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Fast MR Image Reconstruction for Partially Parallel
Imaging With Arbitrary k-Space Trajectories

Xiaojing Ye*, Yunmei Chen, Wei Lin, and Feng Huang

Abstract—Both acquisition and reconstruction speed are crucial
for magnetic resonance (MR) imaging in clinical applications. In
this paper, we present a fast reconstruction algorithm for SENSE
in partially parallel MR imaging with arbitrary k-space trajecto-
ries. The proposed method is a combination of variable splitting,
the classical penalty technique and the optimal gradient method.
Variable splitting and the penalty technique reformulate the
SENSE model with sparsity regularization as an unconstrained
minimization problem, which can be solved by alternating two
simple minimizations: One is the total variation and wavelet based
denoising that can be quickly solved by several recent numerical
methods, whereas the other one involves a linear inversion which is
solved by the optimal first order gradient method in our algorithm
to significantly improve the performance. Comparisons with sev-
eral recent parallel imaging algorithms indicate that the proposed
method significantly improves the computation efficiency and
achieves state-of-the-art reconstruction quality.

Index Terms—Convex optimization, image reconstruction, par-
allel imaging, SENSE.

I. INTRODUCTION

ARTIALLY parallel imaging (PPI) [1], [2] can effi-
P ciently reduce acquisition time, increase temporal/spatial
resolution, and suppress motion related artifacts in magnetic
resonance imaging (MRI) applications. Its clinical value has
been demonstrated in both anatomical and functional imaging
applications [3]-[6]. In PPI, a set of multichannel imaging
data is acquired simultaneously from a radio-frequency (RF)
coil array. The imaging is accelerated by sampling a reduced
number of k-space samples. The acceleration factor (reduction
factor) is defined as the reciprocal of the percentage of the
acquired number of k-space samples. A special image recon-
struction method is required to generate a full field-of-view
(FOV) image from the undersampled data set.
Cartesian sampling trajectories were commonly used in com-
mercial products and have achieved great success in fast PPIL.
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In recent years, the advantages of non-Cartesian imaging have
been demonstrated by many groups [7]-[12]. For example, ra-
dial trajectories have been successfully used for highly-acceler-
ated dynamic imaging [13], [14]. It also has advantages in mo-
tion artifacts reduction [9], [10] and ability to achieve ultra-short
echo times [15]. Acceleration of such non-Cartesian acquisi-
tions through PPI techniques, namely non-Cartesian PPL, is cur-
rently a subject of much interests [16]-[27]. Advances on this
subject will be a great benefit to many clinical applications, such
as neuroimaging [28]—[31], cardiac applications [32], [33], and
hyperpolarized MR acquisitions [34]. Despite of these advan-
tages and developments of non-Cartesian PPI, there is no com-
mercial non-Cartesian PPI package available yet. One major
reason is that reconstruction takes longer than clinically accept-
able time.

Similar to Cartesian PPI, the reconstruction techniques for
non-Cartesian PPI can be divided into two categories: recon-
struction in k-space [18], [23], [25], [27], [38] and reconstruc-
tion in image space [16], [20]-[22], [24], [26], [39], [40]. The
k-space based methods use coil sensitivity variations to recon-
struct the missing k-space data, then apply Fourier transform
on the original and reconstructed data to obtain the unaliased
image. Some k-space based methods [17], [18], [37], [38] re-
quire the symmetry of the k-space trajectory, and hence their
applicability is limited. Other methods [23], [25], [27], [35],
[36], which do not need the symmetry of the k-space trajectory,
suffer the slow reconstruction speed which could be minutes for
a single 2-D image.

Sensitivity encoding (SENSE) [1], [16] is one of the most
commonly used image-space based reconstruction methods in
PPI. It uses knowledge of the coil sensitivities to separate aliased
pixels. SENSE involves an inversion of the encoding matrix
produced by coil sensitivity modulation. For the case of sam-
pling along a regular Cartesian k-space grid, a Fourier transform
may be separated out from the inversion process as a distinct
step, and the encoding matrix can be significantly simplified.
However, for non-Cartesian k-space trajectories, the k-space
samples are not uniformly distributed and fast Fourier trans-
form (FFT) cannot be applied in a straightforward manner. In
these cases, the inversion is much more complicated and time
consuming. In [16], Pruessmann ef al. proposed an approach
that performs the reconstruction iteratively, and, combines FFT
with forward and reverse gridding operations for efficient ex-
ecution of the conjugate gradient (CG) iteration loops. How-
ever, gridding in each iteration consumes considerable compu-
tational time. Moreover, due to the ill-conditioning of the en-
coding matrix, it has been shown in [21] that the CG iteration
sequence often exhibits a “semi-convergence” behavior, which
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can be characterized as initially converging toward the exact so-
lution and later diverging. Moreover, the convergence speed is
low, when the acceleration factor is high.

To alleviate the ill-conditioning problem regularization tech-
niques are often used [24], [26]. For instance, total variation
(TV) based regularization has been incorporated into SENSE
to improve reconstructed image quality and convergence speed
over the unregularized CG method [24], [26]. In [41], the au-
thors exploited that MR images are sparse with respect to spa-
tial finite differences and wavelet transform, and proposed a
model that employs the sparsity as regularization subjected to
data consistency to reconstruct MR images from partial Fourier
data. As shown in [41], the idea of reconstructing from partial
data provided sparsity constraints coincides with compressed
sensing (CS), which has been very successful in signal/image
processing. Therefore the combination of CS and PPI (CS-PPI)
becomes an emerging research topic in MR imaging for clinical
applications. However, CS-PPI reconstructions suffer the non-
differentiability of those ¢;-like terms induced by sparsity.

