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ABSTRACT

A new algorithm is presented for efficiently solving image

reconstruction problems that arise in partially parallel mag-

netic resonance imaging. This algorithm minimizes an objec-

tive function of the form φ(Bu) + 1
2‖FpSu − f‖2, where φ

is the regularization term which may be nonsmooth. In im-

age reconstruction, the φ term corresponds to total variation

smoothing and/or L1 regularization term. The least square

term 1
2‖FpSu− f‖2 is the fidelity term. In our application, f

represents undersampled data from a partially parallel imag-

ing (PPI) system. The proposed algorithm is a generaliza-

tion of the Bregman operator splitting algorithm with variable

stepsize (BOSVS) in which the previous Barzilai-Borwein

(BB) step is replaced by a cyclic BB (CBB) step, and an L1

term Ψ is added to the energy function. Experimental results

on clinical partially parallel imaging data are given.

Index Terms— Image reconstruction, optimization, mag-

netic resonance imaging, sensitivity encoding

1. INTRODUCTION

Partially parallel magnetic resonance imaging plays an im-

portant role in medical imaging [1]–[4]. This uses multiple

radio-frequency receiver surface coils to acquire k-space data

simultaneously. To accelerate the imaging, the k-space data is

partially sampled. Partial data acquisition reduces scan time

by increasing the spacing between regular subsequent read-

out lines. However, this reduction in the number of recorded

Fourier components leads to aliasing artifacts in images [5].

Sensitivity encoding (SENSE) is one of the most common

methods in partially parallel imaging (PPI) systems for re-

moving aliasing artifacts and reconstructing images with high

quality. It uses information for the coil sensitivities to sepa-

rate aliased pixels produced from an undersampled k-space.
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1.1. Mathematical formulation of SENSE

The fundamental equations of SENSE for a PPI system con-

sisting of L coil arrays are as follows:

FpSlu− fl = 0, l = 1, . . . , L

Here, u ∈ C
N is the reconstructed image, Sl is a diagonal

sensitivity map for channel l, fl is the undersampled data for

the underlying image u,Fp is the undersampled Fourier trans-

form defined by Fp = PF where P is a mask (binary matrix)

and F is a Fourier transform matrix.

The image u can be recovered from the undersampled data

in a PPI system by solving the following least square problem:

min
u
‖FpSu− f‖2,

where S = [S1; . . . ;SN ] and f = [f1; . . . , fN ]. Here [X;Y ]
denotes the matrix obtained by stacking the matrix X above

matrix Y , and ‖.‖ denotes the Euclidean norm for a vector

and the Frobenius norm for a matrix. In sensitivity encoding,

samples are either along a regular Cartesian k- space grid or

non-Cartesian k-space trajectory and the underlying inversion

can be ill-conditioned. To cope with the ill conditioning, reg-

ularization terms are often incorporated in the minimization.

In this paper, we propose a new algorithm for reconstruct-

ing an image u from f by solving the following optimization

problem:

min
u

φ(Bu) +
1

2
‖FpSu− f‖2, (1)

where φ(.) is convex and real valued function but possibly

nondifferentiable, B ∈ C
n×N×N . The problem (1) has re-

ceived considerable attention due to its application in signal

and image processing and in compressed sensing, see [1]–

[11].

1.2. Previous Works

In this section, we introduce some algorithms based on split-

ting. Let us introduce an auxiliary variable w = [w1, . . . , wN ],
where wi ∈ R

2 for i = 1, . . . , N . We rewrite problem (1) as:

min
u,w

φ(w) +
1

2
‖FpSu− f‖2, s.t. w = Bu. (2)
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Zhang, Burger and Osher in [3] introduced the following

Bregman operator splitting (BOS) algorithm:

Initialize parameters ρ > 0, starting guesses u0, w0 and

x0, and set δk = δ > 0 fixed for all k. Set k = 0.

While “not converged,” Do
Step 1.

uk+1 = argmin
u

{
δk‖u− uk + δ−1

k STFT
p (FpSu

k − f)‖2

+ρ‖Bu− wk − ρ−1xk‖2
}
.

Step 2. wk+1 = argmin
w
{φ(w)+ ρ

2
‖w−Buk+1−ρ−1xk‖2}.

Step 3. xk+1 = xk − ρ(wk+1 −Buk+1).
Step 4. k = k + 1.

End Do
Here xk is the approximation to the Lagrange multiplier asso-

ciated with the constraint w = Bu. Step 1 minimizes the aug-

mented Lagrangian with respect to the image u. Step 2 min-

imizes the augmented Lagrangian over the auxiliary variable

w, and Step 3 is the first-order update of the multiplier. Nu-

merical results on magnetic resonance imaging have shown

that this algorithm decreases the cost function of problem (2)

monotonically. Moreover, Theorem 4.2 in [3] proves conver-

gence when δ is strictly greater than ‖STFT
p FpS‖.

