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Computational Acceleration for MR Image
Reconstruction in Partially Parallel Imaging

Xiaojing Ye*, Yunmei Chen, and Feng Huang

Abstract—In this paper, we present a fast numerical algorithm for
solving total variation and � (TVL1) based image reconstruction
with application in partially parallel magnetic resonance imaging.
Our algorithm uses variable splitting method to reduce compu-
tational cost. Moreover, the Barzilai–Borwein step size selection
method is adopted in our algorithm for much faster convergence.
Experimental results on clinical partially parallel imaging data
demonstrate that the proposed algorithm requires much fewer
iterations and/or less computational cost than recently developed
operator splitting and Bregman operator splitting methods, which
candealwithageneral sensingmatrix inreconstructionframework,
to get similar or even better quality of reconstructed images.

Index Terms—Convex optimization, image reconstruction, L1
minimization, partially parallel imaging.

I. INTRODUCTION

I N this paper, we develop a novel algorithm to accelerate the
computation of total variation (TV) and/or based image

reconstruction. The general form of such problems is

(1)

where is the total variation, and
are the and norms, respectively. For notation simplicity
we only consider 2-D images in this paper, whereas the method
can be easily extended to higher dimensional cases. Following
the standard treatment we will vectorize an (2-D) image into
1-D column vector, i.e., where is the total number
of pixels in . Then, the (isotropic) TV norm is defined by

(2)

where for each has two nonzero
entries in each row corresponding to finite difference approxi-
mations to partial derivatives of at the th pixel along the co-
ordinate axes. In (1), are parameters
corresponding to the relative weights of the data fidelity term

and the terms and . Model (1) has
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been widely applied to image reconstruction problems. Solving
(1) yields a restored clean image from an observed noisy or
blurred image when or a blurring matrix, respectively.
In compressive sensing (CS) applications, is usually a large
and ill-conditioned matrix depending on imaging devices or data
acquisition patterns, and represents the under-sampled data. In
CS is usually a proper orthogonal
matrix (e.g., wavelet) that sparsifies the underlying image .

A. Partially Parallel MR Imaging

The CS reconstruction via TVL1 minimization (1) has been
successfully applied to an emerging MR imaging application
known as partially parallel imaging (PPI). PPI uses multiple
RF coil arrays with separate receiver channel for each RF coil.
A set of multichannel -space data from each radio-frequency
(RF) coil array is acquired simultaneously. The imaging is ac-
celerated by acquiring a reduced number of -space samples.
Partial data acquisition increases the spacing between regular
subsequent readout lines, thereby reducing scan time. However,
this reduction in the number of recorded Fourier components
leads to aliasing artifacts in images. There are two general ap-
proaches for removing the aliasing artifacts and reconstructing
high quality images: image domain-based methods and -space
based methods. Various models in the framework of (1) have
been employed as image domain-based reconstruction methods
in PPI [1]–[9]. Sensitivity encoding (SENSE) [4], [3] is one of
the most commonly used methods of such kind. SENSE utilizes
knowledge of the coil sensitivities to separate aliased pixels re-
sulted from undersampled -space.

The fundamental equation for SENSE is as follows. In a PPI
system consisting of coil arrays, the under-sampled -space
data from the th channel relates to the underlying image
by where is the Fourier
transform, is a binary matrix representing the under-sam-
pling pattern (mask), and is the sensitivity map of
the th channel in the vector form as . The symbol is the
Hadamard (or componentwise) product between two vectors.
In early works on SENSE, the reconstruction was obtained by
solving a least squares problem

(3)

where is the undersampled Fourier transform defined by
. Denote

(4)

where is the diagonal matrix with
on the diagonal, . Here stacks the
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arguments vertically to form a matrix. Then problem (3) can be
expressed as

(5)

and then solved by conjugate gradient (CG) algorithm. How-
ever, due to the ill-conditioning of the encoding matrix , it
has been shown in [6] that the CG iteration sequence often ex-
hibits a “semi-convergence” behavior, which can be character-
ized as initially converging toward the exact solution and later
diverging. Moreover, the convergence speed is low, when the
acceleration factor is high.

Recently, total variation (TV) based regularization has been
incorporated into SENSE to improve reconstructed image
quality and convergence speed over the unregularized CG
method ([1], [9]). TV based regularization can be also con-
sidered as forcing the reconstructed image to be sparse with
respect to spatial finite differences. This sparsity along with
the sparsity of MR signals under wavelet transforms have been
exploited in [10], where the framework (1) has been employed
to reconstruct MR images from under-sampled -space data.

