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Abstract— To reduce acquisition time in magnetic reso-
nance (MR) imaging, compressive sensing and sparse rep-
resentation techniques have been developed to reconstruct
MR images with partially acquired data. Although this has
been a hot research topic in the field, it has not been used
clinically due to three inherent problems of its current frame-
work: potential loss of fine structures, difficulty to predefine
model parameters, and long reconstruction time. The aim of
this work is to tackle these problems. We propose to minimize
the total variation of the underlying image, together with
the `1 norm of the coefficients in its representation using a
trained dictionary, as well as a fidelity term. Using a trained
dictionary can take the advantage of prior knowledge and
hence improve accuracy in reconstruction. Our data fidelity
constraint is derived from the likelihood estimator of the
recovering error in partial k-space to improve the robustness
of the model to parameter selection. Moreover, a simple and
efficient numerical scheme is provided to solve this model
faster. The consequent experiments on both synthetic and in
vivo data indicate the improvement of the proposed model in
preserving fine structure, reducing computational cost, and
flexibility of parameter decision.

Keywords: compressed sensing, dictionary, sparse representation,
convex optimization, MRI reconstruction.

1. Introduction
Magnetic resonance imaging (MRI) is a technique that

allows visualization of structures and functions of a body
by non-invasive means. However, MRI takes much longer
acquisition time than some other imaging modalities, which
limits the application of MRI. Many advanced techniques
have been developed to reduce acquisition time of MRI.
One category of these techniques is reducing the amount of
acquired data, and then, applying appropriate reconstruction
algorithm to recover high quality images. The compressive
sensing (CS) technique [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10] is one of the several effective methods to do
this. The CS method requires the to-be-reconstructed image
having a sparse representation in certain transform domain.
The reconstruction schemes enforce both sparsity of the
image representation and consistency with the acquired data.
For complex medical images, the sparse representation is
not necessarily in image domain, but could be in certain

transform domains. This means that the image itself may not
be sparse in terms of its pixel intensities, but it may have
a sparse representation in terms of spatial finite differences,
or its wavelet coefficients, or other transforms. In [11], a
total variation (TV) based model was proposed for MR
image reconstruction with partially acquired k-space data.
This model indeed requires a sparsity in terms of spatial
finite differences, which is good for piecewise homogeneous
images [12]. For images with inhomogeneous intensity and
fine structures, TV based model does not work well when the
undersampling ratio is high. To overcome the shortcomings
of only using TV regularization, Lustig et al. [2] proposed
to minimize the TV norm of the underlying image together
with the `1 norm of the wavelet transformed image, subject
to data fidelity constraint:

min
u

µTV (u) + ‖Ψ>u‖1, s.t. ‖Fpu− fp‖2 < σ, (1)

where Ψ represents the wavelet transform, the superscript >

is the conjugate transpose of a matrix, Fp denotes the partial
Fourier operator, fp is the partially scanned k-space data and
σ estimates the noise level during data sampling. Of note
TV (u) can be chosen as either ‖Du‖1 = |Dxu| + |Dyu|
or ‖Du‖2 =

√|Dxu|2 + |Dyu|2. Besides the TV and
wavelet transform, where the basis for image representation
is defined globally on the entire image domain, there are
many other transforms to sparsely represent various types of
images [13]. So called dictionary is one of them, which has
been shown effective in limited data reconstruction [10]. A
redundant dictionary, that contains prototype signal-atoms,
can represent a signal/image by sparse linear combinations
of these atoms. The idea of using dictionary to sparsely
represent an image is considering small overlapping image
patches, and assuming each image patch has a sparse rep-
resentation with respect to a basis (i.e. signal-atoms), that
can be known or learned or trained using prior information.
Since dictionary deals with small image patches, and can be
learned or trained, it is more adequate for the recovery of
fine structures.

Moreover, a number of numerical algorithms have been
developed to solve CS models (e.g. see [3], [4], [5], [6], [7],
[8], [9], [2], [14]). Especially, in [14], Yang et al. introduced
a fast algorithm to solve the unconstrained version of model



(1)

min
u

µ‖Du‖2 + ‖Ψ>u‖1 +
λ

2
‖Fpu− fp‖22. (2)

They provided an alternating minimization scheme, in which
the clever use of the property of wavelet transform matrix,
and diagonalizing the gradient operator using Fourier trans-
form made the main computation of the algorithm involve
only shrinkage operator and fast Fourier transform.