The main purpose of this paper is to develop a fast numerical
algorithm to tackle the computation problem in CS-PPI recon-
struction. The proposed algorithm employs the variable splitting
method and classical quadratic penalty technique to reformulate
the sparsity constrained SENSE model as an unconstrained op-
timization problem. Then the solution to the new formulation
can be obtained by alternating two simple minimizations: one
is the TV and wavelet based image denoising problem which
has been extensively studied in the literature and can be quickly
solved by several recently developed methods; the other one is a
large scale least squares problem involving an ill-conditioned in-
version matrix, for which we apply an optimal gradient method
for fast approximation to the inverse solution. As can be seen,
our scheme requires moderate coding complexity but has high
efficiency in searching for the optimal reconstruction. More-
over, the proposed method bears any k-space sampling patterns
in PPI. When the k-space trajectory is non-Cartesian, we uti-
lize the GRAPPA operator gridding (GROG) [42] to shift data
onto Cartesian grids as a preprocess of data such that (inverse)
gridding in each iteration can be waived. The reconstruction
results show significant improvements on efficiency by using
the proposed algorithm to achieve state-of-the-art reconstruc-
tion quality when compared to those by other PPI methods.

II. PRIOR ARTS

Before going into details of CS-PPI and SENSE, we here ad-
dress the notations used throughout the rest of the paper. First
of all, all vectors in this paper are column vectors unless oth-
erwise noted. Following the standard treatment, we will vec-
torize 2-D images or higher dimensional data into 1-D vectors.
For instance, an image w consisting of N pixels is treated as an
N-vector, i.e.,u € CV.Let|| -||; and || - ||2 denote the ¢; norm
and Euclidean norm of vectors, respectively, and (-, -) denote
the regular inner product. The superscript T represents conju-
gate transpose of matrices. Following Matlab convention we let
(+; -) denote the matrix formed by stacking the arguments verti-
cally.
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A. Sensitivity Encoding (SENSE)

SENSE is an image-space based reconstruction method in
PPI that uses knowledge of the coil sensitivities to separate
aliased pixels. The fundamental of SENSE and the variations
is as follows. In a J channels coil array, the partial k-space data
f; acquired from the jth channel relates to the true image @
through the sensitivity map S; by

P.F(Sjﬂ):fj jg=1...,J @))
where F is the Fourier transform and P is the common un-
dersampling pattern (mask) used by all J channels. If f;, the
k-space data acquired from the jth channel, is on Cartesian
grids, then the solution to (1) can be obtained by solving a least
squares problem

J
min Z | Fp(S; © u) — fJH% @
=1

u€CN £
J_

where F,, is the undersampled Fourier transform defined by
Fp £ PF,and F € CVNXN is the discrete Fourier transform
matrix and P € RP*¥ is a selection matrix containing p rows
of the identity matrix of order NV according to the undersam-
pling mask. In (2), S; € CV is the sensitivity map and f; € R?
is the partial k-space data acquired from the jth channel. The
symbol ® is the Hadamard (or componentwise) product be-
tween two vectors. Notations in (2) can be simplified by letting
A € CP7XN and f € CP7 denote the sensitivity encoding ma-
trix and data acquired from all .J channels, respectively, i.e.,

AE(FSi;-:F,8;) and fE(fiiifr) ()
where S; £ diag(S;) € CV*Y is the diagonal matrix with
S; € CN as the diagonal, j = 1,...,.J. Then problem (2) can
be expressed as

in ||[Au — f||3. 4
nin | Au — f[3 )

B. SENSE With Sparsity Constraints

As shown earlier, problem (4) can yield unstable computa-
tion process due to the severe ill-conditioning of A. Moreover,
to yield a well-posed problem, the reduction factor N/p can
never exceed .J, the number of channels in the coil array. These
limitations hinder (4) in clinical applications. An appropriate
remedy is by imposing constraints on the sparsity. As pointed
out in [43], MR images are usually sparse in certain transform
domains, such as finite difference and wavelet. For instance,
consider an MR image @ € CV and let ¥ = (¢1,...,%N) €
CNXN denote the (orthogonal) wavelet transform matrix, then
UTg e CV, the wavelet transform of @, is sparse. Thus the
/1 term || ¥ Twl|; can be used as the sparsity regularization in
the reconstruction of u. Hence, the SENSE model with sparsity
constraints reads as

. A
min [luflrv + pl| T ull + S|l Au— f3 ©)
ueCN 2
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where ||u||7v is the (isotropic) TV norm defined by
N N
lullzv 2 Y 1IDsulls =Y~ \/IDFul® + | DYul?.
i=1 i=1

Here D¥, DY are the rows of D; € R?*N which has two
nonzero entries in each row corresponding to finite difference
approximations to partial derivatives of u at the ith pixel along
the z- and y-coordinate axes. In (5), ¢, A > 0 are weights for
the /1 and data consistency terms.

III. PROPOSED ALGORITHM

A. Motivation

The main purpose of this paper is to develop a fast numerical
algorithm for solving the SENSE model with sparsity con-
straints as in (5). A fast reconstruction algorithm can make
CS-PPI more clinically applicable.

The computational challenge for solving (5) comes from the
combination of two issues: one is the nondifferentiability of the
TV and /; terms, and the other one is the large size and se-
vere ill-conditioning of the matrix A. To deal with nondifferen-
tiability issue, many work used gradient decent method on (5)
with the TV and ¢; terms substituted by their smooth approx-
imations, e.g., (17). But their results were sensitive to the per-
turbation parameter in the smooth approximations. Moreover,
the high nonlinearity of the TV /{; regularization terms and
the severe ill-conditioning of A make conventional optimization
approaches such as the nonlinear conjugate gradient (NLCG)
method very inefficient. We will show in Section V the inferior
performance of NLCG when applied to (5) with smoothed TV
and /; regularization (17).

Recently, there are several fast algorithms developed to solve
the problem (5) with original TV norm (6) in the case that A is
identity or a convolution operator in image denoising and de-
blurring, see, e.g., [44]-[46]. The efficiency of these methods
relies on a very special condition on A such that AT A is diag-
onalizable by fast transforms. However in SENSE applications,
A is comprised of the undersampling Fourier operator F,, and
sensitivity maps S; as shown in (3), and therefore does not sat-
isfy this condition.