There have been several fast numerical algorithms for solving
(1) that will be briefly reviewed in the next section. However,
computational acceleration is still an important issue for certain
medical applications, such as breath-holding cardiac imaging.
For the application in PPI the computational challenge is not
only from the lack of differentiability of the TV and terms,
but also the large size and severe ill-conditioning of the inversion
matrix in (4).

The main contribution of this paper is to develop a fast nu-
merical algorithm for solving (1) with general . The proposed
algorithm incorporates the Barzilai–Borwein (BB) method into
a variable splitting framework for optimal step size selection.
The numerical results on partially parallel imaging (PPI) prob-
lems demonstrate much improved performance on reconstruc-
tion speed for similar image quality.

B. Previous Work

In reviewing the prior work on TVL1-based image recon-
struction, we simplify (1) by taking . It is worth pointing
out here that TV has much stronger practical performance than

in image reconstructions, yet harder to solve because the gra-
dient operators involved are not invertible as in the term.
In [11], [12], a method is developed based on the following re-
formulation of (1) with

(6)

Then the linear constraint was treated with a quadratic penalty

(7)

where is formed by stacking the two columns of
, and . and

are the horizontal and vertical global finite difference matrices

( -by- ), i.e., they consist of the first and second rows of all
’s, respectively. For any fixed , (7) can be solved by alter-

nating minimizations. If both and can be diago-
nalized by the Fourier matrix, as they would if is either the
identity matrix or a blurring matrix with periodic boundary con-
ditions, then each minimization involves shrinkage and two fast
Fourier transforms (FFTs). A continuation method is used to
deal with the slow convergence rate associated with a large value
for . The method, however, is not applicable to more general

.
In [13] Goldstein and Osher developed a split Bregman

method for (6). The resulting algorithm has similar compu-
tational complexity to the algorithm in [11]; the convergence
is fast and the constraints are exactly satisfied. Later the split
Bregman method was shown to be equivalent to the alternating
direction method of multipliers (ADMM) [14]–[17] applied to
the augmented Lagrangian defined by

(8)

where is the Lagrangian multiplier. Nonetheless, the
algorithms in [11]–[13], benefit from the special structure of ,
and they lose efficiency if cannot be diagonalized by fast
transforms. To treat a more general , the Bregman operator
splitting (BOS) method [18] replaces by a proximal-
like term for some . BOS
is an inexact Uzawa method that depends on the choice of . The
advantage of BOS is that it can deal with general and does not
require the inversion of during the computation. However,
BOS is relatively less efficient than the method presented in this
paper, even if is chosen optimally. The comparison of our
method with the BOS algorithm will be presented in Section IV.

There are also several methods developed to solve the asso-
ciated dual or primal-dual problems of (1) based on the dual
formulation of the TV norm

(9)

where and extracts
the th and th entries of . Consequently, (1) can be
written as a minimax problem

(10)

In [19], Chan et al. proposed to solve the primal-dual Euler-
Lagrange equations using Newton’s method. This leads to a
quadratic convergence rate and highly accurate solutions; how-
ever, the cost per iteration is much higher since the method ex-
plicitly uses second-order information and the inversion of a
Hessian matrix is required. In [20], Chambolle used the dual
formulation of the TV denoising problem (1) with ,
and provided an efficient semi-implicit gradient descent algo-
rithm for the dual. However, the method does not naturally ex-
tend to the case with more general . Recently, Zhu and Chan
[21] proposed a primal-dual hybrid gradient (PDHG) method.
PDHG alternately updates the primal and dual variables and

. Numerical results show that PDHG outperforms methods in
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[20], [13] for denoising and deblurring problems, but its ef-
ficiency again relies on the fact that can be diagonal-
ized by fast transforms. Later, several variations of PDHG, re-
ferred to as projected gradient descent algorithms, were applied
to the dual formulation of image denoising problem in [22] to
make the method more efficient. Further enhancements involve
different step-length rules and line-search strategies, including
techniques based on the BB method [23].