Since 2005, using CS technique to reconstruct MR image
with partially acquired k-space (frequency domain) data has
been a hot research topic in MRI field and achieved great
progress [2], [15], [16]. However, it has not been used
clinically due to three inherent problems of its current frame-
work: potential loss of fine structures, difficulty to predefine
reconstruction parameters, and long reconstruction time. In
this work, we present a novel variational framework to tackle
these problems. Our effort focuses on the following three
strategies. First, we propose to use TV norm together with
an overcomplete dictionary trained from prior information
of to-be-reconstructed image for sparse representation. In
many medical applications, it is possible to exploit some
specific prior information of the to-be-reconstructed images,
such as previous scans and scans for other time frames, and
to use them for training an overcomplete dictionary [17],
[18]. In this work, we use K-SVD algorithm with a database
consisting of patches of high quality brain MR images to
train a dictionary for brain MR image reconstruction. K-
SVD is an iterative method that alternates between sparse
coding of the examples based on the current dictionary and
a process of updating the dictionary atoms to better fit the
given database. The output is a trained dictionary that can
represent all signals in the database under strict sparsity con-
straints and error tolerance [19], [20]. The trained dictionary
we obtained by K-SVD algorithm is shown in Fig 1. A
comparison of the sparse representation of a brain image
using wavelet transform and the trained dictionary are shown
in Fig 2. In both cases the images are reconstructed by the
linear combination of the basis, where only the largest 12.5%
transform coefficients are used. The image reconstructed
using dictionary have higher signal to noise ratio (SNR) than
the one by wavelet, while have comparably well preserved
edges and fine structures. The reason is that the trained
dictionary absorbed prior knowledge by learning features
of the same type of images. This also demonstrates the
adaptivity of using trained dictionaries to sparsely represent
image patches. Although dictionary has the advantages as
mentioned above, it takes more computational time than
wavelet transform. Therefore the development of efficient
algorithms involving the use of a dictionary is very impor-
tant. The fast algorithm developed in [14] cannot be directly
applied to the models using dictionary, since, in general, a
dictionary can not be formulated as an orthogonal matrix like
the wavelet transform. In this study we found that if each
pixel in the image is covered by the same number of patches,

Fig. 1: Dictionary trained by K-SVD algorithm. The
database used for training consists of patches of high quality
MR brain images but excludes the to-be-construct image.
Each block represents an atom of size 8 × 8. Atoms are
sorted by ascending their standard deviations.

Fig. 2: Compare the accuracy of sparse representations
by wavelet and trained dictionary. In both cases images
are represented by picking up the largest 12.5% transform
coefficients. Bottom images are corresponding zoomed-in
square area shown on the top left image. Left column:
original image. Middle column: representation by wavelet.
Right column: representation by trained dictionary in Fig 1.

then we have
∑

j R>j Rj = mI , where Rj is a binary matrix
that extracts the j-th patch of the image u, all the pathes
{Rju}J

j=1 together cover the entire image and might be
overlapped, m ∈ N counts the number of the patches cover-
ing each pixel, and I denotes the identity matrix. Here we
would like to point out that selecting image patches such that
each pixel has the same number of covering is not difficult.
For instance, the periodic/symmetric boundary condition of
the image can make the patch construction straightforward
(see section 3 below). Based on this observation and several
techniques developed in [14] we provide a simple and fast
numerical algorithm, which can be applied to CS models
involving dictionary.

The third effort is proposing a fidelity constraint derived
from maximum likelihood estimator (MLE) for the error be-
tween the partially scanned k-space data and partial Fourier-



transformed-reconstruction. In this way the ratio between
the consistency with acquired data and sparse representation
of the reconstruction is not a prefixed parameter λ, but λ
divided by the sample variance of the reconstruction error in
partial k-space, which varies during iterations. Therefore, the
choice for λ is more flexible. Moreover, when the accuracy
of the reconstruction gets better, the weight on the fidelity
term increases, and hence, the accuracy is more enhanced.

