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Abstract

Point processes are powerful tools to model user activities and have a plethora of
applications in social sciences. Predicting user activities based on point processes
is a central problem. However, existing works are mostly problem specific, use
heuristics, or simplify the stochastic nature of point processes. In this paper, we
propose a framework that provides an efficient estimator of the probability mass
function of point processes. In particular, we design a key reformulation of the
prediction problem, and further derive a differential-difference equation to compute
a conditional probability mass function. Our framework is applicable to general
point processes and prediction tasks, and achieves superb predictive and efficiency
performance in diverse real-world applications compared to the state of the art.

1 Introduction

Online social platforms, such as Facebook and Twitter, enable users to post opinions, share infor-
mation, and influence peers. Recently, user-generated event data archived in fine-grained temporal
resolutions are becoming increasingly available, which calls for expressive models and algorithms
to understand, predict and distill knowledge from complex dynamics of these data. Particularly,
temporal point processes are well-suited to model the event pattern of user behaviors and have been
successfully applied in modeling event sequence data [6, 10, 12, 21, 23, 24, 25, 26, 27, 28, 33].

A fundamental task in social networks is to predict user activity levels based on learned point process
models. Mathematically, the goal is to compute E[f(N(t))], where N(·) is a given point process
that is learned from user behaviors, t is a fixed future time, and f is an application-dependent
function. A framework for doing this is critically important. For example, for social networking
services, an accurate inference of the number of reshares of a post enables the network moderator
to detect trending posts and improve its content delivery networks [13, 32]; an accurate estimate of
the change of network topology (the number of new followers of a user) facilitates the moderator to
identify influential users and suppress the spread of terrorist propaganda and cyber-attacks [12]; an
accurate inference of the activity level (number of posts in the network) allows us to gain fundamental
insight into the predictability of collective behaviors [22]. Moreover, for online merchants such as
Amazon, an accurate estimate of the number of future purchases of a product helps optimizing future
advertisement placements [10, 25].

Despite the prevalence of prediction problems, an accurate prediction is very challenging for two
reasons. First, the function f is arbitrary. For instance, to evaluate the homogeneity of user activities,
we set f(x) = x log(x) to compute the Shannon entropy; to measure the distance between a predicted
activity level and a target x⇤, we set f(x) = (x� x

⇤)2. However, most works [8, 9, 13, 30, 31, 32]
are problem specific and only designed for the simple task with f(x) = x; hence these works are
not generalizable. Second, point process models typically have intertwined stochasticity and can
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Figure 1: An illustration of HYBRID using Hawkes process (Eq. 1). Our method first generates
two samples {Hi

t�} of events; then it constructs intensity functions; with these inputs, it computes
conditional probability mass functions �̃i(x, s) := P[N(s) = x|H

i
s� ] using a mass transport equation.

Panel (c) shows the transport of conditional mass at four different times (the initial probability mass
�̃(x, 0) is an indicator function I[x = 0], as there is no event with probability one). Finally, the
average of conditional mass functions yields our estimator of the probability mass.

co-evolve over time [12, 25], e.g., in the influence propagation problem, the information diffusion over
networks can change the structure of networks, which adversely influences the diffusion process [12].
However, previous works often ignore parts of the stochasticity in the intensity function [29] or make
heuristic approximations [13, 32]. Hence, there is an urgent need for a method that is applicable to an
arbitrary function f and keeps all the stochasticity in the process, which is largely nonexistent to date.

We propose HYBRID, a generic framework that provides an efficient estimator of the probability mass
of point processes. Figure 1 illustrates our framework. We also make the following contributions:

• Unifying framework. Our framework is applicable to general point processes and does not
depend on specific parameterization of intensity functions. It incorporates all stochasticity in point
processes and is applicable to prediction tasks with an arbitrary function f .

• Technical challenges. We reformulate the prediction problem and design a random variable with
reduced variance. To derive an analytical form of this random variable, we also propose a mass
transport equation to compute the conditional probability mass of point processes. We further
transform this equation to an Ordinary Differential Equation and provide a scalable algorithm.