Another approach that can be applied to (1) in the imaging
context (1) with a general is the operator splitting (OS)
method. In [24] the OS idea of [25] is applied to image recon-
struction in compressed magnetic resonance imaging. The OS
scheme rewrites (1) as

(11)

where . Then the optimal conditions for (11) are

(12)

where is the subdifferential of at point defined by

The theory of conjugate duality gives the equivalency
, where

. Hence the first condition in (12) can
be written as

(13)

and then the first one leads to

(14)

where the equality is due to . (14) is equivalent to

(15)

that projects onto the unit ball in . Then, combining (15)
and the last equalities in (12) and (13), the OS scheme iterates
the following for a fixed point [which is also a solution to (1)]:

OS is efficient for solving (1) with general when all the pa-
rameters are carefully chosen. However it is still not as efficient
as our method even under its optimal settings. The comparison
of our method with the OS algorithm [24] will be given in Sec-
tion IV.

II. PROPOSED ALGORITHM

In this paper, we develop a fast algorithm to numerically solve
problem (1). Note that the computational challenge of (1) comes
from the combination of two issues: one is possibly huge size

and of the inversion matrix , and the other one is the nondif-
ferentiability of the TV and terms.

As discussed earlier, despite that there were some fast algo-
rithms proposed recently to solve image restoration problems
similar to (1), their efficiency relies on a very special structure
of such that can be diagonalized by fast transforms,
which is not the case in most medical imaging problems, such
as that in (4) in PPI application.

To tackle the computational problem of (1), we first introduce
auxiliary variables and to transform and out of
the nondifferentiable norms

(16)

which is clearly equivalent to the original problem (1) as they
share the same solutions . To deal with the constraints in
(16) brought by variable splitting, we form the augmented
Lagrangian defined by

(17)

where and are Lagrangian
multipliers. Here extracts the th and th entries
of . For notation simplicity we used the same parameter
for all constraints in (17). The method of multipliers iterates the
minimizations of Lagrangian in (17) with respect to
and the updates of the multipliers and

(18)

It is proved that the sequence generated by (18)
converges to the solution of (16) with any .

Since the updates of and are merely simple calculations,
we now focus on the minimization of in (18).
First we introduce functions

By completing the squares in (17), we find the equivalency

(19)
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because the objective functions in these two minimizations are
equal up to a constant independent of .

To solve (19) we first rewrite the objective function in a sim-
pler way. Let and , and define func-
tions by

and data fidelity by

(20)

Then problem (19) [or equivalently, the minimization sub-
problem in (18)] can be expressed as

(21)

We further introduce defined by

(22)

which is a linearization of at point plus a proximity term
penalized by parameter . It has been shown

in [26] that the sequence generated by

(23)

converges to the solution of (21) with any initial
and proper choice of for 1. Interestingly, we
found that in practice the optimal performance can be consis-
tently achieved by only iterating (23) once to approximate the
solution in (21).

Therefore, we substitute the first subproblem in (18) by

(24)

where is chosen based on the BB method as suggested in [26].
BB method handles ill-conditioning much better than gradient
methods with a Cauchy step [27]. In the BB implementation, the
Hessian of the objective function is approximated by a multiple
of the identity matrix. We employ the approximation

(25)

1e.g., for fixed �, any limit point of �� � is a solution of (21) when
� was chosen such that the objective function � �� � ���� �
monotonically decreases as � � � [26].

and get

(26)

This makes the iteration (24) exhibit a certain level of quasi-
Newton convergence behavior.

From the definition of and , (24) is equivalent to

(27)

where the objective is defined by

(28)

Theoretically, an iterative scheme can be applied to obtain the
solution of (27). However, here we propose
only to do one iteration followed by the updates of , and

in (18). This is an analogue to the split Bregman method and
ADMM applied to the augmented Lagrangians, and leads to the
optimal performance of (18). In summary, we propose a scheme
as in (29) for solving the minimization problem (16) (see (29) at
the bottom of the page). The updates of and in (29)
are merely simple calculations. In (29), is derived from
(26) with defined in (20), and also has an explicit form that
can be quickly computed2. Next, we show that and
can be obtained by soft shrinkages by the following theorem.

Theorem II.1: For given -vectors and positive
numbers , the solution to minimization problem

(30)

is given by the shrinkage of a weighted sum of and

(31)

2The main computations for updating � are norm evaluations [no � opera-
tion needed since �� has been computed in the �-step and can be saved for
use in �-step in (29)].

(29)
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where is the -dimensional soft shrinkage operator de-
fined by

(32)

with convention .
Proof: By completing the squares, the minimization

problem (30) is equivalent to

(33)

because the objective functions are the same up to a constant in-
dependent of . Minimizations of form (33) have a well-known
explicit solver and hence the conclusion follows.

According to Theorem II.1, and in (29) can be
obtained by

(34)

and

(35)

where and . Therefore the computational
costs for (34) and (35) are linear in terms of .