The rest of this paper is organized as follows. A descrip-
tion of the proposed model is given in the next section. In
section 3 a fast algorithm to solve the proposed model is
introduced. Experimental results are presented in section 4.
Then we conclude this paper in the last section.

2. Proposed Model
Let u ∈ RN be the objective image consisting of N

pixels, and F be the Fourier transform, which is in fact
an N × N unitary matrix. Let fp ∈ CM with M < N be
the partially scanned data, and P ∈ RM×N be the binary
matrix representing the sampling pattern. Thus Fp = PF is
the partial Fourier transform operator. For short notation, we
use ‖ · ‖ to represent `2 norm ‖ · ‖2, and (·; · · · ; ·) to stack
components in column.

One difficulty of solving unconstrained energy minimiza-
tion problem as (2), instead of the constrained one (1), is
in determining the parameter that balances the consistency
of reconstructed image with the acquired data and sparsity
of the image representation. To tackle this problem our
consistent measure (i.e. fidelity term) is derived from MLE
approach. Let ζ = (ζ1, · · · , ζM )> ∈ CM be the reconstruc-
tion error, i.e. the difference between Fourier transform of
the reconstruction u and partially scanned data fp. Thus,

fp = PFu + ζ.

Consider ζi (h = 1, . . . , M) as independent random vari-
ables indexed by h. Since we wish each ζh to be small, our
fidelity constraint is designed to force all the ζh’s obeying
a normal distribution of mean zero and variance σ2 to be
determined. Namely, the probability density function (p.d.f.)
of each ζh is p(z|σ) = (2πσ2)−1/2e−z2/2σ2

. Then, the joint
density, or alternatively, the likelihood function is given as

L (σ|ζ) = p(ζ|σ) =
M∏

h=1

(
1√
2πσ

e−ζ2
h/2σ2

)

=
(
2πσ2

)−M/2
e−‖ζ‖

2/2σ2
.

Thus, negative log-likelihood is

− log L (σ|ζ) = ‖ζ‖2/2σ2 + M log
√

2πσ. (3)

Substituting ζ by Fpu − fp, and omitting constant
M log

√
2π, we obtain a MLE based consistency estimation

with the partially acquired data:

F (u, σ, fp) = ‖Fpu− fp‖2/2σ2 + M log σ. (4)

This is a generalization of the least square estimation, which
is just the case when σ = 1. We will use (4) as fidelity
term in our energy functional. One advantage of using this
form is that in the construction of u the weight on the `2

norm of ζ is not a prefixed parameter, but that divided by
σ2, which can be automatically updated during iterations.
In the Euler-Lagrange (EL) equations associated with the
proposed energy function below, one can see that σ is the
standard deviation of ζ. Hence, when the construction error ζ
decreases, the weight on minimizing `2 norm of ζ increases.
This self-adjusting weight process makes faster convergence
faster and better accuracy in reconstruction.

Next we show how to represent an image using a overcom-
plete dictionary. Let Rj ∈ Rn×N be the binary matrix that
extracts the j-th patch of image u, j = 1, · · · , J . The union
of these pathes {Rju}J

j=1, that might be overlapped, covers
the entire image u. Let T denote the trained dictionary men-
tioned in the previous section with K atoms. The dictionary
T can be explicitly written as a matrix of size n×K, with
each column representing one atom. Note that the sizes of
atom and image patch are compatible, which ensures that
any patch can be represented as a linear combination of some
atoms.

As shown earlier, provided this trained dictionary T , we
are able to sparsely represent all image patches Rju. In other
words, for any j, there exists a sparse representation of Rju:

‖αj‖0 << n < K s.t. T αj = Rju,

where the `0 norm ‖αj‖0 counts the number of nonzero
elements in αj , and is significantly less than n. As n linearly
independent atoms can exactly represent any patches but we
here want a sparse representation using few atoms from
an overcomplete dictionary, whose atoms must be linearly
dependent since n < K. However, minimizing the non-
convex `0 is generally a NP-hard problem and hence is not
tractable in practice. A common substitute is to use `1 norm.
And it has been proved that minimizing `1 leads to the same
solution of `0 under certain conditions [1], [15].