• Superior performance. Our framework significantly reduces the sample size to estimate the
probability mass function of point processes in real-world applications. For example, to infer
the number of tweeting and retweeting events of users in the co-evolution model of information
diffusion and social link creation [12], our method needs 103 samples and 14.4 minutes, while
Monte Carlo needs 106 samples and 27.8 hours to achieve the same relative error of 0.1.

2 Background and preliminaries

Point processes. A temporal point process [1] is a random process whose realization consists of a set
of discrete events {tk}, localized in time. It has been successfully applied to model user behaviors
in social networks [16, 17, 19, 23, 24, 25, 28, 30]. It can be equivalently represented as a counting
process N(t), which records the number of events on [0, t]. The counting process is a right continuous
step function, i.e., if an event happens at t, N(t)�N(t�) = 1.

Let Ht� = {tk|tk < t} be the history of events happened up to time t. An important way to character-
ize point processes is via the conditional intensity function �(t) := �(t|Ht�), a stochastic model for
the time of the next event given the history. Formally, �(t) is the conditional probability of observing
an event in [t, t + dt) given events on [0, t), i.e., P {event in [t, t+ dt)|Ht�} = E[dN(t)|Ht� ] :=
�(t)dt, where dN(t) 2 {0, 1}.

The intensity function is designed to capture the phenomena of interest. Some useful forms include
(i) Poisson process: the intensity is a deterministic function, and (ii) Hawkes process [15]: it captures
the mutual excitation phenomena between events and its intensity is parameterized as

�(t) = ⌘ + ↵

X
tk2Ht�

(t� tk), (1)
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where ⌘ > 0 is the baseline intensity; the trigging kernel (t) = exp(�t) models the decay of past
events’ influence over time; ↵ > 0 quantifies the strength of influence from each past event. Here,
the occurrence of each historical event increases the intensity by a certain amount determined by (t)
and ↵, making �(t) history-dependent and a stochastic process by itself.

Monte Carlo (MC). To compute the probability mass of a point process, MC simulates n realizations
of history {H

i
t} using the thinning algorithm [20]. The number of events in sample i is defined

as N
i(t) = |H

i
t|. Let �(x, t) := P[N(t) = x], where x 2 N, be the probability mass. Then its

estimator �̂mc
n (x, t) and the estimator µ̂mc

n (t) for µ(t) := E[f(N(t))] are defined as �̂
mc
n (x, t) =

1
n

P
i I[N i(t) = x] and µ̂

mc
n (t) = 1

n

P
i f(N

i(t)). The root mean square error (RMSE) is defined as

"(µ̂mc
n (t)) =

p
E[µ̂mc

n (t)� µ(t)]2 =
p

VAR[f(N(t))]/n. (2)

3 Solution overview

Given an arbitrary point process N(t) that is learned from data, existing prediction methods for
computing E[f(N(t))] have three major limitations:

• Generalizability. Most methods [8, 9, 13, 30, 31, 32] only predict E[N(t)] and are not generaliz-
able to an arbitrary function f . Moreover, they typically rely on specific parameterizations of the
intensity functions, such as the reinforced Poisson process [13] and Hawkes process [5, 32]; hence
they are not applicable to general point processes.

• Approximation and heuristics. These works also ignore parts of the stochasticity in the intensity
functions [29] or make heuristic approximations to the point process [13, 32]. Hence the accuracy
is limited by the approximations and heuristic corrections.

• Large sample size. The MC method overcomes the above limitations since it has an unbiased
estimator of the probability mass. However, the high stochasticity in point processes leads to a
large value of VAR[f(N(t))], which requires a large number of samples to achieve a small error.

To address these challenges, we propose a generic framework with a novel estimator of the probability
mass, which has a smaller sample size than MC. Our framework has the following key steps.

I. New random variable. We design a random variable g(Ht�), a conditional expectation given the
history. Its variance is guaranteed to be smaller than that of f(N(t)). For a fixed number of samples,
the error of MC is decided by the variance of the random variable of interest, as shown in (2). Hence,
to achieve the same error, applying MC to estimate the new objective EHt�

[g(Ht�)] requires smaller
number of samples compared with the procedure that directly estimates E[f(N(t))].

