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ABSTRACT

In this paper, we propose a segmentation assisted regis-

tration model. It partitions the domain of images into several

regions such that the residue image in each region is identi-

cally distributed with zero mean and variance to be optimized.

In this model, we minimize an energy that combines negative

log-likelihood of the residue in each region, smoothness of

the deformation field and length of the partition curve. It can

be viewed as a generalization of the sum of squared differ-

ence model and global Gaussian model where the variance is

a constant in the entire domain. By taking different variances

in different regions, the registration becomes more efficient

and accurate, which are demonstrated by the experiments on

synthetic and clinical data.

Index Terms— deformation, registration, Gaussian noise,

finite difference method, partial differential equations.

1. INTRODUCTION

The importance of registration cannot be more empha-

sized in the study of modern computer vision and image pro-

cessing. The main purpose of image registration is to align

two or more images by mapping points in one image to corre-

sponding points in another. The mapping, or transformation,

can be rigid or non-rigid. Rigid registration has restrictions

that the transformation can only be scaling, rotation, transla-

tion or their compositions, and is therefore not adequate in

modern radiotherapy applications. On the other hand, non-

rigid, or so-called deformable registration, accounts for in-

ternal organ deformation, and allows more precise tumor tar-

geting and preservation of normal tissues, so it becomes the

key technique in most practical applications such as radiation

therapy[1].

Deformable image registration has been extensively stud-

ied in the literature[2, 3, 4, 5]. Among those widely used

deformable registration models, variational method is one of

the most important and effective approaches. For simplic-

ity, let Ω be a bounded open set in R
2. The template im-

age T and study image S are given as intensity functions

defined on Ω. Along with dissimilarity term, the method of

Lagrange multiplier turns regularity constraint into a penalty

term in energy functional. Then variational method presents

deformable registration as a minimization problem of defor-

mation �u = arg min�u∈A E[�u] where the energy functional

E[�u] is defined by

E[�u] = regularity(�u)+dissimilarity(T (�x−�u), S(�x)), (1)

and A is the admissible set of deformations �u : Ω → Ω.

One measure of the difference between T (�x − �u) and S(�x)
in (1) is the sum of squared difference (SSD), or L2 norm

in continues form[2, 6]. If the regularity of �u is proposed as

coordinate-wise L2 norm of ∇�u, then the energy functional

can be explicitly written as

E[�u] = λ‖∇�u‖2
L2(Ω) + ‖T (�x − �u) − S(�x)‖2

L2(Ω), (2)

where λ is a positive number indicating the weight of regular-

ity. SSD model (2) has been widely used in practice because

of its efficiency and simplicity. However, it is very sensitive

to image noise and the weight parameter λ: small λ results

an unstable and discontinuous deformation field, meanwhile

large λ leads to inaccurate result, and may yield a nonphysical

deformation field due to unreasonable restrictions[7].

Maximum likelihood estimate (MLE), or equivalently

minimum negative log-likelihood estimate, as an improve-

ment and generalization of SSD model, eliminates these

problems by considering the points in the residue image

as independent and identically distributed random variables

with zero mean and unknown variance σ. In this paper we

demonstrate our theory and compare the results using Gauss

distribution, but one can assume Laplace or other types of

distributions as well, according to particular applications. In

this case, the joint distribution of the residue is presented as

P ({T (�x − �u) − S(�x)|x ∈ Ω}) =
∏
x∈Ω

Gσ(T (�x−�u)−S(�x))

in discrete case, where Gσ(z) = exp(−z2/2σ2)/
√

2πσ. So

the negative log-likelihood is approximately

∫
Ω

|T (�x − �u) − S(�x)|2
2σ2

d�x +
|Ω|
2

log 2πσ2 (3)

in continuous case, where |Ω| is the volume of Ω. Combining

the penalty term and (3), we now produce the energy func-

tional of the so-called global Gaussian model (Gaussian for
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short) as follows:

E[�u, σ] = λ‖∇�u‖2
L2(Ω) +

1
2σ2

‖T (�x − �u) − S(�x)‖2
L2(Ω)

+
|Ω|
2

log 2πσ2,

(4)

where λ is again the regularity weight. The first variation of

σ gives

σ2 =
1
|Ω|

∫
Ω

|T (�x − �u) − S(�x)|2d�x

and the evolution of the E-L equation of u associated with

E[�u, σ] is

⎧⎪⎪⎨
⎪⎪⎩

∂�u

∂t
= λΔ�u +

1
σ2

(T (�x − �u) − S(�x))∇T |�x−�u in Ω,

∂�u

∂�n

∣∣∣∣
∂Ω

= 0

(5)

where �n is the outer normal of boundary ∂Ω. This model

does not require T (�x − �u) and S(�x) to be pointwise close as

in SSD. It allows certain variability and hence is more robust

in matching images with noises.