The -subproblem in (29) is a least squares problem. The
optimal condition of this problem reads

(36)

where and

Under periodic boundary condition, the matrix is block
circulant and hence can be diagonalized by Fourier matrix .
Let which is a diagonal matrix, then apply
on both sides of (36) to obtain

(37)

where and . Note that
can be “trivially” inverted because it is diagonal and positive
definite. Therefore, can be easily obtained by

(38)

As all variables in (29) can be quickly solved, we propose
Algorithm 1, called TVL1rec, to solve problem (16).

Algorithm 1 TVL1 Reconstruction Algorithm (TVL1rec)

Input and . Set .

repeat

Given , compute and using (34) and (35);

Given and , compute using (38);

Update and as in (29);

until .

return

As discussed above, and can be updated using soft shrink-
ages and hence the computational costs are linear in terms of

. The update of involves two fast Fourier transforms (FFTs)
which have computational complexity and two oper-
ations of (one is ). If there are also two wavelet
transforms (in - and -steps) involved which require similar
computational cost as FFT. Therefore, unlike most recently de-
veloped algorithms, our algorithm can deal with arbitrary ma-
trix and even more general with nonlinear constraint (as
long as is convex and is computable). Also, the per iter-
ation computation of the proposed algorithm is very cheap, and
thanks to the BB step size , the convergence speed is signif-
icantly improved compared to other two modern methods BOS
and OS, as shown in Section IV.

III. METHOD

Experiments were designed to test the effectiveness of
the proposed algorithm TVL1rec on PPI reconstructions. To
demonstrate the potential in clinic applications, the three data
sets used in the experiments were acquired by commercially
available 8-element head coils. For comparison, we also imple-
mented the Bregman operator splitting algorithm (BOS) [18]
and a compressive MR image reconstruction algorithm based
on operator splitting (OS) [24] for solving (1).

A. Data Acquisition

The first data set (top left in Fig. 2), termed by data1, is a set
of sagittal Cartesian brain images acquired on a 3T GE system
(GE Healthcare, Waukesha, WI). The data acquisition param-
eters were FOV 220 mm , size 512 512 8, TR 3060 ms,
TE 126 ms, slice thickness 5 mm, flip angle 90 , and phase en-
coding direction was anterior–posterior.

The second data set (left in Fig. 4) is a Cartesian brain data
set acquired on a 3.0T Philips scanner (Philips, Best, The
Netherlands) using T2-weighted turbo spin echo (T2 TSE)
sequence. The acquisition parameters were FOV 205 mm ,
matrix 512 500 8, TR 3000 ms, TE 85 ms, and the echo
train length was 20. To avoid similar comparison plot due to
the same data size, we reduce the image to 256 250 8 and
obtain full -space data of this same size, termed by data2.
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Fig. 1. �-space masks used (from left to right) for data1, data2, and data3,
respectively. Left: Cartesian mask with net reduction factor 3. Middle: Pseudo
random mask [28] with reduction factor 4. Right: Radial mask with 43 (out of
256) projections, i.e., reduction factor 6.

Fig. 2. Comparison of BOS and TVL1rec on data1 (top left). Bottom row
shows the zoomed-in (square in data1) of images in the top row. From left to
right: reference image, reconstructed image using BOS ���� � ���%�, and re-
constructed image using TVL1rec ���� � ���%�.

Fig. 3. Testing data used for the comparison of OS and TVL1rec: data2 (left)
and data3 (right).

Fig. 4. Reconstructions of data2 and data3 by OS and TVL1rec. Top row (re-
sults of data2) from left to right: reference, reconstructed images by OS ���� �
��	%� and TVL1rec ���� � ��	%�. Bottom row (results of data3) from left
to right: reference, reconstructed images by OS ���� � 	��%� and TVL1rec
���� � 	��%�.

TABLE I
TESTS NUMBER, DATA INFORMATION, AND PARAMETERS

The last one (right of Fig. 4), denoted by data3, is a radial
brain data set acquired on a 1.5 T Siemens Symphony system
(Siemens Medical Solutions, Erlangen, Germany). The acquisi-
tion parameters were FOV 220 mm , matrix 256 512 8 (256
radial lines), slice thickness 5 mm, TR 53.5 ms, TE 3.4 ms, and
flip angle 75 .