The idea of this work is to decouple the difficulties from the
nonsmooth TV and #; norms and the ill-conditioned A, and re-
duce the original problem to two minimization subproblems that
can be solved efficiently. More precisely, we use the variable
splitting and quadratic penalty techniques to split the original
problem as a TV denoising subproblem and a least squares sub-
problem. The TV /¢ subproblem can be solved efficiently by
any recently developed fast algorithm such as the split Bregman
method, primal-dual method and many others, e.g., [44]-[46].
The least squares subproblem can be solved by an optimal gra-
dient (OG) method which is very robust even with ill-condi-
tioned A.

B. Variable Splitting

To tackle the computational problem of (5), we first introduce
an auxiliary variable v to transform u out of the nondifferen-
tiable terms, then apply quadratic penalty technique to reformu-
late (5) as an unconstrained optimization problem.

Let v € CV be the auxiliary variable and rewrite (5) as the
following constrained minimization problem:

min_||v]|rv 4 |9 ol + é||Au —fII% st-u=v. (7)
u,veCN 2
Clearly minimization problem (7) is equivalent to (5) as they
share the same solution u. In order to solve (7), we relax the
equality constraint v = v and penalize its violation by quadratic
functions and obtain

. « A
Jmin [ollry + 9T oll+ 5 lu =]+ 514w 115 ®)

Then solving (8) provides an approximation to the solution (7)
when « is sufficiently large.

As the objective function in (8) is convex with respect to
all variables, the solution can be obtained by alternately min-
imizing the objective function with respect to each of w and
v. Namely, we solve (8) by alternating the following two mini-
mization subproblems, termed by (TV) and (LS):

: T a 2
i ollzy + 9ol + § o= ullp (V)

(LS). ©)

min § = o]l + 3| 4w~ £I3
The first subproblem has the same form as TV-Wavelet (TV)
based image denoising which has been extensively studied in
the literature, and the second one is a least squares (LS) problem
thanks to the quadratic form of both terms. The case is both sub-
problems can be processed in highly stable and efficient man-
ners.

It was brought to our attention that a similar approach to
image deblurring/restoration model (8) without the /; term (i.e.,
1 = 0) was introduced in [47] lately. In [47], the authors directly
proposed to solve (8) with fixed parameter  as an approxima-
tion to the original problem (5). They used Chambolle’s dual
projection method [48] and preconditioned conjugate gradient
(PCG) method to solve the resulting (TV) and (LS) subprob-
lems, respectively. However, the Chambolle’s method is not as
efficient as many recent methods for solving (TV) subproblem,
and it cannot be applied directly to the case where both TV and
¢, terms are presented as in (9). Moreover, PCG is also not adap-
tive in SENSE applications: A in (5) comprises sensitivity maps
which vary in different scans/subjects, and therefore the precon-
ditioner has to be computed case by case. In this paper, we pro-
pose to use the recently developed split Bregman method and
Nesterov’s optimal gradient method to solve (9) which readily
tackle the complications in SENSE applications. A comprehen-
sive analysis is also provided in Appendixs B and C to exploit
the convergence behavior of scheme (9). After we initially sub-
mitted this paper, we developed an algorithm with improved per-
formance [62] but its theoretical convergence is not well estab-
lished as the one presented in this paper

Algorithm for (TV) Subproblem

Subproblem (9)-(TV) is the TV-Wavelet based image de-
noising problem that solves for a “clean/smoothed” image
v given a “noisy” image u. There have been numerous fast
algorithms developed for this problem by taking advantages
of the simplicity of the consistency term ||v — u||3. Recent



works include using dual formulation [48], variable splitting
and continuation [44], [49], split Bregman [45], primal-dual
hybrid gradient [46], [50]. Interested readers are referred to
these papers and references therein. Since our algorithm does
not depend on using specific method, we chose split Bregman
which proves to be one of the fastest methods for TV-Wavelet
based image denoising. Split Bregman method solves (9)-(TV)
by iterating

(bl , 12
vt = arg iy SllDv —w™ 4+ b™|3
8
P e+ o — ul}
w;”"'l = arg min_||lw;||2 + §||w1 — D"t — b3, Vi
w; EC2

1 _ . : B T 1 2
2 = ang min [l2fl + §llz - UTom = en)3

bn+1 =" + (D,Un+1 _ wn+1)
L cn-l—l =" + (\I}T,Un+1 _ Zn-l—l)

(10)
where D = (D*; DY) € R*V*N_ where D* and DY are
NN matrices that stack the D¥’s and D!’s, respectively.
Split Bregman (10) is equivalent to the well-known alternating
direction method of multipliers (ADMM) [51]-[54] applied to
augmented Lagrangian defined by

L (v,w, z;b, ¢)

3
= 3 (Wil + 905 D=+ 2101 il

o (el + 0l T+ ST 1)
+ Sl —ull

and hence the convergence follows for any § > 0. In each iter-
ation, split Bregman (or ADMM) minimizes £” with respect to
v, w and z one by one, and then updates the multipliers b and c,
as shown in (10). Since the last term in v-subproblem of (10) has
identity matrix (instead of A) multiplied to v, this v-subproblem
is extremely easy to solve and split Bregman can be very ef-
ficient when applied (9)-(TV). The split Bregman(10) can be
summarized as in Algorithm 1. In Algorithm 1, (3 is a user-de-
fined moderate positive number (= 10 in our experiments) and
n = a/f.,and L = (+ 1)l + DT D can be diagonalized
by discrete Fourier transform if the underlying image has pe-
riodic boundary condition. Therefore L~! can be easily com-
puted. shrink2 and shrinkc refer to 2D and componentwise
soft shrinkage operators, respectively [44], [45], [49]. Namely,
for any fixed t € C2, the 2D soft shrinkage has the closed form
of s as follows:

