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ABSTRACT
This paper provides an efficient minimization algorithm for
dictionary based sparse representation and its application in
some signal recovery problems. Dictionary has shown great
potential in effectively representing various kinds of signals
sparsely. However the computational cost associated with
dictionary based sparse representation can be tremendous,
especially when the representation problem is coupled with
the complex encoding processes of the signals. The proposed
algorithm tackles this problem by alternating direction min-
imizations with the use of Barzilai-Borwein’s optimal step
size selection technique to significantly improve the conver-
gence speed. Numerical experiments demonstrate the high
efficiency of the proposed algorithm over traditional opti-
mization methods.

Categories and Subject Descriptors
G.1.6 [Optimizations]: Nonlinear Programming; I.4 [Image

Processing and Computer Vision]: Miscellaneous

General Terms
Algorithms

1. INTRODUCTION
1.1 Sparse Representation and Dictionary
Sparse representation is an important research topic in mod-
ern signal/image processing community. Given a set of n
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discrete signals ui ∈ R
M , it is usually desirable to find a

sparse representation using D ∈ R
M×N such that

ui = Dci, i = 1, · · · , n, (1)

where the representation coefficients ci are sparse in the
sense that the support of each ci has much less cardinal-
ity than N , namely, there are only few nonzero entries in
each ci. Hence, this system of equations in (1) implies that
any ui in the sample set is a linear combination of only few
columns in D.

Sparse representation has extensive applications in signal
processing. For instance, it can be used to compress signals
as locations and values of those few coefficients are suffice to
recover the original signal provided the representation ma-
trix D [1]. It can also be utilized to classify signals based on
their corresponding representation coefficients [19, 20]. In
addition, sparse representation can also be used to remove
background noises as the main features should be sparsely
represented already [13, 23, 6]. There have been a number
of successful examples showing the efficiency of sparse rep-
resentations, using tools such as discrete cosine transforms,
wavelets, curvelets and etc. See, for example, [1, 13, 8, 14,
10] and references therein.

Dictionary is an advanced tool for sparse representation,
and has proved its great potential in various applications.
It attracts much more attentions these years due to the
recent boost in compressed sensing which also requires ef-
fective tools to explore the intrinsic sparsity of underlying
signals. Unlike traditional orthogonal and universal sparsi-
fying transforms (e.g. wavelets), dictionary is usually over-
complete (M < N) and can be trained to absorb features
from the learning samples, and hence it can more adaptively
represent the objective data.

Due to the great importance of dictionaries, there have been
a number of methods proposed for training dictionaries from
given sample set in recent years. See, e.g. [18, 17, 1]. The re-
sulting dictionary can then sparsely represent every sample,
as well as new samples that have similar features to those
in the original sample set. The general formulation of these
methods is as follows,

min
D,ci

n
∑

i=1

‖ui −Dci‖
2, s.t. ‖ci‖0 ≤ T0, i = 1, · · · , n, (2)



where ‖·‖ ≡ ‖·‖2 is the regular Euclidean norm, and T0 is a
prescribed sparsity level. With properly chosen parameters,
(2) is supposed to return a dictionary D that can sparsely
represent all vectors ui in the give sample set. The solution
to (2) provides an effective tool to find sparse representation
of any given type of signals, even if they are not that sparse
in conventional transform domains such as wavelets. Note
that the practical way of processing this minimization (2)
varies in different methods. In this paper, we chose K-SVD
algorithm [1] which proves to be a very robust and efficient
method for training dictionaries. K-SVD algorithm alter-
nately updates D and c when solving (2). In particular, it
applies the singular value decomposition (SVD) of the resid-
ual matrices to update the columns of D in order. For more
details about K-SVD algorithm, we refer readers to [1].

1.2 Application in Signal Recovery
In real applications, a signal is usually encoded into f , which
is the observed data contaminated by some noises. The en-
coding process can usually be described as a linear transform
via a sensing matrix H , and the noises γ are usually assumed
to be additive Gaussian. Hence, the data acquisition process
is formulated as follows,

f = Hu+ γ. (3)

If u itself is a sparse signal, it can be recovered by solving
the minimization problem

min
u

{

α‖u‖0 +
1

2
‖Hu− f‖2

}

, (4)

where ‖ ·‖0 is 0-norm that counts the number of nonzeros in
its argument. This is the routine of sparse signal recovery
in compressed sensing [11, 7].