II. Mass transport equation. To compute g(Ht�), we derive a differential-difference equation that
describes the evolutionary dynamics of the conditional probability mass P[N(t) = x|Ht� ]. We
further formulate this equation as an Ordinary Differential Equation, and provide a scalable algorithm.

4 Hybrid inference machine with probability mass transport

In this section, we present technical details of our framework. We first design a new random variable
for prediction; then we propose a mass transport equation to compute this random variable analytically.
Finally, we combine the mass transport equation with the sampling scheme to compute the probability
mass function of general point processes and solve prediction tasks with an arbitrary function f .

4.1 New random variable with reduced variance

We reformulate the problem and design a new random variable g(Ht�), which has a smaller variance
than f(N(t)) and the same expectation. To do this, we express E[f(N(t))] as an iterated expectation

E[f(N(t))] = EHt�

h
EN(t)|Ht�

⇥
f(N(t))|Ht�

⇤i
= EHt�

h
g(Ht�)

i
, (3)

where EHt�
is w.r.t. the randomness of the history and EN(t)|Ht�

is w.r.t. the randomness of the
point process given the history. We design the random variable as a conditional expectation given the
history: g(Ht�) = EN(t)|Ht�

[f(N(t))|Ht� ]. Theorem 1 shows that it has a smaller variance.
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Theorem 1. For time t > 0 and an arbitrary function f , we have VAR[g(Ht�)] < VAR[f(N(t))].

Theorem 1 extends the Rao-Blackwell (RB) theorem [3] to point processes. RB says that if ✓̂ is an
estimator of a parameter ✓ and T is a sufficient statistic for ✓; then VAR[E[✓̂|T ]] 6 VAR[✓̂], i.e., the
sufficient statistic reduces uncertainty of ✓̂. However, RB is not applicable to point processes since it
studies a different problem (improving the estimator of a distribution’s parameter), while we focus on
the prediction problem for general point processes, which introduces two new technical challenges:

(i) Is there a definition in point processes whose role is similar to the sufficient statistic in RB?
Our first contribution shows that the history Ht� contains all the necessary information in a point
process and reduces the uncertainty of N(t). Hence, g(Ht�) is an improved variable for prediction.
Moreover, in contrast to the RB theorem, the inequality in Theorem 1 is strict because the counting
process N(t) is right-continuous in time t and not predictable [4] (a predictable process is measurable
w.r.t. Ht� , such as the processes that are left-continuous). Appendix C contains details on the proof.

(ii) Is g(Ht�) computable for general point processes and an arbitrary function f? An efficient
computation will enable us to estimate EHt�

[g(Ht�)] using the sampling method. Specifically, let
µ̂n(t) =

1
n

P
i g(H

i
t�) be the estimator computed from n samples; then from the definition of RMSE

in (2), this estimator has smaller error than MC: "(µ̂n(t)) < "(µ̂mc
n (t)).

However, the challenge in our new formulation is that it seems very hard to compute this conditional
expectation, as one typically needs another round of sampling, which is undesirable as it will increase
the variance of the estimator. To address this challenge, next we propose a mass transport equation.

4.2 Transport equation for conditional probability mass function

We present a novel mass transport equation that computes the conditional probability mass �̃(x, t) :=
P[N(t) = x|Ht� ] of general point processes. With this definition, we derive an analytical expression
for the conditional expectation: g(Ht�) =

P
x f(x)�̃(x, t). The transport equation is as follows.

Theorem 2 (Mass Transport Equation for Point Processes). Let �(t) := �(t|Ht�) be the conditional
intensity function of the point process N(t) and �̃(x, t) := P[N(t) = x|Ht� ] be its conditional
probability mass function; then �̃(x, t) satisfies the following differential-difference equation:

�̃t(x, t)
"

rate of change in conditional mass

:=
@�̃(x, t)

@t
=

8
><

>:

��(t)�̃(x, t) if x = 0
��(t)�̃(x, t)| {z }

loss in mass, at rate �(t)

+ �(t)�̃(x� 1, t)| {z }
gain in mass, at rate �(t)

if x = 1, 2, 3, · · · (4)

Proof sketch. For the simplicity of notation, we set the right-hand-side of (4) to be F [�̃], where
F is a functional operator on �̃. We also define the inner product between functions u : N ! R
and v : N ! R as (u, v) :=

P
x u(x)v(x). The main idea in our proof is to show that the equality

(v, �̃t) = (v,F [�̃]) holds for any test function v; then �̃t = F [�̃] follows from the fundamental
lemma of the calculus of variations [14]. Specifically, the proof contains two parts as follows.