{Itl - 5.0} 1
S = max 2 — —, -
B [[t1l2
which uniquely solves the minimization
min s> + 2 ls — ¢l (12)
seC? 2
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whereas for any fixed t € CV, the componentwise shrinkage
sets each components s; of s = (s1;---;5x5) € CV by

it — Lol 0
s = max < |t;| — =, .
8 |t:]

such that s uniquely solves the minimization

B = 8

i s+ s =13 = min 3 (|si| . ti|2)
- (14)
with convention 0/]0| £ 0. Operations shrink?2 and shrinkc
in Algorithm 1 perform the above simple shrinkages to each
Div"tt 4+ b7 € C2fori = 1,...,N and ¢ Tv"*t! + " €
C", and thus the computational complexity is linear to N. As
shown in [45], Algorithm 1 is very efficient and computationally
inexpensive. Our experiments show that (9)-(TV) can be solved

within 1 s for a 512 x 512 image in Matlab on a regular PC.

13)

Algorithm 1 Split Bregman [45] for (TV) Subproblem

Initialize v° = u, and w® = ° = 0, 0= =0.
while [[v" — v"7|o/||u"]|2 > toll do

"t = L7 (DT (w™ = b™) + p¥ (2" — ) + nu)
w™! = shrink2(Dv"™ L + b7, 1/08)

= shrinkc(¥ o™+ 4 ¢, 1/p)

= b" + (Dy"tl — g t1)

Cn-l—l =" + (‘IIT,Un+1 _ Zn-i—l)

Zn+1

bn—‘,—l

n«—n-++1

end while

As can be seen, both of the nondifferentiable TV and /;
terms are in the (9)-(TV) subproblem, which have been now
readily tackled by Algorithm 1. Moreover, despite that the
process is highly nonlinear in (9)-(TV), the computation load
i.e., denoising one image, of (9)-(TV) subproblem is relatively
lighter than the (9)-(LS) subproblem which involves data and
sensitivity maps from all J channels.

Algorithm for (LS) Subproblem

When conventional equal-distance Cartesian acquisition
scheme is used, we can solve the (9)-(LS) subproblem through
a pixel-by-pixel approach based on (7) in [55]. Initially, con-
ventional SENSE was used for reconstruction. The initial
sensitivity maps can be either from the self-calibration signal
or from pre-scan. The outputs of the conventional SENSE, was
used as inputs of (9)-(TV) subproblem.

However, for arbitrary acquisition scheme, the (9)-(LS) sub-
problem is not trivial to solve. Note that (9)-(LS) is a least
squares problem with respect to w. The common treatment for
least squares problems is the preconditioned conjugate gradient
(PCG) method. However, recall that A comprises sensitivity
maps which may change due to time/subject variability, it is not
always efficient to use PCG since the preconditioner has to be
estimated for each scan.
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In our work, we adopt the optimal gradient (OG) method
which requires no conditioning and can consistently generate
fast approximations to the solution of least squares problem.
First recall that the regular first-order gradient method uses the
time marching scheme

n+l _ ,n
% = — (a(u" — v) + AT (4u" — f))
ie.ut = (1 — ad)u™ 4+ adv — NAT (Au™ — f)
(15)

where the right hand side of the top equation in (15) is the neg-
ative gradient of the objective function in (9)-(LS). Here § =
|AT A||2, i.e., the largest eigenvalue of AT A, is the maximum
step size that guarantees convergence of {u™},,. In SENSE ap-
plication we have 6 = 1 because of (3) and that the magni-
tudes of sensitivity maps are scaled in [0, 1] in practice. Reg-
ular gradient method (15) converges very slowly. To improve
the speed, OG substitutes »™ in (15) by d", a linear combina-
tion of previous two iterates u™ and u™~!, as given in Algo-
rithm 2. The combination coefficients depend on ¢,, € R, which
is also updated in iterations. OG has almost the same computa-
tional complexity as regular first order gradient method but has
much improved convergence speed than the latter [56], [57]. The
OG algorithm for solving (9)-(LS) can be described as in Algo-
rithm 2. As can be seen the main computation involved in each
iteration is A and AT, each of which comprises .J component-
wise matrices product and fast Fourier transforms (FFT). Hence
Algorithm 2 has very low computational cost and memory re-
quirements. Moreover, as shown in [57], with almost similar
computation complexity, the convergence rate of Algorithm 2
is O(1/n?) which is much higher than O(1/n) of regular gra-
dient descent method (15).

iterate u* is plugged in. There are several parameters involved in
Algorithm 3: the weight parameters 4, A, the penalty parameter
« in the objective function of (8), and three tolerance parame-
ters toll, tol2, and tol for (TV) and (LS) subproblems and the
main Algorithm 3, respectively. We will present specific choices
of these parameters in our experiments, and discuss their selec-
tions in SENSE applications in Section VI.

Algorithm 3 Solving SENSE Model (8)

Initialize u® = AT f.
while ||F* — F*=1||5/||F¥||2 > tol do

1 k

Compute v**! using Algorithm 1 with u = u

Compute u**+1 using Algorithm 2 with v = v*+1
v=ov""E—k+1
end while

return u — u*

Algorithm 2 Optimal Gradient [56], [57] for (LS)
Subproblem

Initialize u® = v, d' = «°, t; = 1.

while ||u™ — u™ |y /||u"]|2 > tol2 do

u™tl = (1 — a)d™ + av — AAT (Ad™ — f)
toi1 = (1 + /1 —|—4t%) /2

drtl = o+ 4 (u"+1 — u") (tn — 1) /tns
ne—n+1

end while

In practical implementations, only 5 ~ 10 iterations were
needed to terminate Algorithm 2 with tol = 102, which is
much less than 50 ~ 100 for regular gradient descent method
(15) to reach the same tolerance.