However, in most applications, the signal u is not sparse in
its space domain, but rather in the frequency domain (e.g.
Fourier, cosine transform), or under certain transform (e.g.
wavelet). In case it is not sparse in either case, one can still
train a dictionary D from a set of samples that are similar
to u using (2), and then use this D to sparsely represent
the signal: provided this dictionary D, we can enforce the
sparsity of representation coefficient c by minimizing

α‖c‖0 +
1

2
‖Dc− u‖2, (5)

where α > 0 is a balance term between the sparsity level
and representation error. However, the 0-norm minimization
in (5) is proved to be an NP-hard problem and hence not
tractable. In practice, the 0-norm can be substituted by
the convex 1-norm and this relaxed formulation is shown to
be equivalent under certain conditions such as high sparsity
level of c as well as some desirable properties of D. There
are many references and fast algorithms proposed in this
context. See, e.g. [7, 16, 5, 21, 12, 3, 15, 4, 25].

Utilizing (5) as the sparsity constraint for the underlying
signal u, one can recover u by solving the following mini-
mization problem

min
u,c

{

α

(

β‖c‖0 +
1

2
‖Dc− u‖2

)

+
1

2
‖Hu− f‖2

}

. (6)

Here α weights the regularization term against the data fit-
ting term, and β weights the sparsity of the representation

coefficients against the representation error.

In most imaging applications, such as magnetic resonance
imaging (MRI) reconstruction, it is usually not the images
that have sparse representation, but the small patches in the
images can be sparsely represented by a trained dictionary.
In this case, one can solve for the image u by

min
u,cj

{

α

J
∑

j=1

(

β‖cj‖0 +
1

2
‖Dcj −Rju‖

2

)

+
1

2
‖Hu− f‖2

}

,

(7)
where Rj ∈ R

M×P is a binary matrix that extracts the j-th
patch of size M from the image u consisting of P pixels in
total, and cj is the representation coefficient for this patch
under the dictionary D [13, 26, 9, 22]. Nevertheless, meth-
ods proposed for (6) can be readily modified to use for (7).

2. PROPOSED METHOD

2.1 Algorithm Derivation
In this section, we propose an alternating direction mini-
mization algorithm for solving the dictionary based signal
recovery problem

min
u,c

{

α

(

β‖c‖1 +
1

2
‖Dc − u‖2

)

+
1

2
‖Hu− f‖2

}

, (8)

with the relaxed convex 1-norm to enforce sparsity in coeffi-
cient c. As the objective function is convex with respect
to both of u and c, it is guaranteed that an alternating
minimization scheme leads to a global minimum from any
starting point. However, conventional alternating scheme
requires the minimizations of















ck+1 = argmin
c

{

β‖c‖1 +
1

2
‖Dc− uk‖2

}

,

uk+1 = argmin
u

{

α

2
‖Dck+1 − u‖2 +

1

2
‖Hu− f‖2

}

,

(9)

which requires tremendous iterations in each subproblem
(note that H may not have a specific form that makes the
u-step directly solvable). In this paper, we propose to relax
minimizations in each subproblem by the first order Tay-
lor expansion of the the quadratic term with the penaliza-
tion on the distance between the next iterate and the pre-
vious one. Namely, we substitute the representation term
(1/2) · ‖Dc − uk‖2 by

1

2
‖Dck−uk‖2+〈DT (Dck−uk), c−ck〉+

1

2δk
‖c−ck‖2, (10)

where δk acts as a stepsize and controls the penalty of the
distance between two concatenated iterates ck+1 and ck.
Note that this can be readily simplified to

1

2δk
‖c− (ck − δkD

T (Dck − uk))‖2, (11)

by completing squares since the previous iterate ck is merely
a constant while minimizing with respect to c. Similarly, we
can also substitute the data fitting term (1/2) · ‖Hu − f‖2

by

1

2µk

‖u− (uk − µkH
T (Huk − f))‖2, (12)



where µk is the step size of the u-problem in the k-th itera-
tion. Then the minimization scheme (9) becomes






































c̄k = ck − δkD
T (Dck − uk),

ck+1 = argmin
c

{

β‖c‖1 +
1

2δk
‖c− c̄k‖2

}

,

ūk = uk − µkH
T (Huk − f),

uk+1 = argmin
u

{

α

2
‖Dck+1 − u‖2 +

1

2µk

‖u− ūk‖2
}

.