Now we present our model. We propose to sparsely
represent image in terms of a trained dictionary and its
spatial finite differences. Moreover we use (4) as the fidelity
constraint. Then, our model is formulated as an energy
minimization problem:

min
u,α,σ

µ‖Du‖+
J∑

j=1

(
‖αj‖1 +

ν

2
‖T αj −Rju‖2

)
(5)

+λF (u, σ, fp),

and α = (α1;α2; · · · ;αJ) ∈ RKJ . The first term in (5) is
the TV norm of u in the form ‖Du‖ =

√|Dxu|2 + |Dyu|2.
The second term is for a sparse representation of u using
trained dictionary T . For each patch Rju, it is expected to
use the linear combination of a few atoms in T to match
the patch. The last term is from (4).



3. Algorithm
There have been a number of efficient algorithms devel-

oped for dealing with the difficulties related to the TV and
`1 terms in (5) [11], [21], [22], [23]. The algorithm provided
in this section is inspired by the work in [14], [24], where a
classical quadratic penalty method [25] is used to make the
algorithm fast and efficient.

3.1 Derivation of Fast Algorithm for Proposed
Model

We first introduce two auxiliary variables w =
(w>1 ;w>2 ; · · · ;w>N ) ∈ RN×2 and β = (β1;β2; · · · ;βJ) ∈
RKJ where wi ∈ R2 and βj ∈ RK for all i = 1, · · · , N and
j = 1, · · · , J . The minimization problem (5) is equivalent
to

min
u,w,α,β,σ

µ
N∑

i=1

‖wi‖+
J∑

j=1

(
‖βj‖1 +

ν

2
‖T αj −Rju‖2

)
(6)

+λF (u, σ, fp)
s.t. wi = Diu, βj = αj , ∀ i = 1, · · · , N, j = 1, · · · , J.

where Diu ∈ R2 represents the gradient of u at the i-
th pixel. Converting the equality constraints to quadratic
penalties, we obtain an approximation of (6):

min
u,w,α,β,σ

µ

N∑

i=1

φ(wi, Diu) + ψ(β, α) (7)

+
J∑

j=1

ν

2
‖T αj −Rju‖2 + λF (u, σ, fp)

where functions φ and ψ are defined as

φ(s, t) = ‖s‖+
η

2
‖s− t‖2, s, t ∈ R2

and

ψ(s, t) = ‖s‖1 +
θ

2
‖s− t‖2, s, t ∈ RKJ

for given η, θ > 0. As η and θ gradually increase, the
solution of (7) approximates to that of(5). Meanwhile, the
minimization of (7) with respect to each variable is much
easier: First, for fixed u and α, the minimization with respect
to w and β can be carried out in parallel:

wi = S2(Diu), ∀ i (8)

where S2(t) minimizes φ(s, t) for fixed t by two-
dimensional shrinkage

S2(t) = max {‖t‖ − 1/η, 0} · (t/‖t‖) , t ∈ R2

and
β = Sc(α) (9)

where Sc(t) minimizes ψ(s, t) for fixed t by componentwise
shrinkage

Sc(t) = {s : si = max {|ti| − 1/θ, 0} · sign(ti)} .

with assumption 0 · (0/0) = 0. Both computational costs are
linear in N with given patch size.

Secondly, for fixed u and β, we can minimize (7) with
respect to α = (α1; · · · ;αJ) by

min
α

J∑

j=1

(
θ‖αj − βj‖2 + ν‖T αj −Rju‖2

)
. (10)

The solution can be obtained by setting αj as

αj = V (θI + νΛ)−1V > (
θβj + νT >Rju

)
(11)

where the spectral decomposition T >T = V ΛV > is com-
putationally inexpensive since the dictionary T is prepared
before any experiments and its largest dimension K is
usually much less than N . Again, all αj’s can be computed
in parallel.

Thirdly, for fixed w, α and σ, the minimization of u is

min
u
‖wx −Dxu‖2 + ‖wy −Dyu‖2 (12)

+
J∑

j=1

γ‖T αj −Rju‖2 + ξ‖Fpu− fp‖2,

where wx and wy are the first and second column of w,
respectively, and γ = ν/µη, ξ = ξ(σ) = λ/µησ2. Thus the
normal equation of (12) becomes

Lu = r, (13)

where

L = D>
x Dx + D>

y Dy +
J∑

j=1

γR>j Rj + ξF>p Fp

and

r = D>
x wx + D>

y wy +
J∑

j=1

γR>j T αj + ξF>p fp.

