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Abstract

In this paper we establish an L∞-bound for the Neumann problem of
the Poisson equations. We first develop some estimates for the bounds of
solutions in several spaces using Poincarés inequality, Trace theorem and
Sobolev’s embedding theorem, and then prove our main theorem utilizing
the De Giorgi-Nash estimates.
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1 Introduction

Suppose Ω is a bounded and connected subset of Rn. Furthermore, Ω satisfies
consistent cone condition, and its boundary ∂Ω with external normal vector n
satisfies local Lipschitiz condition. A-priori maximum estimate for the Neumann
problem of the Poisson equations

−∆u(x) = f(x) in Ω

∂u(x)

∂n
= g(x) on ∂Ω

(1)

has not been established yet. Our purpose in this paper is to provide an L∞-
bound for the solutions of the Neumann problem.

In this paper we assume that f(x) and g(x) in (1) meet∫
Ω

f(x)dx+

∫
∂Ω

g(x)dS(x) = 0. (2)

This is a reasonable assumption, since if there is a solution u to (1), then we
should have∫

Ω

f(x)dx = −
∫

Ω

∆u(x)dx = −
∫
∂Ω

∂u(x)

∂n
dS(x) = −

∫
∂Ω

gdS(x). (3)

Furthermore, we define two constants F and G as follows,

F := ‖f‖L∞(Ω) and G := ‖g‖L∞(∂Ω) (4)

and let uΩ := 1
|Ω|
∫

Ω
udx be the average of u in Ω. We want to show that u−uΩ

has a similar a-priori maximum estimate as the third problem of the Poisson
equation:
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Theorem 1.1. There exists a constant C depending only on Ω and its dimen-
sion n, such that

‖u− uΩ‖L∞(Ω) ≤ C(F +G) (5)

for all u ∈ H2(Ω) ∩H1(Ω̄) that solves (1).

We first quote several important theorems and corollaries that will be used
in this paper.

Theorem 1.2 (Poincaré’s inequality). Let Ω be a bounded, connected subset
of Rn with ∂Ω satisfying local Lipschitz condition. Assume 1 ≤ p < ∞. Then
there exists a constatnt C depending only on n, p and Ω such that

‖u− uΩ‖Lp(Ω) ≤ C‖Du‖Lp(Ω) (6)

for all u ∈W 1,p(Ω).

Proof. See, e.g. [2, 6, 5].

Definition 1.3. For constant p, define p∗ by

p∗ =


np

n− p
if p < n,

q if p = n, p ≤ q <∞,
∞ if p > n.

(7)

Theorem 1.4 (Sobolev’s Embedding Theorem). Let Ω be a bounded, connected
subset of Rn and satisfies consistent cone condition. Assume that 1 ≤ p ≤ n,
then there exists a constant C depending only on n, p and Ω (if p = n there is
also an q), such that

‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω) (8)

for all u ∈W 1,p(Ω).

Proof. See [1].

Theorem 1.5 (Trace Theorem). Let Ω be a bounded set of Rn. Then there
exists a linear operator

T : W 1,p(Ω)→ Lp(Ω) (9)

and a constant C depending only on n, p and Ω, such that

‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) (10)

for all u ∈W 1,p(Ω).

Proof. See [3, 4].

Corollary 1.6. Let Ω be a bounded set of Rn. Then there exists a constant C
such that

‖u‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω). (11)

for all u ∈W 1,p(Ω).

2



Proof. Let ũ ∈W 1,p(Ω) satisfy (1) ũ = u in Ω \∂Ω, and (2) T ũ = u on ∂Ω.
So there is

‖u‖Lp(∂Ω) = ‖T ũ‖Lp(∂Ω) ≤ C‖ũ‖W 1,p(Ω). (12)

Note that ∂Ω has measure 0 in Rn, we obtain

‖u‖W 1,p(Ω) = ‖ũ‖W 1,p(Ω), (13)

and the conclusion follows.