Algorithm for Sense Model With Sparsity Constraints

As both of the (TV) and (LS) subproblems in (9) can be
quickly solved by Algorithms 1 and 2, respectively, we propose
Algorithm 3 to solve (5), the SENSE model with sparsity con-
straints. Here, F'* is the objective function value of (5) when the

C. Convergence Analysis of the Proposed Algorithm

A theoretical analysis on the effectiveness of the proposed
algorithm 3 is provided below. The following theorems ensure
the convergence of sequence {(u*,v*)}22 | generated by Algo-
rithm 3.

Theorem III.1: Sequence {(u*,v*)}%, generated by Algo-
rithm 3 converges to a solution (u*, v*) to (8).

The proof of Theorem III.1 is in Appendix B. Furthermore,
define M = T+ (A\/a)AT A and then it is clear that p(M~1) <
1, where p(-) denotes the spectral radius. We can show that
{(u*,v*)}2° | has g-linear convergence rate as follows.

Theorem I11.2: Let {(u®,v*)}2° | be the sequence generated
by Algorithm 3 and (u*, v*) be the limit , then

[F =0l < p(MH)[[0* = v*]2

a1t = lar <V p(M)[[u® = u*|ar.

The proof of Theorem III.2 is in Appendix C.

(16)

IV. METHOD

Experiments were designed to test the significant improve-
ments on efficiency of the proposed method while achieving
state-of-the-art reconstruction quality.

Two data sets were acquired using commercially available
eight-element head coils (Invivo Corp., Gainesville, FL)). The
first one is a high resolution Cartesian brain data set (datal) ac-
quired on a 3.0 T Philips scanner (Philips, Best, The Nether-
lands) using T2-weighted turbo spin echo (T2 TSE) sequence.
The acquisition parameters were FOV 205 mm?, matrix 512 x
500 x 8, TR 3000 ms, TE 85 ms, and the echo train length
was 20. The other one is a radial brain data set (data2) acquired
on a 1.5 T Siemens Symphony system (Siemens Medical So-
lutions, Erlangen, Germany). The acquisition parameters were
FOV 220 mm?, matrix 256 x 512 x 8, slice thickness 5 mm, TR
53.5 ms, TE 3.4 ms, and flip angle 75°. Both data sets were fully
acquired, and then artificially down-sampled for reconstruction.
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TABLE I
TESTS NUMBER, DATA INFORMATION, UNDERSAMPLING MASK
P (REFER TO FIG. 1) AND PARAMETER SETTINGS

Test Image Abbrev. Size(x8) P (., N) a/)
T | CartSag. | datal | 512x500 | (@ | (0,10%) [ 2 T
2 Cart.Sag. datal 512 x 500 | (b) | (0.1,10%) | 22
3 Rad.Axi. data2 256 x 512 | (o) | (0.1,10%) [ 27

For data2, we applied GRAPPA operator griding (GROG) tech-
nique [42] to shift the non-Cartesian radial data onto Cartesian
grids such that fast Fourier transforms can be directly used in re-
construction. All data were normalized by some constants such
that the intensities of reference images have a range in [0, 1].
In all of our experiments a reference image is set to the point-
wise root of summed squares of the images obtained by full
k-space data from all channels. Namely the reference image
ug 2 (X, |u;|*)*/? where u; is the Fourier transform of the
fully acquired data from the j-th channel. The parameter set-
ting and further discussion are based on the normalized data.

For comparison, a nonlinear conjugate gradient (NLCG)
based solver [43] for model (5) was also implemented and con-
sistently used for comparisons in all experiments. As NLCG
requires the objective function in (5) to be differentiable, we
used the following common approximations:

- D. 9 - iI?T.T
lullrve = 32\l + e llelhe = e
)

with e = 10715 for the TV and ¢; terms in (5). The line search
parameters (a,b) were set to (0.01,0.6) as used by default in
[43].

In each experiment, the parameters (1, A) are set the same
for NLCG and the proposed method. In addition, the computa-
tion processes for both methods are terminated when the rela-
tive change in objective function [by plugging the iterate u* into
the original model (5)] is less than tol = 10~*. Besides tol, the
stopping criterions tol1 and tol2 for the (TV) and (LS) subprob-
lems in the proposed algorithm are both set to 10~2. Note that
such tolerances are in general small enough, such that more tight
stopping criterions will not lead to significantly improved accu-
racy in the final reconstruction but require more iterations. The
data description and parameter settings in our tests are summa-
rized in Table I. The sparsifying transform VU in (5) was set to
the 2D Haar wavelet transform. The sensitivity maps for datal
were estimated using the central 32 x 32 k-space data from all
channels, which is a subset of the undersampled data. In radial
sampling trajectories as in test 3, the disk of radius n /7 (where
n is the number of sampled radial lines) at the center of k-space
is fully sampled and hence can be used to estimate sensitivity
maps. These sensitivity maps are precomputed and then fixed
during the computation.

To compare the proposed method with k-space methods,
we also implemented GRAPPA [2], L1 SPIR-iT [58], and
self-calibrated radial GRAPPA [59], which proved to be effi-
cient for (a) variable density, (b) pseudo random and (c) radial
k-space trajectories in Fig. 1, respectively. The convolution
kernel size for L1 SPIR-iT and GRAPPA were 3 x 3 and 4 x 5,
respectively. The convolution kernels for self-calibrated radial
GRAPPA were defined by Fig. 3 in the original paper [59]. All
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(a) (b) (c)

Fig. 1. k-space masks P used for reconstructions in tests 1, 2, and 3, respec-
tively (a) Cartesian mask with net reduction factor 4 (b) Pseudo random mask
with reduction factor 4 (c) Radial mask with 43 (out of 256) projections, i.e.,
reduction factor 6.

Fig. 2. datal: sagittal brain image (512 x 500). Left: Reference image. Right:
Zoomed-in of the box in the reference image.

the convolution kernels were self-calibrated for these methods.
The convolution was processed in k-space.