Gaussian (4) proves its power in registration where the

variance throughout the images is homogeneous, but shows

low efficiency and accuracy in matching small objects of low

contrast: the residue T (�x−�u)−S(�x) and gradient ∇T at these

objects are much smaller than those at large objects with high

contrasts, so they contribute little to the deformation velocity

as the second term on the right side in (5). The consequence

is that these small objects cannot be matched accurately. That

is our motivation of partitioning the domain into several re-

gions according to different residue variances, and optimize

the variance on each region to improve efficiency and accu-

racy of the deformation.

In next section we present our model as a minimization

problem of a level set formulated energy functional that com-

bines penalty terms and negative log-likelihood of the residue

in each region. In Section 3 we provides our numerical algo-

rithm and experimental results using synthetic and real data.

2. PROPOSED MODEL

To demonstrate our idea in a simple way, we assume only

two levels of variances in the residue image. Let C be the

curve that partitions the domain Ω into two regions where the

residue has different variances σ1 and σ2. By introducing the

level set function φ such that C = {�x : φ(�x) = 0}, we present

one region as {�x : φ(�x) > 0} and another as {�x : φ(�x) <
0}[8]. Now the partition can be obtained automatically by the

evolution of φ. Combining negative log-likelihood in each

region as in (4), and the regularity of �u and C, our level set

formulated energy functional becomes

E[�u, φ, σ1, σ2]

=
λ

2

∫
Ω

|∇�u|2d�x + μ

∫
Ω

|∇H(φ)|

+
1
2

∫
Ω

H(φ)
(

1
σ2

1

|T (�x − �u) − S(�x)|2 + log σ2
1

)

+
1
2

∫
Ω

(1 − H(φ))
(

1
σ2

2

|T (�x − �u) − S(�x)|2 + log σ2
2

)
.

(6)

where λ and μ are positive numbers standing for weights of

the smoothness of �u and length of C, as the first two integrals

in (6). H(·) is the Heaviside function: H(φ) and 1 − H(φ)
are indicator functions of the two regions where the residue

has variance σ1 and σ2, respectively. The latter two integrals

in (6) are the negative log-likelihood in those two regions.

We solve the energy minimization problem via calculus of

variation: the first variations of σ1 and σ2 provide

σ2
1 =

∫
Ω

H(φ)(T (�x − �u) − S(�x))2d�x∫
Ω

H(φ)d�x
(7)

and

σ2
2 =

∫
Ω
(1 − H(φ))(T (�x − �u) − S(�x))2d�x∫

Ω
(1 − H(φ))d�x

, (8)

the evolution of the E-L equation of φ associated with (6) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
= δ(φ)

{
μ div

∇φ

|∇φ|
−1

2

[(
1
σ2

1

− 1
σ2

2

)
|T (�x − �u) − S(�x)|2 + log

σ2
1

σ2
2

]}

in Ω,

δ(φ)
|∇φ|

∂φ

∂�n

∣∣∣∣
∂Ω

= 0

(9)

and the evolution of �u is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�u

∂t
= λΔ�u+(

H(φ)
σ2

1

+
1 − H(φ)

σ2
2

)
(T (�x − �u) − S(�x))∇T |�x−�u

in Ω,

∂�u

∂�n

∣∣∣∣
∂Ω

= 0

(10)

where �n is the outer normal of boundary ∂Ω, and δ is the

derivative of H , i.e. Dirac function. Now we are ready to

discretize equations (7)-(10) and solve them using computer.

3. NUMERICAL EXPERIMENTS

In our implementation, we use C∞(Ω̄) regularization Hε

of the Heaviside function Hε(z) = 1
2

(
1 + 2

π arctan
(

z
ε

))
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and its derivative δε(z) = 1
π

ε
ε2+z2 [8]. The outline of our

algorithm is as follows: we set �u0 = 0 and φ0 to be the

signed distance function of any initial curve in Ω. In k-th

iteration, we calculate σ1(φk, �uk) and σ2(φk, �uk) using (7)

and (8), and solve φk and �uk from (9) and (10). We apply

semi-implicit scheme and use AOS algorithm to speed up the

computation[9].

Now we test our model using both artificial and clinical

data. The first experiment takes a pair of 2D synthetic im-

ages of dimensions 120×120, T and S, shown in Fig.1(a)(b).

