHG, referred to as projected gradient descent algorithms, were applied

to the dual formulation of image denoising problem in [79] to make the method more

efficient. Further enhancements involve different step-length rules and line-search

strategies, including techniques based on the Barzilai-Borwein method [9].

Another approach that can be applied to (4–15) in the imaging context (3–2) with

a general A is the operator splitting (OS) method. In [51] the OS idea of [47] is applied

to image reconstruction in compressed magnetic resonance imaging. The scheme is

based on the first-order optimality condition at a local minimizer u∗:

0 ∈ ∂J(u∗) + λAT(Au∗ − f ).

This is rewritten in the form

0 ∈ ∂J(u∗) + 1
δ
(u∗ − s∗) , s∗ = u∗ − δλAT(Au∗ − f ).

The iterative scheme is

sk = uk − δλAT(Auk − f ),

uk+1 = argmin
u
J(u) +

1

2δ
||u − sk ||22.

The computation of uk+1, given sk , is a TV-denoising problem. If this problem is solved

using a split Bregman method [34], then this is equivalent to the Bregman operator

splitting method [75]. In [51] a fixed point iteration is applied to solve the u subproblem;
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the iterative scheme combines the OS idea with conjugate duality. The comparison of

our method with the algorithm of [51] is given in Section 3.6.

3.3 Convergence Analysis

In this section, we examine the convergence rate of the alternating proximal

minimization scheme (3–5). Since H is convex, there exists a constant σ ≥ 0 such that

the following monotonicity condition holds for all u and v ∈ Cn:

(∇H(u)−∇H(v))(u − v) ≥ σ‖u − v‖22 (3–14)

Here, ∇H denotes the gradient, which is a row vector throughout this paper. If σ > 0,

then H is strongly convex. As shown below in Corollary 1, strong convexity of H and

convexity of J imply that the objective function in the penalized problem (3–4) is strongly

convex, which ensures the existence of a unique minimizer.

Theorem 3.1. If (3–4) has minimizers v ∗ and u∗, then for each k we have

‖v k+1 − v ∗‖2 ≤
2α

2α+ σ
‖v k − v ∗‖2 and ‖uk+1 − u∗‖2 ≤

2α

2α+ σ
‖uk − u∗‖2. (3–15)

Proof. It is well-known that the operators T and L in (3–5) are nonexpansive relative to

the Euclidean norm. That is, for all u and v , we have

‖T (v)− T (u)‖2 ≤ ‖v − u‖2 and ‖L(v)− L(u)‖2 ≤ ‖v − u‖2.

This follows from the first-order optimality conditions characterizing the minimizers in

(3–5). For example, if vi = T (ui) for i = 1, 2, then 2α(ui − vi)T ∈ ∂J(vi), where ∂ denotes

the subdifferential. By the convexity of J, it follows that

J(v2) ≥ J(v1) + 2α(u1 − v1)T(v2 − v1). (3–16)

Likewise, interchanging v1 and v2 gives

J(v1) ≥ J(v2) + 2α(u2 − v2)T(v1 − v2). (3–17)
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We add (3–16) and (3–17) to obtain

‖v2 − v1‖2 ≤ (u2 − u1)T(v2 − v1) ≤ ‖u2 − u1‖2‖v2 − v1‖2. (3–18)

Hence, ‖v2 − v1‖2 = ‖T (u2) − T (u1)‖2 ≤ ‖u2 − u1‖2, which yields the nonexpansive

property.

Since v ∗ and u∗ achieve the minimum in (3–5), we have v ∗ = T (u∗). Subtracting this

identity from the equation v k+1 = T (uk) and utilizing the nonexpansive property gives

‖v k+1 − v ∗‖2 ≤ ‖T (uk)− T (u∗)‖2 ≤ ‖uk − u∗‖2. (3–19)

The first-order optimality conditions for uk and u∗ are

∇H(uk)− 2α(v k − uk)T = 0,

∇H(u∗)− 2α(v ∗ − u∗)T = 0.

We subtract the second equation from the first and multiply by (uk − u∗) to obtain

(∇H(uk)−∇H(u∗))(uk − u∗) + 2α‖uk − u∗‖22 = 2α(v k − v ∗)T(uk − u∗) (3–20)

≤ 2α‖v k − v ∗‖2 ‖uk − u∗‖2.

Utilizing the monotonicity condition (3–14) on the left side of (3–20) gives

(σ + 2α)‖uk − u∗‖22 ≤ 2α‖v k − v ∗‖2 ‖uk − u∗‖2,

which yields

‖uk − u∗‖2 ≤
(
2α

σ + 2α

)
‖v k − v ∗‖2. (3–21)

Combining this with (3–19) gives

‖v k+1 − v ∗‖2 ≤
(
2α

σ + 2α

)
‖v k − v ∗‖2,

the first inequality in (3–15). Combining (3–21), with k replaced by k + 1, and the

nonexpansive property (3–19) gives the second inequality in (3–15).
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Corollary 1. If σ > 0, then the iterates generated by (3–5) converge linearly to the

unique minimizer of (3–4).

Proof. We first observe that when σ > 0, the objective function in (3–4) strongly convex.

Let F (u, v) = H(u) + α‖v − u‖22 be the part of the objective which excludes J. By the

convexity inequality (3–14), we have

(∇F (u1, v1)−∇F (u2, v2))

 δu

δv

 = (∇H(u1)−∇H(u2))(u1 − u2) + 2α‖δu − δv‖22

≥ σ‖δu‖22 + 2α‖δu − δv‖22, (3–22)

where δu = u1− u2 and δv = v1− v2. The matrix corresponding to the quadratic in (3–22)

is

2

 α+ σ/2 −α

−α α

 .
Since the eigenvalues of this matrix are strictly positive, F is strongly convex. The

objective function in (3–4) is the sum J + F of a convex function J and a strongly convex

function F . Hence, it is strongly convex and there exists a unique minimizer (u∗, v ∗). By

Theorem 3.1, the iterates generated by (3–5) converge to (u∗, v ∗) linearly.

In the case σ = 0, Theorem 3.1 only yields

‖v k+1 − v ∗‖2 ≤ ‖v k − v ∗‖2 and ‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2, (3–23)

which does not imply convergence. On the other hand, by the theory for the alternating

proximal minimization algorithm, we know that the iterates do converge. We now

observe that the inequalities in (3–23) are strict except when convergence is achieved in

a finite number of steps. This result is based on the following property.

Lemma 1. If P : Cn → Cn satisfies

‖P(u)− P(v)‖22 ≤ 〈P(u)− P(v), u − v〉 (3–24)
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for all u and v ∈ Cn, then

‖P(u)− P(v)‖2 ≤ ‖u − v‖2 (3–25)

for all u and v ∈ Cn with equality only if P(u)− P(v) = u − v .

Operators satisfying (3–24) are called firmly nonexpansive. The fact that the

proximal maps T or L are firmly nonexpansive is implied by (3–18).

Proof. The inequality (3–25) is a consequence of the Schwarz inequality applied to

(3–24). Moreover, by (3–24) we have

‖(u − v)− (P(u)− P(v))‖22 = ‖u − v‖22 − 2〈P(u)− P(v), u − v〉+ ‖P(u)− P(v)‖22

≤ ‖u − v‖22 − ‖P(u)− P(v)‖22. (3–26)

If (3–25) is an equality, then the right side of (3–26) vanishes, which implies that the left

side vanishes:

(u − v)− (P(u)−P(v)) = 0.

Theorem 3.2. Suppose that u∗ and v ∗ are optimal in (3–4). If for some k , the iterates of

the alternating proximal minimization algorithm (3–5) satisfy ‖uk+1 − u∗‖2 = ‖uk − u∗‖2,

then uj = uk and v j+1 = v k+1 for all j > k . If ‖v k+1 − v ∗‖2 = ‖v k − v ∗‖2 for some k , then

v j = v k and uj = uk for all j > k .

Proof. Suppose that ‖uk+1 − u∗‖2 = ‖uk − u∗‖2. Since v ∗ and u∗ are optimal in (3–4), we

have

(LT )(u∗) = L(T (u∗)) = L(v ∗) = u∗. (3–27)

72



By (3–5), it follows that uk+1 = (LT )(uk). Hence, the equality ‖uk+1 − u∗‖2 = ‖uk − u∗‖2

coupled with the nonexpansive properties of L and T yield

‖uk − u∗‖2 = ‖(LT )(uk)− (LT )(u∗)‖2 = ‖L(T (uk))− L(T (u∗))‖2

≤ ‖T (uk)− T (u∗)‖2

≤ ‖uk − u∗‖2. (3–28)

Since the right and left sides of (3–28) are equal, all the inequalities in (3–28) are

equalities. The equality ‖T (uk)− T (u∗)‖2 = ‖uk − u∗‖2 and Lemma 1 imply that

T (uk)− T (u∗) = uk − u∗. (3–29)

The equality ‖L(T (uk))− L(T (u∗))‖2 = ‖T (uk)− T (u∗)‖2 and Lemma 1 imply that

(LT )(uk)− (LT )(u∗) = L(T (uk))− L(T (u∗)) = T (uk)− T (u∗). (3–30)

Together, (3–29) and (3–30) yield

(LT )(uk)− (LT )(u∗) = uk − u∗. (3–31)

We combine (3–27) and (3–31) to obtain

uk+1 = (LT )(uk) = uk .