All algorithms were implemented in the Matlab program-
ming environment (Version R2009a, MathWorks, Natick, MA)
except few componentwise computations related to complex
values in TV subproblem split Bregman solver RecPF were
coded in C++. The experiments were performed on a Dell Opti-
plex desktop with Intel Quad Core 3.0-GHz processors (only 1
core was used in computation), 3 GB of memory and Windows
operating system.

The reconstruction results were evaluated qualitatively by
error maps (absolute difference of reconstruction u to the ref-
erence image up) and zoomed-in regions, as shown in Figs. 3,
5, and 8. They are all at the same scale level and then bright-
ened 5 and 2 times, respectively, to help visual justifications.
To quantitatively evaluate the efficiency and accuracy of the
tested methods, we also show the plots of total reconstruction
time (in seconds) and relative error to the reference image
(v = uol|2/||wol|2) versus different reduction factors for each
test.

V. RESULTS

Figs. 3 and 4 show the results of test 1 using Cartesian tra-
jectory [Fig. 1(a)], which is regularly used for self-calibrated
PPI. Cartesian datal (Fig. 2) was reconstructed with nominal
reduction factors of 2, 3, 4, and 5 by GRAPPA, NLCG and the
proposed method. In addition, the central 32 k-space lines are
also fully acquired for kernel calculation in GRAPPA and sensi-
tivity maps estimation in NLCG and the proposed method. Then
the corresponding net reduction factors are 1.9, 2.6, 3.4, and 4.
For net reduction factor 4, the error maps and the zoomed-in re-
gions of the reconstructed images are displayed on the top and
bottom rows in Fig. 3, respectively. Visually one can see that
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Fig. 3. Error maps (top row) and zoomed-ins (bottom row) of reconstructions
in test] with nominal reduction factor 5. Left column: Conventional GRAPPA.
Middle column: NLCG. Right column: Proposed method (a) GRAPPA (b)
NLCG (c) Proposed (d) GRAPPA (e) NLCG (f) Proposed.
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Fig.4. Comparison of relative error and reconstruction time (sec.) versus (nom-
inal) reduction factors of reconstructions for datal (Fig. 7) and Cartesian trajec-
tories using different methods.

the reconstruction by the proposed method [Fig. 3(c) and (f)]
has the lowest error level and highest spatial resolution than
those by GRAPPA [Fig. 3(a) and (d)] and NLCG [Fig. 3(b)
and (e)]. This suggests that the proposed method has the ability
to preserve spatial resolution and improve reconstruction SNR.
Fig. 4 shows the comparisons on relative errors and reconstruc-
tion time by these three methods with different (nominal) re-
duction factors 2, 3, 4, and 5. The proposed algorithm is up to
10 times faster than NLCG with similar or lower relative errors.
Although the reconstruction time of the proposed algorithm is
longer than GRAPPA, the relative errors of the results by the
proposed method are significantly lower than GRAPPA espe-
cially when the (nominal) reduction factor was 4 and 5.

Figs. 5 and 6 show the results of test 2 with pseudo random
trajectories. Fig. 1(b) shows the acquisition trajectory, which is
potentially useful for high-resolution 3D imaging [58]. Here we
used it to simulate the random trajectory for 2D imaging. Carte-
sian datal (Fig. 2) is reconstructed with net reduction factors
of 2, 3, 4, 6, and 8 by L1 SPIR-iT [58], NLCG, and the pro-
posed method. For reduction factor 4, the error maps (top row)
and the zoomed-ins (bottom row) are shown in Fig. 5, which
indicates that both L1 SPIR-iT and the proposed method pro-
vide good reconstructions with the latter one showing slightly
better accuracy. Further comparisons of these three algorithms
are demonstrated in Fig. 6, where the relative errors and recon-
struction time versus reduction factors are presented. The left

(€Y (®) ©

(@

Fig. 5. Error maps (top row) and zoomed-ins (bottom row) of the recon-
structions in test2 with reduction factor 4. Left column: L1 SPIR-iT. Middle
column: NLCG method applied to SENSE. Right column: Proposed method
(a) L1 SPIR-iT (b) NLCG (c) Proposed (d) L1 SPIR-IT (e) NLCG (f) Proposed.
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Fig.6. Comparison of relative error and reconstruction time (in seconds) versus
reduction factors for datal (Fig. 7) and pseudo random trajectories using dif-
ferent methods.

shows that the proposed method consistently produces similar
or even lower relative error than the other two methods. In ad-
dition, the reconstruction time used by the proposed method is
much less than those by L1 SPIR-iT and NLCG, as shown on the
right of Fig. 6. These two plots indicate that to generate a similar
or even better reconstruction result, the proposed method cut up
to 80% off the reconstruction time required by L1 SPIR-iT.
Figs. 8 and 9 show the results of test 3 with radial trajec-
tory (Fig. 1) by self-calibrated radial GRAPPA [59], NLCG and
the proposed method. Radial data2 (Fig. 7) was reconstructed
with 32, 43, 64, 84, and 128 radial projections corresponding
to reduction factors 8, 6, 4, 3, and 2, respectively. For 43 pro-
jections (reduction factor = 6), the error maps (top row) and
zoomed-in region of the reconstructed images (bottom row) in
Fig. 8 demonstrate a much better reconstruction by the proposed
method than those by radial GRAPPA and NLCG in terms of rel-
ative error and SNR. As can be seen, radial GRAPPA is very fast
but the reconstructions have severe aliased artifacts. On the other
hand, the image reconstructed by the proposed method has both
well preserved high resolution as well as much lower relative
error. In the plot of reconstruction time versus number of pro-
jections (right of Fig. 9), the proposed method shows to be less
effective than radial GRAPPA when the reduction factor is low
(but still acceptable and is much more efficient than NLCG in
all cases). As the number of projections reduces (i.e., reduction
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Fig. 7. Data2: radial brain image (256 x 512 x 8). Left: Reference image.
Right: Zoomed-in of the box in the reference image.