This split Bregman algorithm with the Brazilai-Borwein

stepsize (SBB) introduced in [1] takes

δk =
‖FpS(u

k − uk−1)‖2
‖uk − uk−1‖2 .

Numerical experiments for the SBB algorithm on magnetic

resonance imaging demonstrated that it was faster than the

BOS algorithm. However, there was no convergence analysis

for the SBB algorithm.

The recently proposed Bregman operator splitting with

variable stepsize (BOSVS) algorithm [4] often performs bet-

ter than both BOS and SBB. The algorithm is as follows:

Initialize parameters τ > 1 and η > 1, δmin > 0, σ ∈
(0, 1), starting guesses u0, w0 , x0. Set k = 0.

While “not converged,” Do
Step 1. Choose δ̂k = max{δmin,

‖FpS(uk−uk−1)‖2

‖uk−uk−1‖2 }.
Step 2. Update δk = ηj δ̂k where j ≥ 0 is the smallest integer

such that

σδk‖uk+1 − uk‖2 ≥ ‖FpS(u
k+1 − uk)‖2,

uk+1 = argmin
u

{
δk‖u− uk + δ−1

k STFT
p (FpSu

k − f)‖2

+ρ‖Bu− wk − ρ−1xk‖2
}
.

Step 3. If δk > δk−1, then δmin is replaced by τδmin.

Step 4. wk+1 = argmin
w
{φ(w)+ ρ

2
‖w−Buk+1−ρ−1xk‖2}.

Step 5. xk+1 = xk − ρ(wk+1 −Buk+1).
Step 6. k = k + 1.

End Do.

Theorem 3.5 in [4] shows that the sequence generated by

BOSVS globally converges to a solution of (1) and (2).

The main contribution of this paper is to propose a new

algorithm for solving (1). This algorithm is an improved ver-

sion of the BOSVS algorithm, which replaces the BB step of

BOSVS with a cyclic step.

2. CYCLIC BREGMAN OPERATOR SPLITTING
WITH VARIABLE STEPSIZE ALGORITHM

The cyclic BOSVS algorithm reads as follows:

Initialize parameter m > 1, τ > 1 and η > 1, δmin > 0,

σ ∈ (0, 1) and starting guess u0, w0 and x0. Set i = 0.

While “not converged”, Do
Step 1. Choose δ̂i = max{δmin,

‖FpS(ui−ui−1)‖2

‖ui−ui−1‖2 }.
Step 2. For k = i : i+m− 1 repeat
Step 2.1. Update δk = ηj δ̂i where j ≥ 0 is the smallest

integer such that

σδk‖uk+1 − uk‖2 ≥ ‖FpS(u
k+1 − uk)‖2,

uk+1 = argmin
u

{
δk‖u− uk + δ−1

k STFT
p (FpSu

k − f)‖2

+ρ‖Bu− wk − ρ−1xk‖2
}
.

Step 2.2. wk+1 = argmin
w
{φ(w)+ρ

2
‖w−Buk+1−ρ−1xk‖2}.

Step 2.3. xk+1 = xk − ρ(wk+1 −Buk+1).
End For
Step 3. If δk > δk−1 for some k, then δmin is replaced by

τδmin.

Step 4. Set i = i+m.

End Do
Theorem 2.1. If there exists a solution of (2), then the se-

quence (uk, wk, xk) generated by cyclic BOSVS approaches
a point (u∗, w∗, x∗) where the first-order optimality condi-
tions for (2) are satisfied. Moreover, (u∗, w∗) is a solution of
(2) and u∗ is a solution of (1).

The proof of Theorem 2.1 has the same structure as the

proof of Theorem 3.5 in [4]. Notice that the u-subproblem

in Step 2 is differentiable. Hence, by first order optimality

condition, we have

(δkI + ρBTB)uk+1 = Rk,

where

Rk = (δk − STFT
p FpS)u

k + ρBT(wk − ρ−1xk) + STFT
p f.

Let Δ̄ = FBTBFT be a diagonalization of BTB using the

Fourier transform F . Hence,

uk+1 = FT(δkI + ρΔ̄)FRk.