Hence, uk is a fixed point of (LT ) and uj = uk for all j > k . Since v j+1 = T (uj), we

conclude that v j+1 = v k+1 for all j > k . The equality ‖v k+1 − v ∗‖2 = ‖v k − v ∗‖2 is treated

in the same way except that L and T are interchanged.

By the convergence theory for the alternating proximal minimization algorithm, we

know that the iterates converge to a solution (u∗, v ∗) of (3–4) provided a solution exists.

Theorem 3.2 implies that

‖uk+1 − u∗‖2/‖uk − u∗‖2 < 1
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except when uk = u∗. Likewise

‖v k+1 − v ∗‖2/‖v k − v ∗‖2 < 1

except when v k = v ∗. This implies at least sublinear convergence of the alternating

proximal minimization algorithm (3–5).

For any fixed α, the solution of (3–4) generates an approximation to a solution

of (4–15). Let αk , k ≥ 0, denote an increasing sequence of values for the penalty

parameter tending to infinity, and let (Uk ,V k) denote associated solutions of (3–4),

assuming they exist. By the theory describing the convergence of the penalty scheme

(see [53, Thm. 17.1]), convergent subsequences of the iterates approach a solution

of (4–15). We now show in the context (3–2) of image reconstruction that the iterates

(Uk ,V k) are bounded.

Theorem 3.3. Suppose that J and H are given by (3–2). If µ ≥ 0, λ > 0, and N (D) ∩

N (A) = 0, where N denotes null space, then for each α0 > 0, there exists a compact set

K which contains the solutions of (3–4) for all α ≥ α0. Moreover, as α tends to infinity,

any convergent subsequence of the iterates approaches a solution of either (4–15) or

the equivalent problem (3–3).

Proof. In the special case (3–2), J(0) = 0 and H(0) = λ‖f ‖22. Let ρ = λ‖f ‖22 be the value

of the objective function value in (3–4) corresponding to u = v = 0. For any choice of α,

the optimal objective function value in (3–4) is bounded by ρ. Hence, for any choice of α,

when minimizing the objective function in (3–4), we should restrict our attention to those

u and v satisfying

J(v) + H(u) + α‖v − u‖22 ≤ ρ. (3–32)
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Since J(v) = ‖v‖TV + µ‖Ψv‖1 ≥ 0 and H(u) = ‖Au − f ‖22 ≥ 0, it follows from (3–32) that

‖v − u‖2 ≤
√
ρ/α, (3–33)

‖v‖TV ≤ ρ, (3–34)

‖Au − f ‖2 ≤
√
ρ/λ. (3–35)

Decompose u = un + up where un ∈ N (A) and up is orthogonal to N (A). By (3–7),

(3–33), and (3–34), we have

ρ ≥ ‖v‖TV =

N∑
i=1

‖Div‖2 ≥ ‖Dv‖2 ≥ ‖Du‖2 − ‖D(v − u)‖2

≥ ‖Dun‖2 − ‖Dup‖2 − ‖D‖2‖v − u‖2

≥ ‖Dun‖2 − ‖Dup‖2 − ‖D‖2
√
ρ/α. (3–36)

Since N (D) ∩N (A) = 0, there exists γ1 > 0 such that

‖Du‖2 ≥ γ1‖u‖2 for all u ∈ N (A).

Hence, by (3–36)

‖un‖2 ≤
(
ρ+ ‖Dup‖2 + ‖D‖2

√
ρ/α

)
/γ1. (3–37)

Similarly, there exists γ2 > 0 such that

‖Aup‖2 ≥ γ2‖up‖2.

Hence, by (3–35), we have

γ2‖up‖2 ≤ ‖Au‖2 ≤ ‖f ‖2 + ‖Au − f ‖2 ≤ ‖f ‖2 +
√
ρ/λ. (3–38)

Combine (3–37) and (3–38) to deduce that u = un + up lies in a compact set. By (3–33),

we have

‖v‖2 ≤ ‖u‖2 +
√
ρ/α,
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which yields a bound for ‖v‖2. As α increases, the level set of (3–4) corresponding to

the objective function value ρ can only shrink. Hence, this level set is bounded for any

α ≥ α0. Let αk , k = 0, 1, ..., denote an increasing sequence of values for the penalty

tending to infinity, and let (Uk ,V k) denote associated solutions of (3–4). By [53, Thm.

17.1], every convergent subsequence of the minimizers (Uk ,V k) approaches a solution

of (3–3).

Remark. If H is strongly convex, then (4–15) has a unique solution; hence, any

sequence of solutions to (3–4) approaches the unique solution of (4–15) as α tends to

infinity.

3.4 Algorithms for the TV and LS Subproblems

We now provide implementations for the (TV) and (LS) subproblems of the

alternating proximal minimization algorithm (3–5) in the imaging context (3–2). One

of the reasons that the splitting (3–3) worked well was that each of the subproblems

could be solved quickly. For fixed u, subproblem (TV) is a TV-wavelet image denoising

problem. As discussed earlier, there are many fast algorithms for this problem that take

advantage of the simplicity of the ‖v −u‖22 term. Recent work includes the dual approach

in [19], variable splitting and continuation [64, 67], split Bregman [34], primal-dual hybrid

gradient [78, 79]. In the numerical experiments of Section 3.6, we used a split Bregman

method which is among the fastest methods for TV-wavelet image denoising.

We now explain in detail the split Bregman scheme that we use for the TV

subproblem in (3–5). Based on the representation (3–7) for the TV norm, the TV

subproblem has the form

min
v

µ‖Ψv‖1 + α‖v − u‖22 +
N∑
i=1

‖Div‖2.

Introducing additional variables w and z , where wi = Div and Ψv = z , this is rewritten

min
v ,w ,z

µ‖z‖1 + α‖v − u‖22 +
N∑
i=1

‖wi‖2 subject to Dv = w , Ψv = z .
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We apply the split Bregman scheme given as Algorithm (A1) in [76], but without the

proximal terms. Let bk and ck denote approximations to multipliers for the constraints

Dv = w and Ψv = z , and let β1 and β2 denote corresponding constraint penalties. The

iteration has the following form:

Algorithm 3 Split Bregman [76] for TV Subproblem

v k+1 = arg min
v∈CN

α‖v − u‖22 + (Dv − w k)Tbk + (Ψv − zk)Tck

+β1‖Dv − w k‖22 + β2‖Ψv − zk‖22 (3–39)
w k+1i = arg min

wi∈C2
‖wi‖2 + (Div k+1 − wi)Tbki + β1‖Div k+1 − wi‖22, 1 ≤ i ≤ N(3–40)

zk+1 = arg min
z∈CN
‖z‖1 + (Ψv k+1 − z)Tck + β2‖Ψv k+1 − z‖22 (3–41)

bk+1 = bk + 2β1(Dv
k+1 − w k+1) (3–42)

ck+1 = ck + 2β2(Ψv
k+1 − zk+1) (3–43)

In Algorithm 1, (3–39) is a well-conditioned least squares problem; it can be solved

by an iterative method such as Gauss-Seidel or by an FFT if the associated image

satisfies periodic boundary conditions [64]. For the steps (3–40) and (3–41), there are

closed form solutions [34, 64, 67], the 2D and componentwise shrinkage operators. The

final steps (3–42) and (3–43) are the first-order multiplier updates. Based on the results

given in [34], Algorithm 1 is expected to be very efficient.

The LS subproblem in (3–5) is a least-squares problem in u. This could be solved

by a conjugate gradient method, however, we have obtained comparable or better

performance using the Barzilai-Borwein [9] method (BB), which handles ill-conditioning

much better than gradient methods with a Cauchy step [4]. The LS subproblem has the

form

min
u
λ‖Au − f ‖22 + α‖v − u‖2. (3–44)

In the standard implementation of the BB method, the Hessian of the objective function

is approximated by a multiple of the identity matrix. For the LS problem, however, the

Hessian of ‖v − u‖2 with respect to u already a multiple of the identity. Hence, we only
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approximate the Hessian of ‖Au − f ‖22 by a multiple of the identity. More precisely, if uk is

the current BB iterate, then we employ the approximation

‖Au − f ‖22 ≈ ‖Auk − f ‖22 + 2(Auk − f )TA(u − uk) + δk‖u − uk‖22, (3–45)

where

δk = ‖A(uk − uk−1)‖22/‖uk − uk−1‖22.