Under the periodic boundary condition for u, the finite
difference operators Dx and Dy are block circulant matrices
with circulant blocks and hence can be diagonalized by
Fourier transform F . Thus, D̂x = FDxF> and D̂y =
FDyF> are diagonal. Also, periodic boundary condition
enables us to extract patches that cover each pixel m times,
where m = n/d2 and d is the sliding distance between
all concatenated patches. Therefore

∑
j R>j Rj , which is a

diagonal matrix with i-th diagonal entry counting the number
of times the i-th pixel covered by patches, is just mI . So
multiplying F on both sides of (13) gives

L̂F(u) = r̂, (14)

where

L̂ = D̂>
x D̂x + D̂>

y D̂y + mγI + ξP>P

is a diagonal matrix since P>P is diagonal, and

r̂ = D̂>
x F(wx) + D̂>

y F(wy) + γF(uα) + ξP>fp



where uα =
∑

j R>j T αj is an "image" assembled using
patches that are represented by dictionary T and α.

Finally, the computation of first variation of F (u, σ, fp)
gives an update of σ in each iteration:

σ =
√
‖Fpu− fp‖2/M. (15)

3.2 Algorithm and Convergence Analysis
For σ in a large range (0, 3(‖Fpu0−fp‖2/M)1/2 ] where

u0 is the original image, energy functional (7) is convex and
coercive, and hence has a unique minimizer. Numerical proof
of convergence is similar to [24] with little modifications
and thus is omitted here. For stopping criterion, we let
"res" be the maximum absolute/norm value of increments
of w, α, β, u, and terminate each inner loop once res < ε
for a predefined error tolerance ε, then update u and start a
new loop with doubled η and θ. The upper bound 212 for η, θ
is chosen empirically so it is sufficiently large that solutions
to (7) is a close approximation of (5). Based on derivations
above, we summarize the algorithm for our model as Alg.
1 (recMRI).

Algorithm 1 MR Image Reconstruction via Sparse Repre-
sentation (recMRI)

Input P , fp, and µ, ν, λ, ε > 0. Initialize u = F>p fp,
η = θ = 26 and α = 0.
while η, θ < 212 do

repeat
Given u and α, compute w and β using (8) and (9).
for j = 1 to J do

Given u and β, compute αj using (11).
end for
Given w and α, compute u by solving (14) and
update σ by (15).

until res < ε
return uη,θ

u ← uη,θ, (η, θ) ← (2η, 2θ)
end while

4. Experimental Results
In this section, we present the experimental results

of proposed model and comparisons with using wavelet
transform on both phantom and in vivo MRI data. All
implementations involved in the experiments were coded
in Matlab v7.3 (R2006b), except the component-wise
shrinkage and wavelet transform operators, which were
coded in C++ and downloaded from Rice Wavelet Tool-
box (http://www.dsp.rice.edu/software/rwt.shtml) with Haar
wavelet transform and other settings as default. Computa-
tions were performed on a Linux (version 2.6.16) worksta-
tion with Intel Core 2 CPU at 1.86GHz and 2GB memory.

First, a Shepp-Logan phantom with size 256 × 256, as
shown on the very left of Fig. 3, was used to simulate the

Fig. 3: Reconstruction of Shepp-Logan phantom using model
(5). From left to right: Original image, sampling pattern
with 22 radial lines (sample ratio 8.4%), reconstruction by
zero-filling unscanned data, reconstruction by model (5)
(RMSE=2.18%).

Table 1: Comparison of results of phantom reconstructions
using nonlinear conjugate gradient (CG) with wavelet spar-
sity, recMRI with wavelet, and recMRI with dictionary.
*Wavelet transformations are generated using optimized
DWT packages for Matlab.