(13)
Here the intermediate steps for c̄k and ūk can be computed
directly. The correction steps ck+1 and uk+1 also have closed
form solutions for the minimizations as follows.

First, ck+1 can be obtained by componentwise soft shrink-
ages

ck+1

i = max{|c̄ki | − βδk, 0} · sign(c̄
k
i ). (14)

Second, by taking derivative with respect to u in the uk+1

step, one gets

uk+1 = (αµk + 1)−1(αµkDck+1 + ūk), (15)

where α and µk are positive scalars so the inverse on the
right hand side is well defined and trivial to compute.

It is clear that the algorithm (13) requires two operations on
each of D ∈ R

M×N and H ∈ R
m×M , as well as their trans-

poses DT and HT . Other operations include soft shrinkages
of complexity N , which are usually negligible compared to
that of D and H .

2.2 Algorithm Acceleration
Given that the complexity in each iteration is low, it remains
to improve the convergence rate of the proposed algorithm
(13) to achieve high efficiency.

Conventional gradient descent algorithms require that the
step size δk and µk have strict bounds to ensure the iterates
converge to a fixed point. These bounds also apply to (13).
It can be readily shown that

δk ≤
1

‖DTD‖2
, µk ≤

1

‖HTH‖2
, (16)

where ‖ · ‖2 is the 2-matrix-norm, or the largest singular
value of the matrix. However, these bounds are in some
sense too conservative such that the convergence under the
optimal cases, i.e. set δk and µk to these bounds in (16), is
still very slow. Here, we propose to use the Barzilai-Borwein
(BB) step size selection method [2] to compute δk and µk to
improve the convergence rate.

BB step size mimics the inverse of the Hessian of the ob-
jective over the most recent step via a multiple of identity
matrix in the following way:

δk = argmin
δ
‖(ck − ck−1)− δDT (Dck −Dck−1)‖2. (17)

Hence δk can be explicitly computed by

δk = ‖D(ck − ck−1)‖2/‖DTD(ck − ck−1)‖2, (18)

which is no smaller than the conservative bounds 1/‖DTD‖2.
However, this step size selection significantly improves the

efficiency of the algorithm (13) and the iterates appear to
converge empirically in all circumstances. We also apply
this BB method to the update of µk by

µk = ‖H(uk − uk−1)‖2/‖HTH(uk − uk−1)‖2. (19)

To sum up, we obtain the Algorithm 1 for solving the mini-
mization problem (8).

Algorithm 1 Alternating Direction Minimization for (8)

Input D, H , f , α, β.
Initialize c−1 = −1, u−1 = −1, c0 = 0, u0 = 0, k = 0.
Main loop:

1. c̄k = ck − δkD
T (Dck − uk).

2. δk = ‖D(ck − ck−1)‖2/‖DTD(ck − ck−1)‖2.

3. ck+1

i = max{|c̄ki | − βδk, 0} · sign(c̄
k
i ).

4. ūk = uk − µkH
T (Huk − f).

5. µk = ‖H(uk − uk−1)‖2/‖HTH(uk − uk−1)‖2.

6. uk+1 = (αµk + 1)−1(αµkDck+1 + ūk).

7. Stop if converged, else set k ← k + 1 and go to 1.

3. NUMERICAL EXPERIMENTS

3.1 Comparison Algorithms
In this section, we test the performance of the proposed algo-
rithm 1 on simulated data with comparison to the commonly
used orthogonal matching pursuit (OMP) algorithm [24].
The OMP algorithm solves the minimization problem in the
c-step in (9) with 1-norm replaced by 0-norm. Although an
exact solution is not guaranteed, OMP can usually gener-
ate a very close approximation to a true solution efficiently.
Here we use OMP to denote the algorithm (9) with the c-
step solved by OMP algorithm and u-minimization replaced
by those updates in (13) (the latter is a must as H can be
of any form that make the minimization in u-step have no
direct solution). Therefore the per-iteration computational
cost for OMP is much higher than the proposed method,
as the latter only involves componentwise shrinkage with-
out any iterations as OMP does. In addition, to show the
efficiency brought by BB method, we also compare the per-
formance of the algorithm with δk and µk updated by BB
method or kept constants as 1/‖DTD‖2 and 1/‖HTH‖2,
respectively.