Since the ‖Auk − f ‖22 term in (3–45) does not depend on u, the BB method for the LS

subproblem is as follows:

Algorithm 4 BB method [9] for LS Subproblem

uk+1 = arg min
u∈CN

λ
(
2(Auk − f )TA(u − uk) + δk‖u − uk‖22

)
+ α‖v − u‖2. (3–46)

The iteration (3–46) converges linearly to a solution of (3–44) by [24, 25, 31].

Each iteration involves multiplication by A and AT. In the application to partially parallel

imaging developed in the next section, A is represented as a product MFSj where the

matrix M is the identity matrix with some rows removed, F is a Fourier transform, and Sj

is a diagonal matrix. The time to multiply by M or Sj is bounded by a constant times N,

while the Fourier transform can be performed in time proportional to N log(N). Hence,

each iteration of Algorithm 4 can be performed quickly in our target application.

3.5 Partially Parallel Imaging (PPI)

Magnetic resonance (MR) imaging is a medical imaging technique commonly used

in radiology to visualize the internal structure and function of the body by non-invasive

and non-ionizing means. It provides better contrast between the different soft tissues

than most other modalities. MR images are obtained through an inversion of Fourier

data acquired by the receiver coil(s).

Magnetic resonance images are obtained by placing an object in a strong magnetic

field and then turning on and off a radio frequency electromagnetic field. Different body

parts produce different signals which are detected by receivers. The resulting data is
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Figure 3-1. PPI mask

then inverted to obtain an image of the scanned object. To improve the quality of the

image, a number of receivers are pointed at the scanned object from different directions,

and data is collected in parallel. To accelerate the imaging process, only part of the

Fourier components are recorded by the receiver. This technology based on collecting in

parallel partial Fourier data from different coil arrays is called partially parallel imaging or

PPI.

The undersampling patterns of the Fourier coefficients are often described by a

mask. Figure 3-1 shows a simulated radial mask for a 2D image. The white pixels

correspond to the Fourier component which are measured. The white region in

the center of the mask indicates that the low frequency Fourier components are all

measured, while the white rays in the surrounding darker region shows the spacing

between the higher frequency Fourier components that are measured.

Partial data acquisition increases the spacing between regular subsequent read-out

lines, thereby reducing scan time, however, this reduction in the number of recorded

Fourier components leads to aliasing artifacts in images. There are two general

approaches for removing the aliasing artifacts and reconstructing high quality images,

image domain-based methods and k-space based methods. The k-space based
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Figure 3-2. Sensitivity maps for an 8-channel coil

methods use coil sensitivity variations to reconstruct the missing k-space data, and then

apply the Fourier transform to the original and reconstructed data to obtain the unaliased

image [6, 35, 48]. In this paper, we employ image domain methods and coil sensitivity

maps to reconstruct the underlying image [15, 29, 54–57, 60, 70, 73].

Sensitivity Encoding (SENSE) is the most common image domain-based parallel

imaging method. It is based on the following equation which relates the partial k-space

data fj , acquired by the j-th channel, to the sensitivity map Sj and the mask M:

MF(Sj � u) = fj (3–47)

Here � is the Hadamard (or componentwise) product between two vectors, fj is the

vector of measured Fourier coefficients at receiver j , M is the mask which is obtained

by extracting from the identity those rows corresponding to the measured Fourier

components, F is the Fourier transform, Sj ∈ CN is the sensitivity map for receiver j , and

u ∈ CN is the underlying image gotten by stacking all columns of the image to form a

one dimensional vector. The sensitivity map is an estimate of the impact of a pixel in the

image on the measured Fourier coefficients. Pixels closest to a receiver may have more

impact on the signal than pixels far away from the receiver. An example of the sensitivity

map for an 8-channel coil appears in Figure 3-2.
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Based on (3–47), the reconstruction of the image u could be accomplished by

solving the least squares problem

min
u∈CN

J∑
j=1

‖MF(Sj � u)− fj‖22 , (3–48)

where J is the number of channels. However, (3–48) often does not have a unique

solution and the minimization problem can be ill-conditioned. To alleviate the effect

of the ill-conditioning, the SENSE model (3–48) has been improved recently by

incorporating regularization terms into the energy functional to take advantage of the

underlying sparsity of MR images in the finite difference domain and wavelet transform

domain [50]. The images are recovered by solving an optimization problem of the form

min
u∈CN
‖u‖TV + µ‖Ψu‖1 + λ

J∑
j=1

‖MF(Sj � u)− fj‖22. (3–49)

The first two terms in (3–49) correspond to J in (3–2) while the last term corresponds to

H(u) = λ‖Au − f ‖22.

3.6 Numerical Experiments

3.6.1 Data Acquisition and Experimental Setup

In this section we give results for three PPI reconstructions based on the algorithm

(3–5). We compare performance to that of the operator splitting (OS) in [51]. All k-space

data were fully acquired with 8-channel head coil as illustrated in Figure 3-3. By full

acquisition we mean that each receiver coil obtains the complete k-space data and

hence a high resolution image. One of the data sets, denoted SB512, was a set

of sagittal Cartesian brain images acquired on a 3T GE system (GE Healthcare,

Waukesha, Wisconsin, USA). The data acquisition parameters were FOV 220mm2,

size 512 × 512 × 8, TR 3060ms, TE 126ms, slice thickness 5mm, flip angle 90◦, and

phase encoding direction was anterior-posterior. The second data set was a radial brain

data set acquired on a 1.5T Siemens Symphony system (Siemens Medical Solutions,

Erlangen, Germany). The acquisition parameters were FOV 220mm2, size 256× 512× 8,
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slice thickness 5mm, TR 53.5ms, TE 3.4ms, and flip angle 75◦. A Cartesian data set

with full k-space, denoted AB512, with size 512 × 512 × 8, was generated by GRAPPA

operator griding [61] which can shift non-Cartesian radial data to Cartesian grids. The

third data set of size 256 × 256 × 8, denoted AB256, has full k-space simulated by the

complete central k-space of AB512. We simulated a PPI scan by undersampling the

actual data using a radial mask similar to that shown in Figure 3-1. We used 88 radial

lines corresponding to sampling ratios of 33.5% for AB256 and of 16.8% for SB512 and

AB512.

Figure 3-3. An illustration of a head PPI system with eight receiver coils.

The sensitivity maps were estimated using center k-space data of size 32 ×

32, which is a subset of the partially sampled data. The estimated sensitivity maps

for SB512 are shown in Figure 3-2. In all experiments, the sensitivity maps were

obtained in the same way; the maps were fixed during the reconstruction process.

Algorithms were implemented in MATLABr, Version R2009b. All the experiments were

performed on a Lenovo laptop with IntelrDual Core 2 Duo 2.53 GHz processors and a

WindowsTMoperating system. Only 1 core was used in the computations.

3.6.2 Comparison Algorithm

Many of the algorithms in Section 3.2 are not very effective for PPI imaging due to

the complicated structure of A. For comparison, we chose the operator splitting (OS)
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Table 3-1. Tested Data and Model Parameters
Data Image Abbrev. Size Sample Ratio (µ,λ)

1 Axial Brain AB256 256× 256× 8 33.5% (.25, 500)
2 Sagittal Brain SB512 512× 512× 8 16.8% (.25, 500)
3 Axial Brain AB512 512× 512× 8 16.8% (.25, 500)

scheme from [51], which is relatively efficient and only requires the computations of A

and A> in each iteration. The OS scheme of [51], with a minor correction, is as follows:

sk+1 = Ψuk − (δ1/λ)Ψ
(
D>w k + λA>(Auk − f )

)
,

tk+1i = w ki + δ2Diu
k , 1 ≤ i ≤ N,

uk+1 = Ψ
(
sign(sk+1)�max{|sk+1| − δ1τ/λ, 0}

)
,

w k+1i = min(1, ‖tk+1i ‖) · tk+1i /‖tk+1i ‖2 1 ≤ i ≤ N,

where sk ∈ CN , tki and w ki ∈ C2, i = 1, · · · ,N, w k ∈ C2N is formed by stacking

the two columns of matrix (w k1 , · · · ,w kN)>, and the ”max” and ”sign” operations in the

computation of uk+1 are componentwise operations corresponding to shrinkage. The

main computational cost per iteration in the OS scheme corresponds to the following

operations: a 2D shrinkage during the computation of w k+1, a projection during the

computation of uk+1, two wavelet transforms during the computation of sk+1 and uk+1,

and two (inverse) Fourier transforms during the computation of sk+1. In [51] it is shown

that for δ1, δ2 > 0 in certain ranges, the OS scheme converges to a fixed point which

is also a solution of (4–15). The iterations were stopped when either the following

conditions were satisfied:

‖uk+1 − uk‖2/max{1, ‖uk‖2} < ε1 or (f k − f k+1)/max{1, f k} < ε2
√
τc/τt , (3–50)

where f k is the objective value of (4–15) at uk , τc and τt are the current and target

values of τ respectively and ε1 and ε2 are prescribed stopping tolerances.