Method CG(Wavelet*) recMRI(Wavelet*) recMRI(Dictionary)
λ RMSE CPU RMSE CPU RMSE CPU

1e+2 5.93% 86.3 7.93% 28.2 5.21% 211
1e+3 2.47% 71.6 2.52% 27.7 2.18% 199
1e+4 5.05% 71.4 4.98% 26.9 3.47% 198
1e+5 25.9% 87.1 5.93% 27.0 3.67% 201
1e+6 37.0% 81.2 6.16% 28.7 5.52% 212

synthetic MRI data. The full k-space data were produced
by a 2-dimensional fast Fourier transform (fft2 in Matlab)
on this phantom image. Then we applied a radial sampling
pattern with 22 radial lines, as shown next to the phantom in
Fig. 3, and add a random Gaussian noise with mean zero and
standard deviation 3.2 to simulate the partially acquired data
for reconstruction. This is approximately 20% of standard
deviation of high frequency signals. The third image in Fig.
3 is the reconstruction obtained by zero filling, which results
in a serious artifacts aliasing. The last image in Fig. 3 is the
reconstruction obtained by the proposed model (5), in which
the dictionary was set to be an overcomplete Discrete Cosine
Transform (DCT) consisting 256 atoms of size 8 × 8 [19],
with parameters (µ, ν, λ, ε) = (1, 1, 103, 10−3) and no patch
overlapping. The relative root of mean squared error (RMSE)
of the reconstruction to the original image is 2.18%.

Table 1 shows the comparison of three methods on robust-
ness, speed and accuracy. These three methods are: model
(2) by conjugate gradient based numerical implementations,
model (5) by the proposed numerical implementation with
wavelet and DCT sparse transformation respectively. From
the change of RMSE with λ, it can be clearly seen that the
proposed model (5) is much less sensitive to the parameter
than the conventional model (2). This demonstrates the
robustness of the proposed method. From the consumed CPU
time, it can be seen that the proposed numerical method was
over 2.6 times faster than conjugate gradient based method.
The DCT based sparse representation consistently produced
images with lower RMSE than wavelet based method at the
cost of longer reconstruction time.



A set of brain image acquired on a 3T GE system (GE
healthcare, WI, USA) was used in the second experiment.
The reference image reconstructed with full k-space is
shown on the upper left of Fig. 4. A Cartesian random
sampling pattern, shown under the brain image in Fig. 4, was
used for artificial downsampling. The zoomed-in square of
the brain image is shown on the upper middle image. With
only 34.0% data for reconstruction, strong aliasing artifacts
can be observed in the image reconstructed by zero-filling,
whose zoomed-in is shown on the lower middle of Fig. 4.
To produce the trained dictionary for the proposed model,
K-SVD algorithm was applied on a database consisting
high quality brain MR images (excluding the objective brain
image), as shown in Fig. 1. In both models λ, µ and ε are
set to be 2e+3, 1 and 5e-4, respectively. ν in model (5) is
set to be 106. The zoomed-in area of reconstructed images
by model (2) and proposed model (5) are shown on the right
column of Fig. 4. It can be seen the image reconstructed by
model (2) has oil-painting effect (due to the intrinsic smooth
property of both wavelet and TV). On the contrary, the image
reconstructed by the proposed model looks more natural and
preserve fine structures much better. The RMSEs of these
two reconstructions were 8.52% for model (2) and 7.74%
for proposed model (5), respectively. This further confirms
the accuracy of the proposed method.

Fig. 4: Reconstruction of brain image in Fig. 2 using
model (2) and (5). Left column: original image (upper) and
sampling pattern in white (lower). Middle column: zoomed-
in area of original image and reconstruction by zero-filling
(lower). Right column: zoomed-in of reconstructions by
model (2) (upper) and proposed model (5) (lower).

5. Conclusion
A novel framework of CS is introduced in this paper to

tackle three shortcomings of the conventional framework.
Trained dictionary is used to better preserve edges and fine
structures by taking advantage of prior information; negative
log-likelihood estimation of the recovering error is used to
self-adjust the weight on the mean squared error of the

reconstruction to improve the robustness of the model to
the choice of the parameter; a quadratic penalty approach is
adopted to speed up the reconstruction. The qualitative and
quantitative comparisons on both phantom and in vivo data
demonstrate the proposed method significantly improves
the conventional framework in accuracy, robustness and
stableness.
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