All three data sets were fully acquired, and then artificially
down-sampled using the masks in Fig. 1 for reconstruction3.
As the overall coil sensitivities of these three data sets are
fairly uniform, we set the reference image to the root of sum
of squares of images which are obtained by fully acquired

-space of all channels A summary of the data information is
in Table I. In Table I, “Cart.Sag.” means “Cartesian sagittal
brain image,” and “Rad.Axi.” stands for “radial axial brain
image.” The column in Table I present the mask number
(refer to Fig. 1).

B. Test Environment

All algorithms were implemented in the Matlab program-
ming environment (Version R2009a, MathWorks Inc., Natick,
MA). The sparsifying operator is set to Haar wavelet trans-
form using Rice wavelet toolbox with default settings. The
experiments were performed on a Dell Optiplex desktop with
Intel Dual Core 2.53-GHz processors (only 1 core was used
in computation), 3 GB of memory, and Windows operating
system.

Theoretically the choice of does not effect the convergence
of TVL1rec. This is also demonstrated by our experiments since
the results are not sensitive to for a large range. Therefore in
all experiments we set to a moderate value 10. Algorithm 1
is automatically terminated if the relative change of is less
than a prescribed tolerance . In all of our experiments, we set

. Note that smaller leads to slightly better accuracy
at the cost of more iterations and longer computational time.
Other parameter settings are shown in the next section. For all
algorithms tested in this paper, the sensitivity maps ’s were
estimated from the central -space data (which was a
subset of the acquired partial data) and then fixed during the
reconstructions, and the initial was set to 0.

The reconstruction results were evaluated qualitatively by
zoomed-in regions of the reconstructed images, and quanti-
tatively by relative error (to the reference image) and CPU
times. Reference and reconstructed images corresponding to
data1 and data3 were brightened by three times, and those
corresponding to data2 were brightened by two times, to help
visual justifications.

3The pseudo random sampling can be easily set in 3-D imaging. In test2
we simulated the pseudo random trajectory for 2-D PPI.
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TABLE II
RESULTS OF BOS AND TVL1REC ON DATA1

IV. COMPARISON ALGORITHMS AND RESULTS

A. Comparison With BOS

In the first experiment, we use data1 with a Cartesian sam-
pling pattern (left in Fig. 1) to undersample -space data. We
compare TVL1rec with BOS which also solves (1) via a vari-
able splitting framework (16). To simplify comparison, we here
set in (1) and focus on the computational efficiency of
two algorithms in solving (1).

The BOS algorithm solves (1) by iterating

(39)
and converges if , i.e., the largest eigenvalue of

. In SENSE applications, the magnitudes of sensitivity
maps are usually normalized into . Therefore from the
definition of in (4), we have and hence
set for optimal performance of BOS. With ,
TVL1rec only updates , and in (29). As can be seen,
the per iteration computational costs for BOS and TVL1rec
are almost identical: the main computations consist of one
shrinkage, and two FFTs (including one inverse FFT).
Therefore the computation cost for a complete reconstruction
is nearly proportional to the number of iterations required by
BOS and TVL1rec. In this paper, we set the stopping criterion
of BOS the same as TVL1rec, namely the computation will be
automatically terminated when the relative change of the iterate

is less than .
Table II shows the performance results of TVL1rec and BOS

on data1 for different values of TV regularization parameter .
In Table II, we list the following quantities: the relative error of
the reconstructed images to the reference image (Err), the final
objective function values (Obj), the number of iterations (Iter),
and the CPU time in seconds (CPU). From Table II, we can see
that both BOS and TVL1 are able to stably recover the image
from 34% -space data. This is further demonstrated by Fig. 2,
where both method generated images very close to the reference
image. Although there are still few observable aliasing artifacts
due to Cartesian undersampling, the details such as edges and
fine structures were well preserved in both reconstructions, as
can be seen in the zoomed-ins in the right column of Fig. 2. In
terms of accuracy, TVL1rec gives slightly better reconstruction
quality in the sense of lower relative error and objective values.

In terms of efficiency, we found that TVL1rec significantly
outperforms BOS by requiring much fewer iterations (and hence
less CPU time) to obtain the similar or even better image quality,
as shown in Table II. Compared to BOS, TVL1rec is up to nine

times faster and hence has much higher efficiency. Although
two algorithms have almost the same computational costs per
iteration, TVL1rec benefits from the adaptive choice of step
sizes and readily outperforms BOS which uses fixed step size

throughout the computations. The adaptive step
size selection makes TVL1rec exhibits a quasi-Newton conver-
gence behavior in some sense because implicitly uses partial
Hessian (second-order) information.