3.6.3 Experimental Results

The parameters values and test problems are summarized in Table 3-1. In all
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experiments, we set δ1 = δ2 = 1, ε1 = 10−4 and ε2 = 10−3 for the OS scheme. For the

alternating minimization (AM) scheme (3–5), we set α = 25 and we used the stopping

criterion (f k − f k−1)/f k ≤ 10−3. For this stopping criterion, the image quality for the OS

and the AM schemes are comparable. The reconstructed images for SB512 are shown

in Figures 3-4B and 3-4C. The root mean squared error (RMSE) of the image u, given

by ‖u − ū‖2/‖ū‖2 where ū is the reference image reconstructed from fully acquired data,

was 13.1% for the OS scheme and 12.5% for the AM scheme. In Figures 3-4E and 3-4F,

we zoom into the square shown in Figure 3-4A. It is seen that both methods adequately

recovered the image while AM has slightly better preserved edges. The reconstructions

for AB512 are shown in Figures 3-5B and 3-5C. The RMSE was 14.7% for OS and

13.9% for AM. Since AB512 does not contain obvious fine structures when compared

to SB512 (see Figure 3-4D), we compare the differences of these two reconstructions

to the reference image (Figure 3-5A) under the same contrast level. Figure 3-5A shows

the followings: reference image, reconstruction by OS with RMSE=14.7%, reconstruction

by AM with RMSE=13.9%, and the differences of reconstructions by OS (left) and AM

(right) to the reference image displayed under the same contrast level. From Figure

3-5D, we can see the reconstruction by AM (right) has much less systematic error

than that of OS (left), and hence is more likely to prevent loss of important diagnostic

information such as edges.

To examine the efficiency of the proposed algorithm AM compared to OS,

we tracked their objective function values and reconstruction errors during the

computation processes for data sets AB256 and SB512. As the per iteration costs

for two algorithms OS and AM are quite different, we compared the normalized RMSE

and objective function values versus CPU time, which are plotted in Figures 3-6A

and 3-6B, respectively. From Figures 3-6A and 3-6B, we can see both AM and OS

converged faster for the smaller image AB256 than for SB512. For both of AB256 and
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A Reference B OS C AM

D Reference Box E OS Box F AM Box

Figure 3-4. Reconstructed images by OS and AM for SB512.

SB512, AM consistently reached and maintained the same or lower RMSE and objective

functions than OS in much less CPU time.

3.7 Concluding Remarks

A fast numerical algorithm for total variation-based image reconstruction was

developed and analyzed. The proposed method employs variable splitting, a quadratic

penalty, and an alternating proximal minimization algorithm (AM). Linear convergence

was established when the smooth part of the objective function was strongly convex,

while the convergence was sublinear under a weaker convexity assumption. One phase

of the alternating proximal minimization algorithm represents a total variation denoising

problem, and the other phase is an ill-conditioned linear system. An implementation

based on a split Bregman scheme for the TV problem and a Barzilai-Borwein method
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A Reference B OS C AM

D Differences to Reference image

Figure 3-5. Reconstructions by OS and AM for AB512.

for the linear system was proposed. Numerical performance was evaluated using

image reconstruction problems that arose from clinical applications of partially parallel

magnetic resonance imaging (PPI). The performance of the alternating proximal

minimization algorithm was compared to that of an operator splitting algorithm. The

numerical results show excellent performance for the proposed algorithm in terms of

efficiency and accuracy in reconstruction, which suggests its great potential for practical

use.
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A Relative errors versus CPU time.

B Objective functions versus CPU time.

Figure 3-6. Comparison of OS and AM on data sets AB256 and SB512.
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CHAPTER 4
INVERSE CONSISTENT DEFORMABLE IMAGE REGISTRATION

Outline

This paper presents a novel variational model for inverse consistent deformable

image registration. The proposed model deforms both source and target images

simultaneously, and aligns the deformed images in the way that the forward and

backward transformations are inverse consistent. To avoid the direct computation

of the inverse transformation fields, our model estimates two more vector fields by

minimizing their invertibility error using the deformation fields. Moreover, to improve the

robustness of the model to the choice of parameters, the dissimilarity measure in the

energy functional is derived using the likelihood estimation. The experimental results on

clinical data indicate the efficiency of the proposed method with improved robustness,

accuracy and inverse consistency.

4.1 Backgound of Consistent Image Registration

Image registration is a very important subject that has been widely applied in

medical research and clinical applications. The task of image registration is to find a

transformation field that relates points in the source image to their corresponding points

in the target image. Deformable image registration allows localized transformations, and

is able to account for internal organ deformations. Therefore, it has been increasingly

used in health care to assist diagnosis and treatments. In particular, deformable image

registration has become a critical technique for image guided radiation therapy. It allows

more precise tumor targeting and normal tissue preservation. A comprehensive review

of image registration in radiation therapy can be found in [40].

A deformable image registration is called inverse consistent, if the correspondence

between two images is invariant to the order of the choice of source and target. More

precisely, let S and T be the source and target images, and h and g be the forward and
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backward transformations, respectively, i.e.

S ◦ h = T and T ◦ g = S ,

then an inverse consistent registration satisfies h ◦ g = id and g ◦ h = id , where id

is the identity map. This can be illustrated by the following diagram with constraints

g = h−1, h = g−1:

S
g

// T
hoo

, (4–1)

where each of the two squares in (4–1) represents the domain on which the labeled

image is defined. By applying an inverse consistent registration, measurements or

segmentations on one image can be precisely transferred to the other. In imaging

guided radiation therapy, the inverse consistent deformable registration technique

provides the voxel-to-voxel mapping between the reference phase and the test phase

in four-dimensional (4D) radiotherapy [49]. This technique is referred to ”automatic

re-contouring”.

Inverse consistent deformable image registration has been an active subject of

study in the literature. There has been a group of work developed in the context of large

deformation by diffeomorphic metric mapping, e.g. [8, 12, 37, 39]. The main idea of

this method is modeling the forward and backward transformations as a one-parameter

diffeomorphism group. Then, a geodesic path connecting two images is obtained by

minimizing an energy functional symmetric to the forward and backward transformations.

This type of models produce a very good registration results. However, it take long time

to compute, since strong regularization of the mappings are required.

Variational method is one of the popular approaches for inverse consistent

deformable image registration. This method minimizes an energy functional(s)

symmetric to the forward and backward transformations, and in general, consists of

three parts: regularization of deformation fields, dissimilarity measure of the target and

deformed source images, and penalty of inverse inconsistency [5, 23, 58, 77]. In [23],
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Christensen and Johnson proposed to minimize the following coupled energy functionals

with respect to h and g alternately:
E(h) = λEs(S ◦ h,T ) + Er(u) + ρ‖h − g−1‖2L2(Ω)

E(g) = λEs(T ◦ g,S) + Er(v) + ρ‖g − h−1‖2L2(Ω)
, (4–2)

where u and v are forward and backward deformation fields corresponding to h and g,

respectively, i.e. h(x) = x + u(x) and g(x) = x + v(x). The dissimilarity measure Es and

the regularization of the deformation field Er are defined by

Es(S ◦ h,T ) = ‖S ◦ h − T‖2L2(Ω), Er(u) = ‖a∆u + b∇(div u)− cu‖2L2(Ω)

with positive constants a, b, c > 0. The last term in both energy functionals enforces

the inverse consistency of h and g. The solution (u, v) to (4–2) is obtained by iteratively

solving a system of two evolution equations associated with their Euler-Lagrange (EL)

equations. This model gives considerably good results with parameters chosen carefully.

However, it needs to compute the inverse mappings g−1 and h−1 explicitly in each

iteration, which is computationally intensive can cause cumulated numerical errors in the

estimation of inverse mappings.

The variational models developed in [5] and [77] have the same framework as in

[23], but with different representations of Es , Er , and inverse consistent constraints.