Fig. 8. Error maps (top row) and zoomed-ins (bottom row) of the reconstruc-
tions in test3 with 43 radial projections. Left column Radial GRAPPA. Middle
column NLCG. Right column Proposed method (a) Radial GRAPPA (b) NLCG
(c) Proposed (d) Radial GRAPPA (e) NLCG (f) Proposed.
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Fig. 9. Comparison of relative error and reconstruction time (seconds) versus
numbers of projections for data2 (Fig. 7) with radial trajectories [Fig. 1(c)] using
different methods.

factor increases), radial GRAPPA requires longer time for re-
construction but the computational cost for the proposed method
remains almost the same. When the number of projections is less
than 64, the proposed method turned out to be the most efficient
one among the three algorithms tested in this experiment.

In all the three tests, the conventionally adopted optimization
method NLCG was used for comparison. Although NLCG and
the proposed algorithm are both set to solve the CS-PPI model
(5), their practical performances are quite different. To test the
efficiency of these two methods, we record the relative errors
and objective function values [by plugging the iterates into the
original objective function in (5)] in each iteration during their
reconstruction processes in test 2 with reduction factor 4, and
plot them (in logarithm) versus CPU time as show in Fig. 10.
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Fig. 10. Comparison of relative errors (left) and objective functions (right) in
logarithm versus CPU time by NLCG and the proposed method during the re-
construction processes.

From Fig. 10, we can see that the relative error and objective
function value by the proposed method decay faster and remain
lower than those by NLCG. These indicate that the proposed
method using alternating minimizations has better accuracy and
higher efficiency than NLCG in solving (5).

In our understanding, there are two main reasons why the
proposed method is more efficient and robust than NLCG.
Firstly, NLCG suffers the combination of two issues in CS-PPI
application greatly: the highly nonlinearity of the nonsmooth
TV/¢; terms and the severe ill-conditioning of the matrix A
in (5). Due to these two issues, NLCG has much difficulty
in finding efficient gradient descent direction and also the
time-consuming line searches (which requires numbers of
computations of A) consume considerably long time. On the
contrary, the proposed method split the problem into two
well regularized minimizations (TV) and (LS). The (TV) sub-
problem can be stably solved by split Bregman method by using
nonlinear (but very fast) shrinkages provided that the matrix
multiplied to v is identity in (9). The (LS) subproblem is smooth
and can be efficiently solved by the optimal gradient method
with improved conditioning. Thus the computation complexity
of the original problem (5) is significantly reduced by using the
proposed method and hence higher efficiency can be achieved.
Secondly, NLCG appears to be very sensitive to the weight
parameter A: either A large or small makes NLCG generate
unsatisfactory results as the data fitting or the regularization
becomes too significant. On the contrary, A appears only in the
(LS) subproblem of the proposed algorithm so it merely affects
the Fourier coefficients in FS;(u) corresponding to positions
where data f; is sampled. If A\ becomes larger, the remaining
entries of FS;(u) will still update with v independent of A.
This splitting makes the proposed method very stable even with
large A and allows it to faithfully retain the effect of TV /¢,
regularization.

VI. FURTHER DISCUSSION ON PARAMETER SELECTION

In this section, we make further discussion on the parameter
selection for the proposed algorithm. For demonstration pur-
pose, we showed the results corresponding to the tests on data 1
with pseudo random sampling pattern [Fig. 1(b)] and reduction
factor 4.

A. Balancing the Three Terms in Model (5)

In model (5) we need two parameters ; and A to balance the
three terms: the TV and ¢; regularization terms and the data fi-
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TABLE II
RELATIVE ERRORS OF THE RECONSTRUCTIONS BY USING
ONLY THE TV TERM AND THE {1 TERM IN (5)

A 102 103 10% 10°
with TV only | 10.67% | 10.50% | 12.41% | 13.21%
with ¢1 only 12.17% | 11.55% | 13.06% | 13.32%

Fig. 11. Comparison of reconstructions using only TV or ¢y term in (5), re-
duction factor is 4 and A = 10® (a) Reference (b) Reconstruction with TV
regularization only (c) Reconstruction with ¢; regularization only.

delity term. As will be shown soon later, the TV regularization
term exhibits stronger image recovering effects than ¢;. There-
fore, we let TV term always present in the reconstruction model
(5), and use the p and A for the ¢; term and data fidelity term
respectively as weight ratios against the TV term in our experi-
ments.

To determine the values of y and A, we need to explore the
behavior and performance of TV and /; regularization terms.
First, we compute the solutions to (5) with the other term turned
off. Namely, we set . = 0 and try different values of A in (5) to
see the effects brought by the TV term, and then turn off the TV
term, set 4 = 1 and try the same values of ) to see the effects of
the /; term. The parameter « is set to 22 x )\ in these cases. The
resulting relative errors of the reconstructions are presented in
Table II.

From Table II, we first observe that the model (5) can be
stably solved by the proposed method with A lying in a large
range [10%, 105]. This is demonstrated by the fact that the rela-
tive error does not change much for various A\. Among the values
we tested in this experiment, A between [102, 103] appears to be
optimal as suggested by the lowest relative errors. Furthermore,
we can see that the TV term appears to be more effective than the
/; term in reconstruction because the former consistently pro-
duces images of lower relative errors, as shown in Table II. We
also show the reconstructed images when A = 10 in Fig. 11.
In this case, the relative errors by using only the TV term and
the /1 term are 10.50% and 11.55%, respectively. When com-
pared to the reference image Fig. 11(a), the TV reconstruction
[Fig. 11(b)] exhibits lower level of noises/artifacts as well as
better preserved edges than /1 reconstruction [Fig. 11(c)].