The solution of w-subproblem depends on the form of φ.
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Recovering MR images from undersampled Fourier mea-

surement f can usually be obtained by taking φ(Bu) of the

form:

φ(Bu) = β1‖Du‖1 + β2‖Ψu‖1, (3)

where β1, β2 ≥ 0. The matrix Ψ ∈ C
N×N is unitary and

D ∈ C
2×N×N where Du is a 2 × N matrix with (Du)i the

discrete gradient (finite differences along the coordinate di-

rections) of u at the i-th pixel in the image, and ‖Du‖1 =∑N
i=1 ‖(Du)i‖2.
Let us define

B =

(
D

Ψ

)
, w =

(
w̄

ŵ

)
=

(
Du

Ψu

)
, x =

(
x̄

x̂

)

where B ∈ C
3×N×N , w̄ and x̄ ∈ C

2×N , ŵ and x̂ ∈ C
N .

With this choice for B and φ, Step 2.2. in cyclic BOSVS

become:

w̄k+1 = argmin
w̄
{β1‖w̄‖1 + ρ

2
‖w̄ −Duk+1 − ρ−1x̄k‖2},

ŵk+1 = argmin
ŵ
{β2‖ŵ‖1 + ρ

2
‖ŵ −Ψuk+1 − ρ−1x̂k‖2}.

Here, the solution of w̄-subproblem and ŵ-subproblem can be

obtain by the soft shrinkage operator [11]. For i = 1, . . . , N :

w̄k+1
i = S1{(Duk+1 + ρ−1x̄k)i, β1},

ŵk+1
i = S2{(Ψuk+1 + ρ−1x̂k)i, β2},

where for any t̄ ∈ C
2, t̂ ∈ C and β ∈ R:

S1(t̄, β) :=
t

‖t̄‖2 max{‖t̄‖2 − β, 0},

S2(t̂, β) :=
t̂

|t̂| max{|t̂| − β, 0},

with the conventions 0/0 = 0.

3. EXPERIMENTAL RESULTS

This section tests the effectiveness of the cyclic BOSVS to

recover images on a PPI system, and compares the results

to three different algorithms: BOS, SBB and BOSVS. For

this, we use two data sets denoted data1 and data2, obtained

from commercially available eight-channel PPI systems, i.e.

L = 8. The data acquisition parameters for these two data

sets are given in Table 1. The mask and reference image for

data1 are in Figures 1(a) and (b), while the corresponding

mask and image for data2 are in Figures 1(c) and (d). The

artificially undersampled data fl := PF(sl � u) + nl, where

nl is complex valued white Gaussian noise with standard de-

viation σ̄ = 0.7×10−3 for both of the real and imagery parts.

Table 1. The data acquisition parameters for data1 and data2.

Parameters data1 data2

TR 3060 ms 3000 ms

TE 126 ms 85 ms

FOV 220 mm2 205 mm2

Size ×8 512× 512× 8 500× 512× 8
ST 5mm 5mm

FA 90o 90o

(a) (b)

(c) (d)

Fig. 1. (a) Pseudo random mask with reduction factor 4. (b)

The reference image in data1. (c) Radial mask with reduction

factor 6. (d) The reference image in data2.

In our numerical and experimental results, we solve the

optimization problem (2) with φ of the form (3) where β1 =
10−4 and β2 = 0. The parameter values that we used were

m = 7, ρ = 10−2, τ = 2, δmin = 0.001, η = 3 and

σ = 0.99999. The reconstructed images using the cyclic

BOSVS algorithm applying to data1 and data2 are shown in

Fig. 2. In this section we use 25 CPU (sec.) time to re-

cover the image from data1 and 90 CPU (sec.) to recover the

image from data2. Table 2 shows the comparison of the cor-

responding objective function values. A plot of cost function

value versus CPU time is also given in Fig. 3. Notice that

cyclic BOSVS achieves the best objective function value for

the given allotment of CPU time.

Table 2. Comparison of the final objective function value

shown in Figure 3.

BOS SBB BOSVS cyclic BOSVS

Obj-data1 0.5410 0.5275 0.5045 0.5040

Obj-data2 1.9361 1.9177 1.8247 1.8197
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(a) (b) (c) (d)

Fig. 2. Left to right: (a) image reconstruction by the cyclic

BOSVS algorithm using data1. (b) Magnification of the re-

constructed image. (c) Image reconstruction using the cyclic

BOSVS algorithm using data2. (d) Magnification of the re-

constructed image.

4. CONCLUDING REMARKS

In this paper, we proposed an improvement version of the

Bregman operator splitting algorithm with variable step-

size. The algorithm uses the cyclic BB step instead of the

BB step used in BOSVS. Comparisons were made between

BOSVS [4], SBB [1] and BOS [3] using partially parallel

magnetic resonance image reconstruction problems. The

cyclic BOSVS algorithm provided high quality image recon-

structions relatively efficiently.
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