In [5] and [77] the terms ‖h ◦ g(x) − x‖2L2(Ω) and ‖g ◦ h(x) − x‖2L2(Ω) are used in the

energy functional to enforce the inverse consistency. By using these terms the explicit

computation of the inverse transforms of h and g can be avoided during the process

of finding optimal forward and backward transformations. The similarity measure in

[77] is mutual information for multi-modal image registration. The Es(S ◦ h,T ) in [5] is

‖S ◦ h − T‖2L2(Ω)/max |DT |. The regularization term Er(u) in [77] is a function of Du, and

that in [5] is a tensor based smoothing which is designed to prevent the transformation

fields from being smoothed across the boundaries of features. In [71, 72] the proposed
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models incorporated stochastic errors in the inverse consistent constraints for both

forward and backward transformations.

In [45], Leow et al. proposed a non-variational approach that updates the forward

and backward transformations simultaneously by a force that reduces the first two terms

in E(h) and E(g) in (4–2) and preserves the inverse consistency. However, in order

to simplify the computation this algorithm only takes linear order terms in the Taylor

expression to approximate the inverse consistent conditions for updated transformation

fields. As a consequence, the truncating errors can be accumulated and exaggerated

during iterations. This can lead to large inverse consistent error, despite that it can

produce a good matching quickly [74].

In this paper we propose a novel variational model to improve the accuracy,

robustness and efficiency of inverse consistent deformable registration. As an alternate

to the current framework of variational methods which finds the forward and backward

transformations that deform a source image S to match a target image T and vice

versa, we propose to deform S and T simultaneously, and let the registration align the

deformed source and deformed target images. It is clear that the disparity between

deformed S and deformed T is smaller than that between deformed S and fixed T or

deformed T and fixed S . Therefore, the deformation by the bidirectional simultaneous

deformations is in general smaller than the deformation by unidirectional deformation

that deforms S full way to T or T full way to S . As shown in section 4.5, deforming

S and T simultaneously leads to a faster and better alignment than deforming S

to the fixed T or vice versa. Let φ and φ̃ represent the transformation fields such

that S ◦ φ matches T ◦ φ̃. It is not difficult to verify that if φ and φ̃ are invertible,

then the registrations from S to T , and T to S are inverse consistent. To avoid the

direct computation of the inverse transformations of φ and φ̃, our model seeks for two

additional deformation fields ψ, ψ̃ such that φ and ψ are inverse to each other, and the

same for φ̃ and ψ̃. Moreover, the registration process enforces certain regularization of
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these four deformation fields, and aligns the deformed S and deformed T . Then, the

optimal inverse consistent transformations from S to T , and T to S can be obtained

simply by appropriate compositions of these four transformations.

The idea of deforming S and T simultaneously has been adopted in the models

where the forward or backward transformation is modeled as a one-parameter

diffeomorphism group [8]. However, our model finds regularized invertible deformation

fields by minimizing the L2 norms of the deformation fields and inverse consistent

errors rather than a one-parameter diffeomorphism group, whose computational cost is

very expensive and hence hinders its application in clinical use. Moreover, our model

allows parallel computations for all the deformation fields to significantly reduce the

computational time.

Furthermore, to improve the robustness of the model to noises and the choice

of the parameter λ that balances the goodness of matching and smoothness of the

deformation fields (see the λ in E(h) and E(g) of (4–2)), we adopt the maximum

likelihood estimate (MLE) that is able to accommodate certain degree of variability in

matching to improve the robustness and accuracy of the registration. By using MLE,

the ratio of weighting parameters on the sum of squared distance (SSD) of the residue

image S ◦ φ − T ◦ φ̃ and the regularization term is not a fixed λ, but λ/σ2 (see (4–18)

below). This results in a self-adjustable weighting factor that makes the choice of λ more

flexible, and also speeds up the convergence to the optimal deformation field.

The rest of the paper is organized as follows. In section 4.2, we present a detailed

description of the proposed model. The existence of solutions to the proposed model

is shown in section 4.3. The calculus of variation and an outline of a fast algorithm

for solving the proposed model numerically are provided in section 4.4. In section

4.5, we present the experimental results on clinical data, and the application in auto

re-contouring. The last section concludes the paper.
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4.2 Proposed Method

Let S and T be the source and target images defined on ΩS and ΩT in Rd ,

respectively. Note that, in real applications, ΩS and ΩT are usually fully overlapped.

For simplicity we assume that images S and T are real-valued functions with continuous

derivatives. Let | · | denote the absolute value (length) of a scaler (vector) in Euclidean

spaces, and ‖ · ‖ denote ‖ · ‖L2(Ω) henceforth. We also extend this notation to

vector-valued functions whose components are in L2 or H1: u = (u1, · · · , ud)> with

each component uj ∈ H1(Ω), j = 1, · · · , d , there is

‖u‖H1(Ω) ,
(
‖u‖2 + ‖Du‖2

)1/2
and

‖u‖ ,
(
d∑
j=1

‖uj‖2
)1/2

, ‖Du‖ ,
(
d∑
j=1

‖Duj‖2
)1/2

,

where

‖uj‖ =
(∫
Ω

|uj(x)|2dx
)1/2

and ‖Duj‖ =
(∫
Ω

|Duj(x)|2dx
)1/2

,

for j = 1, · · · , d .

4.2.1 Motivation and Ideas of Proposed Method

In this paper, we propose a novel variational model for inverse consistent deformable

registration to improve its efficiency and robustness. Our idea differs from the current

framework which deforms source image S to target image T , or vice versa: as an

alternate, we propose to deform S and T simultaneously, and match both deformed

images. This means that ideally we pursuit for a pair of half-way transforms φ : ΩS → ΩM

and φ̃ : ΩT → ΩM such that S ◦ φ = T ◦ φ̃, where ΩM is the region where S ◦ φ and

T ◦ φ̃ have overlap. To ensure the transformations from S to T and T to S are inverse

consistent, the transforms φ and φ̃ are required to be invertible (but not necessarily to be

inverse to each other). Hence, our purpose is to find the transformations φ and φ̃ such
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that

S ◦ φ = T ◦ φ̃, φ, φ̃ invertible. (4–3)

To avoid direct computation of inverses of φ and φ̃ during iterations, we enforce the

invertibility of φ and φ̃ by finding another two transformations ψ : ΩM → ΩS and

ψ̃ : ΩM → ΩT such that

ψ ◦ φ = id , φ ◦ ψ = id , (4–4)

ψ̃ ◦ φ̃ = id , φ̃ ◦ ψ̃ = id .

Once we obtained such ψ and ψ̃, we can construct the objective full-way transformations

h and g as follows,

h = φ ◦ ψ̃, g = φ̃ ◦ ψ.

It is easy to see that h and g satisfy the inverse consistent constraints h ◦ g = g ◦ h = id .

This idea is illustrated by the following diagram, where M is an intermediate image.

M

ψ
����

��
��

��
��

�

ψ̃
��?

??
??

??
??

?

S

φ

??

g
// T

φ̃

__

hoo

(4–5)

Since by deforming S and T simultaneously the difference between deformed S and

deformed T at each iteration, in general, is smaller than that between deformed S

and fixed T , or deformed T and fixed S , the computational cost of deforming both S

and T is much less than the conventional one that deform S all the way to T and T to

S . In particular, if the underlying deformations of h and g are large, deforming both S

and T can make the each deformation of φ and φ̃ in the proposed model almost half

smaller than that of h and g, and achieve a faster convergence for the computation of φ

and φ̃. Also, seeking ψ and ψ̃ along with φ and φ̃ avoids direct computation of inverse
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transformations in each iteration as that in (4–4), which usually causes cumulated errors

during iterations if using approximations of the inverses.

Moreover, regularizing the deformation fields is very important to obtain physically

meaningful and accurate registrations. Also, if the energy functional consists of only

dissimilarity measures and invertible constraints, it is ill-posed in general. Therefore, we

propose the following framework for deformable inverse consistent registration:

min
φ,φ̃,ψ,ψ̃

R(φ, φ̃,ψ, ψ̃) + dis(S ◦ φ,T ◦ φ̃), s.t. condition (4–4) holds (4–6)

where R is a regularization operator of its arguments, dis(S ◦ φ,T ◦ φ̃) measures the

dissimilarity between S ◦ φ and T ◦ φ̃.

4.2.2 Alternative Formulation of (4–4) Using Deformation Fields

Let the functions u, ũ, v and ṽ represent the corresponding deformation fields of the

transformations φ, φ̃, ψ and ψ̃, respectively. That is,

φ(x) = x + u(x), φ̃(x) = x + ũ(x), (4–7)

ψ(x) = x + v(x), ψ̃(x) = x + ṽ(x).

Then, the constraints in (4–4) can be rewritten as

u + v(x + u) = v + u(x + v) = 0, (4–8)

ũ + ṽ(x + ũ) = ṽ + ũ(x + ṽ) = 0.