The adaptive step size selection not only leads to higher ef-
ficiency but also better stableness of TVL1rec. As shown in
Table II, for a large range of in , TVL1rec always
requires 11 or fewer iterations to recover high quality images.
In comparison, BOS appears to be quite sensitive to the choice
of : this is exemplified by the last row of Table II,
where BOS required much more iterations than usual; mean-
while, TVL1rec benefits from the optimal step size in each itera-
tion and readily approximates the solution in only few iterations.

The better performance of TVL1rec over BOS relies on two
phases: one is that TVL1rec imposes proximity terms not only
for but also for and in (29), which lead to better choices
of the updates and ; the other one is the adoption of
BB method for optimal penalty parameters selection, which
affects the updates of all variables as in (29) and leads much
improved convergence speed.

B. Comparison With OS

For data2 and data3, we compare TVL1 with OS [24] for
solving (1) with both TV and terms .
The OS scheme of [24], with a minor correction, is as follows:

(40)

where , and is
formed by stacking the two columns of matrix ,
and the “max” and “sign” operations in the computation of
are componentwise operations corresponding to shrinkage. The
main computational cost per iteration in the OS scheme corre-
sponds to the following operations: a 2-D shrinkage during the
computation of , a projection during the computation of

, two wavelet transforms during the computation of
and and during the computation of . In [24] it
is shown that for in certain ranges, the OS scheme
converges to a fixed point which is also a solution of (1). The it-
erations were stopped when either the following conditions were
satisfied:

(41)

where is the objective value of (1) at , and are the
current and target values of respectively and and are
prescribed stopping tolerances.

Since OS has multiple tuning parameters that affect the con-
vergence speed and image quality: larger ’s and ’s lead to
faster convergence but result in larger relative error, whereas
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Fig. 5. Comparisons of OS and TVL1rec on data2 (blue solid lines) and data3
(black dashed lines). Left: relative error (in logarithm) versus CPU time and
objective value. Right: objective values (in logarithm) versus CPU time.

Fig. 6. From left to right: reconstructions of data3 by TVL1rec at the first,
fourth, tenth, and twentieth iterations, respectively.

smaller ’s and ’s yield monotonic decreases in objective
values and better image quality at the cost of much longer com-
putation. Based on the selection by the authors and several tries,
we chose moderate values and

which appear to give a best compromise between
convergence speed and image quality of the OS scheme. The re-
sults on data2 and data3 are shown in Fig. 4, and the comparison
on relative errors and objective values are plotted in logarithmic
scale in Fig. 5. The horizontal label is chosen as CPU time be-
cause the per iteration computational costs for OS and TVL1rec
are slightly different.

From Figs. 4 and 5 we can see that TVL1rec converges much
faster than OS, and achieved lower relative errors and objective
values than OS overall. Therefore, it is evident that TVL1rec
can outperform OS scheme in efficiency as the former requires
much less computational time to reach the similar or even better
image quality. It is also worth pointing out that both algorithms
can further reduce the relative error slightly by setting a tighter
stopping criterion at the cost of more iteration numbers. Never-
theless, the TVL1rec still can maintain lower relative error and
objective value than OS during the reconstruction process.

We checked the reconstructions of data3 by TVL1rec at the
first, fourth, tenth, and twentieth iterations and depicted the cor-
responding zoomed-in regions in Fig. 6. Recall that the main
computational cost for each iteration is only FFTs and 2
wavelet transforms as shown in (29) and (4), we further demon-
strate that TVL1rec can quickly remove artifacts and recover
fine structures in CS-PPI reconstructions.

V. CONCLUSION

This paper presents a fast numerical algorithm, called
TVL1rec, for TVL1 minimization problem (1) arising from CS
reconstruction problems. The proposed algorithm incorporates
the BB method into a variable splitting framework to optimize
the selection of step sizes. The optimal step sizes exploit partial
Hessian information and hence lead to a quasi-Newton conver-
gence behavior of TVL1rec. Experimental results demonstrate

the outstanding efficiency of the proposed algorithm in CS-PPI
reconstruction.

We compared TVL1rec to another two recently developed al-
gorithms BOS [18] and OS [24] which also solve the minimiza-
tion problem (1). The common property of these algorithms is
that they can deal with general sensing matrix , and even non-
linear data fidelity term other than as long
as is convex and is computable. Meanwhile, TVL1rec
significantly outperforms the other two algorithms by taking ad-
vantages of the optimal step size selection based on BB method.
We hope TVL1rec can be beneficial to PPI and other medical
imaging applications.
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