Proposition 1.7. Let Ω be a bounded, connected subset of Rn and satisfy con-
sistent cone condition, with ∂Ω satisfying local Lipschitz condition. Assume that
Neumman problem 

−∆u(x) = f(x) in Ω

∂u(x)

∂n
= 0 on ∂Ω

(14)

and 
−∆u(x) = 0 in Ω

∂u(x)

∂n
= g(x) on ∂Ω

(15)

both have a-priori maximum estimate, that is, there exist two constants C1 and
C2 depending only on n and Ω, such that

‖v − vΩ‖L∞(Ω)≤C1F (16)

and
‖w − wΩ‖L∞(Ω)≤C2G (17)

for all v ∈ H2(Ω)∩H1(Ω̄) that solves (14) and w ∈ H2(Ω)∩H1(Ω̄) that solves
(15).

Proof. Assume that u, v solve (1) and (14), respectively. In addition,
uΩ = 0, vΩ = 0. Since (1) is linear, we know that u − v solves (15), and
(u− v)Ω = 0. So we obtain

‖u‖L∞(Ω) ≤ ‖u− v‖L∞(Ω) + ‖v‖L∞(Ω)

≤ C2G+ C1F

≤ C(F +G).

(18)

Remark. In the following part of this paper, we will prove Theorem 1.1 in
g(x) = 0 and f(x) = 0 cases separately, and combine the results with proposition
1.7 to prove theorem 1.1.

For notation simplicity, we assume that uΩ = 0 and let C be a constant
depending on n and Ω unless otherwise noted. Note that the exact value may
vary in different situation.

2 Case that g(x) = 0

In this section we prove Theorem 1.1 in the case that g(x) = 0. Also, we
consider the n > 2 and n = 2 cases separately.
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2.1 The dimension n > 2

Let p ∈ R and p ≥ 2, from −∆u = f , we know

−
∫

Ω

|u|p−2u∆udx =

∫
Ω

|u|p−2ufdx. (19)

In addition, there is

−
∫

Ω

|u|p−2u∆udx =
4(p− 1)

p2

∫
Ω

|Dup/2|2dx−
∫
∂Ω

|u|p−2u
∂u

∂n
dS(x)

=
4(p− 1)

p2

∫
Ω

|Dup/2|2dx.
(20)

From the two equations above we can obtain the following inequality∫
Ω

|Dup/2|2dx ≤ p2F

4(p− 1)

∫
Ω

|u|p−1dx (21)

Using Hölder’s inequality, we can obtain∫
Ω

|Dup/2|2dx ≤ p2|Ω|1/pF
4(p− 1)

(∫
Ω

|u|pdx
)(p−1)/p

. (22)

From Theorem 1.4 we know there is(∫
Ω

|Dup/2|2
∗
dx

)2/2∗

≤ C
(∫

Ω

|u|pdx+

∫
Ω

|Dup/2|2dx
)

≤ C

(∫
Ω

|u|pdx+
p2|Ω|1/pF
4(p− 1)

(∫
Ω

|u|pdx
)(p−1)/p

)
.

(23)

Let p̃ = np/(n− 2), then there is

(∫
Ω

|up̃|2dx
)1/p̃

≤ C1/p

((∫
Ω

|u|pdx
)1/p

+
p2|Ω|1/pF
4(p− 1)

)1/p(∫
Ω

|u|pdx
)(p−1)/p2

(24)
Define a sequence {pk}∞k=0 as follows,

pk := 2

(
n

n− 2

)k
, k = 0, 1, 2, · · · . (25)

Then we know that

S(n) :=

∞∑
k=0

pk =

∞∑
k=0

2

(
n

n− 2

)k
=
n

4
. (26)

For notation simplicity, we use ‖u‖pk to denote ‖u‖Lpk (Ω). We can obtain the
estimate based on (24) as follows,

‖u‖pk+1
≤ C1/pk(‖u‖pk + αpkF )1/pk‖u‖(pk−1)/pk

pk
, (27)

4



where α = (1/2) · max{1, |Ω|}. First, since there is −∆u = f , we can obtain
that

−
∫

Ω

u∆udx =

∫
Ω

|Du|2dx ≤ F
∫

Ω

|u|dx. (28)