4.2.3 MLE based derivation for dis(S ◦ φ,T ◦ φ̃)

To improve the robustness of the algorithm for deformable image registration, we

use the negative log-likelihood of the residue image as a measure of mismatching.

Consider voxel intensities of the residue image defined by

W (x) , S ◦ φ(x)− T ◦ φ̃(x), x ∈ ΩM ,

95



as independent samples drawn from a Gaussian distribution of mean zero and variance

σ2 to be optimized (see remark below for the reason of this assumption), whose

probability density function (pdf) is denoted by P(·|σ). Then the likelihood of the residual

imageW (x) can be computed as

L(σ|{W (x), x ∈ Ω}) =
∏
x∈Ω

P(W (x)|σ) =
∏
x∈Ω

(
1√
2πσ
e−|S◦φ−T◦φ̃|2/2σ2

)
. (4–9)

Then, by writing the summation over all x ∈ Ω as an integral over Ω the negative

log-likelihood function is given as follows:

‖S ◦ φ− T ◦ φ̃‖2/2σ2 + |Ω| log
√
2πσ.

Omitting the constant Ω log
√
2π, we define the dissimilarity term as

dis(S ◦ φ,T ◦ φ̃) , ‖S ◦ φ− T ◦ φ̃‖2/2σ2 + |Ω| logσ. (4–10)

which can be rewritten as our MLE fitting term F by using corresponding deformation

fields u and ũ:

F (u, ũ,σ) , dis(S(x + u),T (x + ũ)) = ‖S(x + u)− T (x + ũ)‖2/2σ2 + |Ω| logσ. (4–11)

remark Let P̂ be the estimation of the pdf for the random variable X , W (x), x ∈ Ω.

We show below why it is reasonable to assume P̂ to be a Gaussian distribution of zero

mean and variance σ2.

In fact, P̂ is a function in C0(R), the space of all the continuous functions on real line

vanishing at infinity with the supreme norm. Let H0(R) be the Hilbert space consisting of

all linear combinations of κ(xl , x) for finite many of xl ∈ R, where

κ(xl , x) =
(
2πσ2

)−1/2
e−(xl−x)

2/2σ2, ∀ x ∈ R. (4–12)
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Define an inner product on H0(R) by〈
m∑
i=1

aiκ(xi , ·),
n∑
j=1

bjκ(yj , ·)

〉
H0(R)

=

m∑
i=1

n∑
j=1

aibjκ(xi , yj).

We claim that

H0(R) is dense in C0(R). (4–13)

In fact, if the claim (4–13) is not true, by Hahn-Banach theorem there exists a bounded

signed measure m in the dual space of C0(R), such that∫
R
P̂dm 6= 0, (4–14)

but
∫
R fdm = 0, for all f ∈ H0(R). In particular, for any x ∈ R,∫

R
κ(x , y)dmy = 0,

where κ(·, ·) is as in (4–12), and hence,∫
R×R

κ(x , y)dmxdmy = 0.

This implies m = 0, which contradicts (4–14). Therefore, the claim holds.

By this claim it is easy to see that

P̂(z) ≈
k∑
l=1

αlκ(xl , z) =
(
2πσ2

)−1/2 k∑
l=1

αle
−(xl−z)2/2σ2 (4–15)

for some {xl ;αl}kl=1. Since a good registration requires the the intensities of the residue

imageW (x) close to zero. Hence, in (4–15) the only dominate term in the sum should

be the one corresponding to xl = 0, and other terms are negligible. This means that P̂ is

approximately N (0,σ2), the Gaussian distribution with mean 0 and variance σ2.

4.2.4 Proposed model

Base on the discussion above, we are ready to present the proposed model.

We define the regularization term R(φ, φ̃,ψ, ψ̃) in (4–6) using their corresponding
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deformation fields as

R(φ, φ̃,ψ, ψ̃) = R(u, ũ, v , ṽ) , ‖Du‖2 + ‖Dũ‖2 + ‖Dv‖2 + ‖Dṽ‖2. (4–16)

By plugging (4–16) and (4–11) into (4–6), and replacing the constraint in (4–6) by (4–8),

the proposed model can be written as:

min
u,ũ,v ,ṽ ,σ

R(u, ũ, v , ṽ) + λF (u, ũ,σ), s.t. condition (4–8) holds, (4–17)

where R(u, ũ, v , ṽ) and F (u, ũ,σ) are defined in (4–16) and (4–11), respectively.

To solve problem (4–17), we relax the equality constraints of inverse consistency,

and penalize their violation using quadratic functions, then write it as an unconstrained

energy minimization problem

min
u,ũ,v ,ṽ ,σ

R(u, ũ, v , ṽ) + λF (u, ũ,σ) + µ (I(u, v) + I(ũ, ṽ)) , (4–18)

where and I(u, v) is the cost of inverse inconsistency of u and v :

I(u, v) = Iv(u) + Iu(v), (4–19)

with

Iv(u) = ‖u + v(x + u)‖2 and Iu(v) = ‖v + u(x + v)‖2. (4–20)

Similarly, we have I(ũ, ṽ). With sufficiently large µ, solving (4–18) gives an approximation

to the solution of (4–17).

The term F (u, ũ,σ) is from the negative log-likelihood of the residual image (4–11).

Minimizing this term forces the mean of the residue image to be zero, but allows it to

have a variance to accommodate certain variability. This makes the model more robust

to noise and artifacts, and less sensitive to the choice of the parameter λ than the

model using the SSD, i.e. the squared L2-norm, of the residue image as a dissimilarity

measure as in (4–2). The parameter λ balances the smoothness of deformation fields

and goodness of alignments, and affects the registration result significantly. In the
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proposed model, the ratio of the SSD of the residue image over the smoothing terms

is λ/σ2 rather than a prescribed λ. Since σ is to be optimized, and from its EL equation

σ is the standard deviation of the residue image. Therefore, in the proposed model the

weight on the matching term updates during iterations. When the alignment gets better,

σ the standard deviation of the residue as shown in (4–35) decreases, and hence the

weight on the matching term automatically increases. This self-adjustable feature of the

weight not only enhances the accuracy of alignment, but also makes the choice of λ

flexible, and results in a fast convergence.

As shown earlier, the final forward and backward transforms h and g can be

obtained by

h = φ ◦ ψ̃ = x + ṽ + u(x + ṽ) and g = φ̃ ◦ ψ = x + ũ + v(x + ũ).

Thus, the corresponding final full-way forward and backward deformation fields ū and v̄

are given as

ū = ṽ + u(x + ṽ) and v̄ = ũ + v(x + ũ), (4–21)

respectively. Then the inverse consistent constraints (4–4) can be represented using ū, v̄

as follows:

ū + v̄(x + ū) = v̄ + ū(x + v̄) = 0. (4–22)

4.3 Existence of Solutions

In this section we prove the existence of solutions (u, ũ, v , ṽ ,σ) to the proposed

model (4–18). For simplicity, we assume that both S and T defined on the same domain

Ω, which is simply connected, closed and bounded in Rd with Lipschitz boundary ∂Ω.

Also S ,T ∈ C 1(Ω). As in reality, deformation field cannot be unbounded, we restrict

u, ũ, v , ṽ to be in a closed subset of L∞(Ω):

B , {u ∈ L∞(Ω) : ‖u‖L∞(Ω) ≤ B, B ∈ R+ only depends on Ω}
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Then, we seek solutions (u, ũ, v , ṽ ,σ) to the problem (4–18) in the spaces u, ũ, v , ṽ ∈

H1(Ω) ∩ B and σ ∈ R+. For short notations, we let w denote the quaternion (u, ũ, v , ṽ).

Then, we show the existence of solutions to the following minimization problem:

min
(w ,σ)∈(H1∩B)×R+

E(w ,σ) (4–23)

where

E(w ,σ) = ‖Dw‖2 + λF (w ,σ) + µI(w)

and F and I are defined correspondingly in (4–18) using the simplified notation of w , i.e.

‖Dw‖2 = ‖Du‖2 + ‖Dũ‖2 + ‖Dv‖2 + ‖Dṽ‖2,

F (w ,σ) = ‖S(x + u)− T (x + ũ)‖2/σ2 + |Ω| logσ,

I(w) = Iv(u) + Iu(v) + Iṽ(ũ) + Iũ(ṽ).

and the terms on the right side of I(w) are defined as in (4–20). The λ and µ are

prescribed positive constants.

Theorem 4.1. The minimization problem (4–23) admits solutions (w ,σ) ∈
(
H1 ∩ B

)
×R+.