Each of them consists a large object of intensity 1, a small

object (in the square) of 0.05 and background of 0.04. The

square areas in Fig.1(a)(b) are enlarged and shown in the up-

per row of Fig.1(g). We apply Gaussian (4) and proposed

model (6) to align this pair of images using the same time

step dt = 0.01 and compare the results. Fig.1(c)(d) shows

the deformed regular grid using the deformations �u obtained

by model (4) and (6). It is evident that the small object is

deformed using proposed model, but there is no deformation

observed using Gaussian. The reason is that the variance σ
is 0.015 after 250 iterations by Gaussian in, which is even

greater than the initial residue 0.01(=0.05-0.04) on small ob-

jects. At the same time, proposed model (6) provides a par-

tition curve as shown in Fig.1(h): variance inside the curve

is σ1 = 5 × 10−3 and outside is σ2 = 6 × 10−6, which is

much smaller than initial residue 0.01, hence deformation on

small objects occurred. The difference between the local de-

formations obtained by these two models are significant, as

shown in the lower row of Fig.1(g). From Fig.1(e)(f) we can

see the total and local (in the square) correlations obtained

by proposed model (dashed lines) increase much faster than

Gaussian (solid lines) in the first 300 iterations. Notice that

local correlation by proposed model significantly increased

after few iterations and reached 0.84 after 300 iterations, but

the one by Gaussian barely changed (always less than 0.72)

during the same time. This experiment shows the efficiency

and accuracy of proposed model (6).

The second experiment tests proposed model using chest

MR images T and S, shown in Fig.2(a)(b). The square areas

in Fig.2(a)(b) consist the spinal core, which has much lower

contrasts than soft tissues and is hard to match using Gaus-

sian, although it is of great importance in modern radiation

therapy. From our experimental results we can see an overall

improvement of accuracy using proposed model, compar-

ing the residue obtained by model (4) and (6), as shown in

Fig.2(d)(e). Again the total correlation obtained by proposed

model (dashed line) increases faster than Gaussian (solid

line), and reached higher than 0.97, while Gaussian is lower

than 0.96, after 200 iterations, as shown in Fig.2(f). The

improvement of efficiency and accuracy in matching spinal

cores can also be seen from the local (in the square) correla-

tions by two models, as shown in Fig.2(g). S and deformed T
by model (4) and (6) in the square are shown in Fig.2(h)(i)(j).

In the same area, the initial residue, and the residues obtained

(a) Template T (b) Study S

(c) Gaussian (d) Proposed
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(e) Total correlation
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(f) Local correlation

(g) Results in the square (h) Partition curve by model (6)

Fig. 1. Example on synthetic images. (a)(b) are given im-

ages T and S. (c)(d) are the deformation fields obtained by

model (4) and (6) respectively. Deformation can be observed

in the square using proposed model, as shown in (d), but not

by Gaussian as in (c). (e) illustrates the total correlations ob-

tained by Gaussian (solid line) and proposed model (dashed

line) respectively. (f) indicates the local correlations restricted

in the square as shown in (a)(b) using Gaussian (solid line)

and proposed model (dashed line). Two images in the upper

row of (g) are the enlarged squares in (a)(b) respectively. Two

images in the lower row of (g) are the residue in the square af-

ter deformation using Gaussian and proposed model respec-

tively. (h) shows the partition curve obtained by proposed

model after 250 iterations.

2422



(a) Template T (b) Study S

(c) Initial residue (d) Gaussian (e) Proposed
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Fig. 2. Example on chest MR images. (a)(b) are two given

images T and S. (c) is the initial residue T (�x)− S(�x). (d)(e)

are the residues T (�x − �u) − S(�x) after deformations using

Gaussian and proposed model. (f)(g) are the total and local

(in the square) correlations obtained by Gaussian (solid line)

and the proposed model (dashed line) respectively. (h) is the

enlarged square in (b). (i)(j) are deformed T , i.e.T (�x− �u), in

the square obtained by Gaussian and proposed model. (k) is

the initial residue in the square in (a)(b). (l)(m) are the local

residue T (�x − �u) − S(�x) by Gaussian and proposed model

respectively.

by model (4) and (6) are shown by Fig.2(k)(l)(m), from which

the improvement of accuracy by proposed model can be ob-

served. This experiment demonstrates the improvement of

proposed model (6), and proves its ascendency in registration

in radiation therapy where fine structures of low contrasts

need to be matched as well.

4. CONCLUSION

This paper provides a general framework in deformable

registration where the matching is allowed to vary in different

regions of the domain. The partition of the domain is obtained

by optimizing the fitting of the residue image to certain distri-

bution with zero mean and different variances. We proposed

our model as a minimization problem of an energy functional

that combines the negative log-likelihood of the residue im-

age in each region, smoothness of the deformation field and

length of the partition curve. By taking different variances

in each region, the deformation becomes more efficient and

accurate, which is shown by the experimental results on syn-

thetic and clinical data.
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