From Theorem 1.2, we know∫
Ω

|u|2dx ≤ C
∫

Ω

|Du|2dx. (29)

Using Hölder’s inequality, we get

‖u‖p0 ≤ CF. (30)

From (27) we can obtain that

‖u‖p1 ≤ CF and ‖u‖p2 ≤ CF. (31)

Suppose that there is an estimate as follows,

‖u‖pk ≤ αβC
∑k−1

j=0
1
pj (k − 1)pkF, (32)

such that it is true for k = 2, and β ≥ 1 is a constant depending only on n and
Ω. Thus, for all k ∈ N (32) is true: if (32) is true for some k, then we can show
that

‖u‖pk+1
≤ C1/pk

(
αβC

∑k−1
j=0

1
pj (k − 1)pkF + αpkF

)
≤ αβC

∑k
j=0

1
pj kpk+1F

(33)

So by induction, (32) is true for all k. Note that here we assumed that C > 1.
Otherwise the estimate is much simpler and the results can follow directly.
Plugging (32) into (27), we obtain that

‖u‖pk+1
≤ C1/pk

(
αβC

∑k−1
j=0

1
pj (k − 1)pkF + αpkF

)1/pk

‖u‖(pk−1)/pk
pk

≤ (αβCS(n)kpkF )1/pk‖u‖(pk−1)/pk
pk

≤ (CkpkF )1/pk‖u‖(pk−1)/pk
pk

(34)

Let k = 1, 2, · · · ,, we can obtain the relation between ‖u‖p1 and ‖u‖pk as follows,

‖u‖pk ≤ AkFµk‖u‖λk
p1 ,∀k ≥ 1. (35)

Here

Ak = Cλk


{

[p
1
p1

p2−1
p2

1 × (2p2)
1
p2 ]

p3−1
p3 × · · ·

} pk−1−1

pk−1

× [(k − 1)pk1 ]
1

pk−1

 ,

λk =
p1 − 1

p1

p2 − 1

p2
· · · pk−1 − 1

pk−1
,

µk =

{(
1

p1

p2 − 1

p2
+

1

p2

)
p3 − 1

p3
+ · · ·

}
pk−1 − 1

pk−1
+

1

pk−1

=

(
1

p1

p2 − 1

p2
· · · pk−1 − 1

pk−1

)
+ · · ·+ 1

pk−1

= 1− λk.
(36)
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Note that 0 ≤ λk < 1 and λk is nonincreasing as k →∞, we know the limit

λ := lim
k→∞

λk (37)

exists and depends only on n and Ω. Thus

µ := lim
k→∞

µk (38)

also exists. In terms of A, we know

Ak ≤ Cλk

k−1∏
j=1

(jpj)
1/pj , (39)

and it is easy to prove that

lim
k→∞

k−1∑
j=1

log(jpj)

pj
(40)

exists. Thus we obtain that

A := lim
k→∞

Ak ≤ Cλ exp

 lim
k→∞

k−1∑
j=1

log(jpj)

pj

 (41)

exists and depends only on n and Ω. Take the results back to (35) and let
k →∞, we can get

‖u‖p∞ ≤ AFµ‖u‖λp1 . (42)

Since ‖u‖p1 ≤ CF , we now can conclude that

‖u‖L∞(Ω) ≤ CF. (43)

2.2 The dimension n = 2

In this case we can also obtain (21). With 2∗ in Theorem 1.4 being set to 4,
we can get a similar inequality as (24) where p̃ = 2p. So let pk we still can get

‖u‖L∞(Ω) ≤ CF (44)

3 Case that f(x) = 0

In this case we prove Theorem 1.1 in the case that g(x) = 0. Again, we
consider two cases n > 2 and n = 2 separately.