Proof. For (w ,σ) ∈
(
H1 ∩ B

)
× R+, E(w ,σ) is bounded below. Hence, there exists a

minimizing sequence {(wk ,σk)}∞k=1 ⊂
(
H1 ∩ B

)
× R+ such that

lim
k→∞
E(wk ,σk) = inf

(H1∩B)×R+
E(w ,σ).

Therefore {‖Dwk‖}∞k=1 are uniformly bounded. Along with wk ∈ B we know that {wk}∞k=1

is a bounded sequence in H1. By the weak compactness of H1 and the fact that H1

is precompact in L2, there exists a convergent subsequence, which is still denoted by

{wk}∞k=1, and a function ŵ ∈ H1, such that

wk ⇀ ŵ weakly in H1, (4–24)

wk → ŵ strongly in L2, and a.e. in Ω. (4–25)
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Moreover, since E(wk ,σk) → ∞ if σk → 0 or∞, there is a constant C > 0 such that

{σk}∞k=1 are bounded below and above by 1/C and C respectively. Hence, there is a

subsequence of {σk}∞k=1 and a scaler σ̂ ∈ R+, without changing the notation for the

subsequence we have

σk → σ̂ ∈ R+. (4–26)

From the weak lower semi-continuity of norms and (4–24), we know

‖Dŵ‖2 ≤ lim
k→∞
‖Dwk‖2. (4–27)

Also, as I(w) ≤ 8B for any w ∈ H1 ∩ B and wk → ŵ a.e. in Ω, we get, by dominant

convergence theorem, that

lim
k→∞
I(wk) = I(ŵ). (4–28)

By the same argument with the smoothness of S and T , the convergence of {σk}∞k=1,

and the fact that wk → ŵ a.e. in Ω, we can also have

lim
k→∞
F (wk ,σk) = F (ŵ , σ̂) (4–29)

Combining (4–27), (4–28) with (4–29), we obtain that

E(ŵ , σ̂) ≤ lim
k→∞
E(wk ,σk) = inf

(H1∩B)×R+
E(w ,σ).

Furthermore, since {wk}∞k=1 ⊂ B ⊂ L∞(Ω), we know

wk ⇀
w∗ ŵ weakly* in L∞

and hence ŵ ∈ B. Therefore, (ŵ , σ̂) ∈
(
H1 ∩ B

)
× R+. Hence

E(ŵ , σ̂) = inf
(H1∩B)×R+

E(w ,σ).

which implies that (ŵ , σ̂) is a solution to the minimization problem (4–23).
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4.4 Numerical Scheme

In this section, we provide the numerical scheme for solving (4–18). Since the

compositions in the inverse consistency constraints Iu(v) and Iv(u) bring a difficulty in

getting an explicit form of the EL equations for the deformation fields and their inverses,

in our computation, instead of directly solving (4–18), we solve the following two coupled

minimization problems alternately: 
min
u,ũ
Ev ,ṽ ,σ(u, ũ)

min
v ,ṽ
Eu,ũ(v , ṽ)

(4–30)

where

Ev ,ṽ ,σ(u, ũ,σ) = ‖Du‖2 + ‖Dũ‖2 + λF (u, ũ,σ) + µ (Iv(u) + Iṽ(ũ)) (4–31)

and

Eu,ũ(v , ṽ) = ‖Dv‖2 + ‖Dṽ‖2 + µ (Iu(v) + Iũ(ṽ)) . (4–32)

By taking first variation with respect to u, ũ, v , ṽ , we get the EL equations:

−∆u + λ

σ2
Wu,ũDS(x + u) + µ 〈I +Dv(x + u), u + v(x + u)〉 = 0

−∆v + µ 〈I +Du(x + v), v + u(x + v)〉 = 0

−∆ũ − λ

σ2
Wu,ũDT (x + ũ) + µ 〈I +Dṽ(x + ũ), ũ + ṽ(x + ũ)〉 = 0

−∆ṽ + µ 〈I +Dũ(x + ṽ), ṽ + ũ(x + ṽ)〉 = 0

, (4–33)

in Ω, with free Neumann boundary conditions for each of them on ∂Ω:

〈Du, n〉 = 〈Dũ, n〉 = 〈Dv , n〉 = 〈Dṽ , n〉 = 0, on ∂Ω, (4–34)

whereWu,ũ , S(x + u) − T (x + ṽ), I is the identity matrix of size d , and n is the outer

normal of ∂Ω. Also, the first variation of σ gives

σ = ‖S(x + u)− T (x + ũ)‖/|Ω|1/2. (4–35)
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The solution to the EL equations (4–33) can be obtained by finding the stationary

solution to the evolution equations associated with the EL equations. In numerical

implementation, we use semi-implicit discrete form of the evolution equations. The

additive operator splitting (AOS) scheme was applied to solve the problem faster [65].

An alternative way of AOS to solve the semi-implicit discrete evolution equation in this

case can be obtained by applying discrete cosine transforms (DCT) to diagonalize

the Laplace operator with the assumption that the deformation fields have symmetric

boundary condition, which is compatible with (4–34).

In two-dimensional (2D) case, the semi-implicit discrete form of (4–33) with fixed

step sizes τu, τv for the evolution equations of u(k+1) as

u
(k+1)
i ,j − u(k)i ,j

τu
= ∆i ,ju

(k+1) −Di ,j
(
λF
(
u(k), ũ(k),σ(k)

)
+ µIv (k)

(
u(k)

))
, (4–36)

and v (k+1) as
v
(k+1)
i ,j − v (k)i ,j

τv
= ∆i ,jv

(k+1) − µDi ,jIu(k)
(
v (k)

)
, (4–37)

where ∆i ,j and Di ,j represent the discrete Laplacian and gradient operators at the

pixel indexed by (i , j), respectively. The 3D case is a simple analogue with one more

subscript in indices. Similarly, we have the discrete evolution equation for ũ and ṽ with

the two components within each of the three pairs (u, ũ), (v , ṽ) and (S ,T ) switched in

(4–36) and (4–37). With AOS scheme being applied, the computation for each update

of u involves of solving d tridiagonal systems whose computational costs are linear in

N, where N is the total number of pixels in S (or T ). Also, in each iteration of updating

u and v , there needs 2(d + 1) interpolations with size N. It is important to point out

that, in each iteration, the computations of u, ũ, v , ṽ can be carried out in parallel. We

summarize icDIR in Algorithm 5, where the maximum inverse consistency error (ICE) δc

is defined by

δc = max
x
{|ū + v̄(x + ū)|, |v̄ + ū(x + v̄)|} , (4–38)
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Algorithm 5 Inverse Consistent Deformable Image Registration (icDIR)
Input S , T , and τu, τv ,λ,µ > 0, ε = .5, δc = 1. Initialize (u(0), ũ(0), v (0), ṽ (0)) = 0, k = 0.
while δc ≥ ε do

repeat
{All terms in (u(k+1), ũ(k+1), v (k+1), ṽ (k+1)) can be calculated in parallel}
Calculate (u(k+1), v (k+1)) using (4–36) and (4–37).
Calculate (ũ(k+1), ṽ (k+1)) using (4–36) and (4–37) with (u(k+1), v (k+1)) replaced by
(ũ(k+1), ṽ (k+1)).
update σ(k+1) by (4–35).
k ← k + 1

until convergence
return (u, ũ, v , ṽ)µ

(u , ũ , v , ṽ )← (u, ũ, v , ṽ)µ,µ← 2µ.
Compute ū and v̄ using (4–21) and then δc using (4–38).

end while

and ū and v̄ are the final full-way deformation fields shown in (4–21). That is, it

measures the maximum ICE of deformations obtained by quaternion (u, ũ, v , ṽ). The

parameter µ in (4–18) may increase during iterations to ensure smaller ICE. In each

inner loop with fixed µ, the computation is terminated when the mean of CC(S(x + ū),T )

and CC(T (x + v̄),S) converges. We set a stopping tolerance ε = .5 and terminate

the whole computation once δc is lower than ε, in which case the maximum ICE is less

than half of the grid size between two concatenate pixels/voxels and hence the inverse

consistency is exactly satisfied with respect to the original resolution of the images.

4.5 Experimental Results

In this section, we present the experimental results of proposed model using

algorithm 1 (icDIR). All implementations involved in the experiments were coded in

MATLAB R©v7.3 (R2006b), except the Thomas tridiagonal solver, which was coded

in C++. We used build-in functions interp2/interp3 of Matlab with default settings

for interpolations. All Computations were performed on a GNU/Linux (version 2.6.16)

workstation with Intel R©Core 2 CPU at 1.86GHz and 2GB memory.