All the algorithms are implemented in MATLAB (R2010b)
and tested under GNU/Linux operating system (kernel ver-
sion 2.6.35) on a Lenovo ThinkPad laptop with Intel Dual
Core 2.53GHz CPU and 3GB memory.

3.2 Data Simulation
We first generate a set of n = 1, 500 random samples of
length M = 100 generated by the build-in MATLAB func-
tion randn. Then we train a dictionary D of size 100× 400
using theK-SVD algorithm [1]. Next, we generate a random
sensing matrix H of size m×M with m = 60 and normalize
its columns, and then randomly pick a sample as the ground
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Figure 1: Recovered signals by OMP and BB in test

1.

truth signal u0 from the n = 1, 500 samples. Finally we ob-
tain f = Hu0 + γ where γ is a white Gaussian noise with
standard deviation 0.01.

We set the parameters α = 10−5 and β = 10−3 which ap-
pear to give optimal results of all the tested algorithms. We
also found that the proposed algorithm is not quite sensitive
to these two parameters as the results do not change much
when their values vary by a multiple of numbers between 0.1
and 10. The default termination criterion for all algorithms
is that ‖uk−uk−1‖/‖uk‖, the relative change of the most re-
cent two iterates, is less than the prescribed tolerance 10−5.

3.3 Experimental Results
The recovered signals by OMP and the proposed algorithm
are shown in Figure 1. The red circles show the original
data u0, and blue dots and green stars represent the recov-
ered values by OMP and the proposed algorithm, respec-
tively. It is clear that the signal recovered by the proposed
algorithm is closer to the ground truth signal. The relative
reconstruction error ‖u− u0‖/‖u0‖ is 9.0% by the proposed
algorithm 1, which is much smaller than 23.9% obtained
by OMP. To show the efficiency of BB step size optimiza-
tion technique, we also test the proposed algorithm with δk
and µk set to constant values 1/‖DTD‖2 and 1/‖HTH‖2,
respectively. Although these two bounds are the optimal
choices for constant δk and µk with guaranteed convergence,
BB method can easily outperform them by exhibiting much
faster convergence rate as shown in Figure 2. As the per-
iteration computational cost are almost identical with or
without BB updates, Figure 2 demonstrates a significantly
improved efficiency by BB updates as it requires much less
iterations to reach the same level of relative error.

The second test replicates the previous one with a larger
data dimension. In this test, we set m = 150, M = 250 and
N = 1, 000. The sample set consists of 15,000 vectors of
length M . The simulated observation error γ is still white
Gaussian with standard deviation 0.01. The parameters α,
β, and termination criterion are all set to the same as in
previous test.

The first 100 entries of the recovered signals (of length 250)
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Figure 2: Relative reconstruction error with and

without BB step size optimization in test 1.
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Figure 3: Recovered signals by OMP and BB in

test 2. Only the first 100 of the total 250 entries are

shown for each signal.

by OMP and the proposed algorithm are shown in Figure
3. Again the recovery by the proposed method (green star)
appears to be closer to the ground truth (red circle) than
that of OMP (blue dot). The relative error is 11.4% for
the proposed algorithm and 18.4% for the OMP. Figure 4
shows the performance of algorithm (13) with and without
BB updates. It can be seen again that BB method can
significantly improve the effectiveness of the algorithm by
using this quasi-Newton like gradient descent scheme.

4. CONCLUSIONS
In this paper, we developed a fast numerical algorithm for
solving dictionary based signal recovery problem arising from
sparse representation and compressed sensing. To tackle the
computational difficulty associated to dictionary represen-
tation and arbitrary data acquisition process, we proposed
to use an alternating direction minimization algorithm to
split the problematic minimizations and make the scheme
involve only few simple updates in each iteration. Moreover,
the proposed algorithm benefits from the quasi-Newton like
property by utilizing the Barzilai-Borwein’s step size selec-
tion method. The numerical tests showed that the proposed
algorithm has significantly improved efficiency and accuracy.
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