3.1 The dimension n > 2

Since there is −∆u = 0, we have

−
∫

Ω

|u|p−2u∆udx =
4(p− 1)

p2

∫
Ω

|Dup/2|2dx−
∫
∂Ω

|u|p−2ugdS(x) = 0 (45)
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Thus there is ∫
Ω

|Dup/2|2dx ≤ p2G

4(p− 1)

∫
∂Ω

|u|p−1udS(x) (46)

From corollary 1.6, we know that∫
∂Ω

|u|p−1udS(x) ≤
(∫

Ω

|u|p−1dx+ (p− 1)

∫
Ω

|u|p−2|Du|dx
)
. (47)

Using Hölder’s inequality, we have∫
Ω

|u|p−2|Du|dx ≤
(∫

Ω

|u|p−2dx

)1/2(∫
Ω

|u|p−2|Du|2dx
)1/2

≤

√
G

p− 1

(∫
Ω

|u|p−2dx

)1/2(∫
∂Ω

|u|p−1dS(x)

)1/2
(48)

Plugging (47) into (48), there is∫
∂Ω

|u|p−1dS(x)

≤ C

(∫
Ω

|u|p−1dx+
√
G(p− 1)

(∫
Ω

|u|p−2dx

)1/2(∫
∂Ω

|u|p−1dS(x)

)1/2
)
.

(49)

Solving this inequality, we can obtain∫
∂Ω

|u|p−1dS(x) ≤ 4C

∫
Ω

|u|p−1dx+ CG2(p− 1)

∫
Ω

|u|p−2dx (50)

Form Theorem 1.4, we can get(∫
Ω

|u|p̃dx
)1/p̃

≤ C1/p

(∫
Ω

|u|pdx+

∫
Ω

|Dup/2|2dx
)1/p

≤ C1/p

(∫
Ω

|u|pdx+
p2G

4(p− 1)

∫
∂Ω

|u|p−1dx

)1/p
(51)

here p̃ = np/(n− 2), and from (49) we can obtain(∫
Ω

|u|p̃dx
)1/p̃

≤ C1/p

(∫
Ω

|u|pdx+ CG
p2

p− 1

∫
Ω

|u|p−1dx+
C2p2G2

4

∫
Ω

|u|p−2dx

)1/p

.

(52)

Using Hölder’s inequality, we have∫
Ω

|u|p−1dx ≤ |Ω|1/p
(∫

Ω

|u|pdx
)(p−1)/p

∫
Ω

|u|p−2dx ≤ |Ω|2/p
(∫

Ω

|u|pdx
)(p−2)/p

(53)
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Plugging them into (49), we obtain that

‖u‖p̃ ≤ C1/p

(
‖u‖2p + CG

p2

p− 1
|Ω|1/p‖u‖p +

C2p2G2|Ω|2/p

4

)1/p

‖u‖(p−2)/p
p

≤ C1/p
(
‖u‖p + CGp|Ω|1/p

)2/p

‖u‖(p−2)/p
p

(54)

We still let

α = max{1, |Ω|} and pk = 2

(
n

n− 2

)k
, k = 0, 1, 2, · · · . (55)

Then we can get

‖u‖pk+1
≤ C1/p (‖u‖pk + αCGpk)

2/pk ‖u‖(pk−2)/pk
pk

, k = 0, 1, 2, · · · . (56)

Since there is −∆u = 0, we can obtain

−
∫

Ω

u∆udx =

∫
Ω

|Du|2dx−
∫
∂Ω

ugdS(x) = 0. (57)

Therefore, we have ∫
Ω

|Du|2dx ≤ G
∫
∂Ω

|u|dS(x). (58)

By Theorem 1.5, we know that∫
∂Ω

|u|dS(x) ≤ C
(∫

Ω

|u|dx+

∫
Ω

|Du|dx
)
. (59)

Theorem 1.2 indicates that ∫
Ω

|u|dx ≤ C
∫

Ω

|Du|dx∫
Ω

|u|2dx ≤ C
∫

Ω

|Du|2dx
(60)

Thus we get ∫
Ω

|u|2dx ≤ CG. (61)

Using the same method as in section 2.1, form (56) we can prove that

‖u‖L∞(Ω) ≤ CG. (62)

3.2 The dimension n = 2

Similar to Section 2.2 we can readily show that

‖u‖L∞(Ω) ≤ C‘G. (63)

in the case that n = 2.
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4 Conclusion

Combine the results in Sections 2 and 3, and apply Proposition 1.7, we can
prove Theorem 1.1.
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