We first test the accuracy of registration and auto re-contouring of the proposed

algorithm on a clinical data set of 100 2D-prostate MR images. Each image, called a
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phase, is a 2D image of dimension 288 × 192 that focuses on the prostate area. The

first phase is used as a source image S , as shown in Figure 4-1A. The boundaries

of the regions of interests (ROI) in S were delineated by contours and superimposed

by medical experts, as enlarged and shown in Figure 4-4A. The rest 99 phases were

considered as targets. In this experiment we applied the proposed model (4–18) with

parameters (λ,µ, τ) set to be (.05, .2, .05) to S and Ts. For demonstration, we only

showed the result using the 21st phase as T , as depicted in Figure 4-1B. The deformed

T and deformed S , i.e. T (x + v̄) and S(x + ū), are shown in the Figure 4-1C and 4-1D

respectively, where ū and v̄ are defined in (4–21) using the optimal (u, ũ, v , ṽ) obtained

by model (4–18). The errors of the alignments, |T (x + v̄) − S | and |S(x + ū) − T |,

on the squared area (shown in Figure 4-1A) are displayed in Figure 4-2A and 4-2C,

respectively. With comparison to the original error |S − T | shown in Figure 4-2B, we can

see the errors of alignments are significantly reduced. This indicates that the proposed

registration model (4–18) has high accuracy in matching two images.

The final optimal forward and backward deformation fields ū and v̄ are displayed by

applying them to a domain of regular grids, shown in Figure 4-3A and 4-3C, respectively.

Furthermore, to validate the accurate inverse consistency obtained by our model

(4–18), we applied ū + v̄(x + ū) on a domain with regular grids, and plotted the

resulting grids in Figure 4-3B. The resulting grids by v̄ + ū(x + v̄) had the same

pattern so we omitted it here. From Figure 4-3B, we can see that the resulting grids

are the same as the original regular grids. This indicates that the inverse consistent

constraints ū + v̄(x + ū) = v̄ + ū(x + v̄) = 0 are well preserved. We also computed

the maximum ICE δc using ū, v̄ and (4–38) and the result was .46. The mean ICE

(‖ū + v̄(x + ū)‖+ ‖v̄ + ū(x + v̄)‖) /2|Ω| versus the number of iterations is plotted in

Figure 4.5, which shows the inverse consistency is preserved during the registration.

These imply that the proposed algorithm provides an accurate inverse consistent

registration.
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An accurate inverse consistent registration can transform segmentations from

one image to another accurately. One of the applications is auto re-contouring, that

deforms the expert’s contours from a planning image to new images during the course

of radiation therapy. In this experiment, we had expert’s contours superimposed on the

source image S as shown in Figure 4-4A. Then by applying the deformation field ū on

this contours we get the deformed contours on the target image T as shown in Figure

4-4B. The accuracy in auto re-contouring is evident.

Figure 4-3 shows, from left to right, the followings: ū, ū + v̄(x + ū), which

demonstrates the inverse consistency is well preserved, and v̄ , respectively.

The second experiment was aimed to test the efficiency of the proposed model

(4–18) in registering 3D images. We applied (4–18) to a pair of 3D chest CT images

of dimension 64 × 83 × 48 taken from the same subject but at different periods. The

parameters (λ,µ, τ) were set to be (.05, .1, .004). The registration was performed in 3D,

but for demonstration, we only show the corresponding axial (xy plane with z = 33),

sagittal (yz plane with x = 25) and coronal (zx plane with y = 48) slices. The registration

results are plotted in Figures 4-5, 4-6 and 4-7, respectively. In each figure, the images in

the upper row are S and T , respectively, and the images in the middle row are deformed

T and S , i.e. T (x + v̄) and S(x + ū), respectively. The bottom row shows the residual

images |S(x + ū) − T |, |S − T | and |T (x + v̄) − S |. The mean of CC(S(x + ū),T ) and

CC(T (x + v̄),S) reached .998 after 50 iterations, and the mean of inverse consistency

errors was .015. The results shows the high accuracy of proposed model (4–18) and the

well preserved inverse consistency.

The third experiment was aimed to compare the effectiveness of model (4–18) with

the following conventional full-way inverse consistent deformable registration model:

min
u,v ,σu ,σv

‖Du‖2 + ‖Dv‖2 + λJ(u, v ,σu,σv) + µ (Iv(u) + Iu(v)) (4–39)
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where u and v are forward and backward deformation fields, respectively, and the term J

is defined by

J(u, v ,σu,σv) = ‖S(x + u)− T‖2/2σ2u + ‖T (x + v)− S‖2/2σ2v + |Ω| logσvσv .

The comparison is made on the efficiency and accuracy of matching, as well as

the preservation of inverse consistency. The accuracy of matching is measured by

correlation coefficients (CC ) between the target image and deformed source image with

the optimal forward and backward deformations obtained by model (4–39) and proposed

model (4–18), respectively. Recall that for any two images S and T both with N pixels,

the CC of S and T is defined by

CC(S ,T ) =

∑N
i=1(Si − S̄)(Ti − T̄ )√∑N

i=1(Si − S̄)2
∑N
i=1(Ti − T̄ )2

,

where Si and Ti are the intensities at the i th pixels of S and T , respectively, S̄ and T̄ are

the mean intensities of S and T , respectively. The maximum value of CC is 1, in which

case S and T are (positively) linearly related. In this experiment we applied models

(4–39) and (4–18) to the images in the first experiment shown in Figure 4-1 with the

same parameters (λ,µ, τ) to be (.05, .2, .05). In Figure 4.5, we plotted the CC obtained

by model (4–39) and proposed model (4–18) at each iteration. One can observed that

the CC obtained by model (4–18) is higher and increases faster than model (4–39).

This demonstrates that proposed model (4–18) is more efficient than the conventional

full-way model. The reason is that the disparity between deformed S and deformed

T is smaller than that between deformed S and fixed T or deformed T and fixed S .

When S and T are deformed simultaneously, the two directional deformation fields

are not necessarily to be large even if the underlying deformation field is large, which

usually makes it difficult for the full-way based registration model to reach a satisfactory

alignment in short time.
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Table 4-1. Number of iterations used for convergence and the final CC obtained by
proposed model with σ updated/fixed.

Update σ Fix σ
λ CC Iter CC Iter

1e2 .962 48 .955 89
1e1 .962 97 .946 420
1e0 .960 356 .933 1762

The last experiment is aim to test the robustness of the model to noises and the

choice of the parameter λ with the use of MLE based approach (4–11) for measuring the

goodness of matching. The images S and T in Figure 4-1 with additive Gaussian noises

(standard deviation is 3% of largest intensity value of S) were used in this experiment.

The CC between S and T before registration is CC(S ,T ) = .901. We applied model

(4–18) with σ to be updated/optimized by its EL equation (4–35), and σ to be set σ = 1,

that is the same as using SSD as similarity measure, respectively, to the noise data

mentioned above. We proceeded the registration with various values of λ, but kept other

parameters fixed. Then the numbers of iterations (Iter) for convergence and the final

CC were recorded and shown in Table 4-1. One can see that while λ decreases, the

accuracy of model (4–18) using fixed σ reduces as the final CC become much smaller,

and it also takes much longer time for the algorithm to converge. On the other hand,

with σ being updated (whose computational cost is extremely cheap) model (4–18)

can obtain good matching in much less iterations for a large range of λ. This shows

that model with MLE fitting is much less sensitive to noise and the choice of λ, and

can achieve fast and accurate results compared with the model using SSD to measure

mismatching.
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A Source image S B Target image T

C Deformed T D Deformed S

Figure 4-1. Inverse consistent registration result by proposed model (4–18).
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A |S(x + ū)− T | B |S − T | C |T (x + v̄)− S |

Figure 4-2. Residue image obtained by proposed model (4–18).

A ū B ū + v̄(x + ū) C v

Figure 4-3. Deformation fields obtained by proposed model (4–18) in the zoomed-in
area applied on regular grid with half of original resolution of images.

A Original Contour on S B Re-contouring on T

Figure 4-4. Auto re-contouring result using the deformation field ū obtained by proposed
model (4–18).
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Figure 4-5. Registration result of proposed model (4–18) applied to 3D chest CT image.
This figure shows the z = 33 slice at axial direction.
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Figure 4-6. Registration result of proposed model (4–18) applied to 3D chest CT image.
This figure shows the x = 25 slice at sagittal direction.
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Figure 4-7. Registration result of proposed model (4–18) applied to 3D chest CT image.
This figure shows the y = 48 slice at coronary direction.
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Figure 4-8. CC in each iteration obtained by full-way model (4–39) and proposed model
(4–18).
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Figure 4-9. Mean of inverse consistent errors (ICE) of the final deformation fields
obtained by using full-way model (4–39) and proposed model (4–18).
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