B. An Empirical Study of the Penalty Parameter o

When we try to approximate the constrained problem (7) by
the unconstrained minimization (8), it is usually intuitive to set
the penalty parameter « very large. However, our experimental
results in SENSE applications show that large penalty param-
eter o does not necessarily improve the image quality, but slows
down the convergence (as shown in Theorem IIL.2 that p(M 1)
becomes closer to 1 as o gets larger). Table III lists the relative

Fig. 12. Reconstructions by the proposed method in test 2 with different values
of penalty parameter «, reduction factoris 4 and A = 102 (a) « = 273, relative
error 10.54%, (b) a = 22, relative error 10.87%, (c) @ = 2%, relative error
11.36%.

TABLE III
RELATIVE ERRORS (RELERR) AND COMPUTATIONAL TIMES (TIME)
IN SECONDS BY ALGORITHM 3 WITH DIFFERENT VALUES OF «

/X 23 2- 1 20 22 25
RelErr | 10.54% | 10.46% | 1047% | 10.87% | 11.36%
Time 30.9 357 37.0 39.1 65.7

errors and computational times of Algorithm 3 with different
values of « in test 2 with reduction factor 4 and A = 103. The
reconstruction results with o/ A = 273, 22, 2° are also plotted
in Fig. 12. The parameter p is set to 0.1 in these tests. From
Table I, we can see those o/ A € [272,2%] leads to fast com-
putation as well as low reconstruction error. Tests on other data
also suggest that satisfactory reconstructions in CS-PPI model
(5) can be obtained when « is chosen from this fairly large
range. On the contrary, larger v/ leads to unnecessarily long
computational time and sometimes even slightly larger error.
One reason is that in this case the weight on the data consis-
tency term (8) is relatively too small and hence the reconstruc-
tion error increases a bit, despite that the solution » and v are
closer now than a smaller «« was used. Therefore, we suggest a
moderate value of o between [272,2%] x ) for optimal perfor-
mance of (8).

VII. CONCLUSION

This paper presents a fast numerical algorithm for SENSE
model with sparsity constraints in CS-PPI with arbitrary
k-space trajectories. The proposed algorithm adopts variable
splitting, the quadratic penalty technique and an optimal
gradient method. A tailored derivation of the algorithm is
presented, and a comprehensive analysis showing the linear
convergence rate of the algorithm is also provided. Numerical
tests indicate fast, stable and accurate reconstructions obtained
by the proposed algorithm. Furthermore, the choice of parame-
ters in CS-PPI is discussed based on theoretical interpretation
and experimental tests.

APPENDIX A
SOLVERS OF (TV)-(LS) IN (9) AND THEIR PROPERTIES

Let 7 and £ denote the solvers of (TV) and (LS) subproblems
in (9), respectively. Namely, 7 and L are defined by

1 n 1
T(u) = in — e’ ~|jv — ul|3
(u) arg min Slollzy + [ ol + Sllo = ull;

LA 1
L(v) = arg min S| Au—f5 + Sllu vl (8)
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T,L : CN — CV are proximity operators as both of the ob-
jective functions above are formed by a continuous and convex
function plus a proximal term ||u—v||3 /2. A proximity operator
‘P is firmly nonexpansive and satisfies [61]

IP(z) = P(y)ll2 < [l& —yll, YV, yeCV,

and “=" holds <= P(z) - P(y) =z —y. (19)

Hence, Algorithm 3 is simply alternating v*+! = 7 (u*) and
uFtl = L£(v**+1) in each iteration.

APPENDIX B
PROOF OF THEOREM I11.1

As (9) is convex and coercive and 7, £ are both continuous, it
is suffice to show that {u*}}, converges to a fixed point of Lo 7.

Let 4 be any fixed point of £ o 7. Since £ o T also satisfies
(19), and there is

[ut* =l = Lo T (u*) = Lo T(@)l|2 < [lu” — all2.

This shows that the sequence of scalars {||u* — [z} is
bounded, monotonically decreasing and hence is convergent.
Boundedness also implies a convergent subsequence {u"7}; of
{u*}, such that lim; u* = u* for some u* and

lim [u* —alls = lim |Ju® —dlly = |Ju* —dll2.  (20)
Since £ o 7 is continuous, we know {u*1+1}, is also a conver-
gent subsequence of {u*};, with limit £ o 7 (u*). Hence

lim [[u® —dlly = lim |[u®T —dlls = ||£ o T (u*) — il|s.
k—oo j—o0

Combining this with (20) gives ||[Lo T (u*) —dl|s = ||u* —a|2-
As 1 is a fixed point, and £ o 7 satisfies (19), we have u* =
LoT(u*),ie., u*is a fixed point of Lo 7.

Note that (20) holds for any fixed point of £ o 7, replacing
by u* gives limy, ||u* — u*|| = 0. That is, {u"*} converges to
u*, a fixed point of £ o 7, which proves the theorem.

APPENDIX C
PROOF OF THEOREM II1.2
As Algorithm 3 alternates v**! = 7 (u*) and v**! =

L(vF*1) in each iteration, there is
[ = vl = 1T (%) = T(u)l2 < [lu® = u”[l2.

Note that the derivative of the objective function in (LS) sub-
problem of (9) at L(v) is 0, i.e.,

L(v)—v+ <3> CAT(AL(W) = f) =0

a
since £(v) is the minimizer. Define M = I + (A\/a)AT A then
L(v) = L(0) = M~ (v =),

Vo, 0eCN. @21

Hence we have

[05 = v |2 < Jlu® = w2 = L") = L(v")]l2
<p(M™H[o" = vz
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Moreover, by u*+1 —u* = L(v**1) — L£(v*) and (21), we have

k * k * k *
[ — w13y = (o —u*, M(u* —u"))
<p(MH)[lu —u*|3

where the last inequality is because that v**! = T (u¥),
v* =  T(u*) and T satisfies (19). Also note that
|uF — u*||3 < ||u® — u*||3,. Combining the two inequalities
above, we obtain

b+ = w*flar < /o) [k = u* ar.
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