We first prove (v, �̃t) = (B[v], �̃), where B[v] is a functional operator defined as B[v] = (v(x +
1)� v(x))�(t). This equality can be proved by the property of point processes and the definition of
conditional mass. Second, we show (B[v], �̃) = (v,F [�̃]) using a variable substitution technique.
Mathematically, this equality means B and F are adjoint operators on the function space. Combining
these two equalities yields the mass transport equation. Appendix A contains details on the proof.

Mass transport dynamics. This differential-difference equation describes the time evolution of the
conditional mass. Specifically, the differential term �̃t, i.e., the instantaneous rate of change in the
probability mass, is equal to a first order difference equation on the right-hand-side. This difference
equation is a summation of two terms: (i) the negative loss of its own probability mass �̃(x, t) at
rate �(t), and (ii) the positive gain of probability mass �̃(x� 1, t) from last state x� 1 at rate �(t).
Moreover, since initially no event happens with probability one, we have �̃(x, 0) = I[x = 0]. Solving
this transport equation on [0, t] essentially transports the initial mass to the mass at time t.
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Algorithm 1: CONDITIONAL MASS FUNCTION

Input: Ht� = {tk}
K
k=1, �⌧ , set t = tK+1

Output: Conditional probability mass function �̃(t)
for k = 0, · · ·K do

Construct �(s) and Q(s) on [tk, tk+1] ;
�̃(tk+1) = ODE45[�̃(tk),Q(s),�⌧)] (RK Alg);

end
Set �̃(t) = �̃(tK+1)

Algorithm 2: HYBRID MASS TRANSPORT

Input: Sample size n, time t, �⌧
Output: µ̂n(t), �̂n(x, t)
Generate n samples of point process:

�
H

i
t�
 n

i=1
;

for i = 1, · · · , n do
�̃i(x, t) = COND-MASS-FUNC(Hi

t� ,�⌧);
end
�̂n(x, t) = 1

n

P
i �̃

i(x, t), µ̂n(t) =
P

x f(x)�̂n(x, t)

4.3 Mass transport as a banded linear Ordinary Differential Equation (ODE)

To efficiently solve the mass transport equation, we reformulate it as a banded linear ODE. Specifically,
we set the upper bound for x to be M , and set �̃(t) to be a vector that includes the value of �̃(x, t) for
each integer x: �̃(t) = (�̃(0, t), �̃(1, t), · · · , �̃(M, t))>. With this representation of the conditional
mass, the mass transport equation in (4) can be expressed as a simple banded linear ODE:

�̃(t)0 = Q(t)�̃(t), (5)

where �̃(t)0 = (�̃t(0, t), · · · , �̃t(M, t))>, and the matrix Q(t) is a sparse bi-diagonal matrix with
Qi,i = ��(t) and Qi�1,i = �(t). The following equation visualizes the ODE in (5) when M = 2.

0

@
�̃t(0, t)
�̃t(1, t)
�̃t(2, t)

1

A =

 
��(t)
�(t) ��(t)

�(t) ��(t)

!0

@
�̃(0, t)
�̃(1, t)
�̃(2, t)

1

A . (6)

This dynamic ODE is a compact representation of the transport equation in (4) and M decides
the dimension of the ODE in (5). In theory, M can be unbounded. However, the conditional
probability mass is tends to zero when M becomes large. Hence, in practice we choose a finite
support {0, 1, · · · ,M} for the conditional probability mass function. To choose a proper M , we
generate samples from the point process. Suppose the largest number of events in the samples
is L, we set M = 2L such that it is reasonably large. Next, with the initial probability mass
�̃(t0) = (1, 0, · · · , 0)>, we present an efficient algorithm to solve the ODE.

4.4 Scalable algorithm for solving the ODE
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Figure 2: Illustration of Algorithm 1 using Hawkes
process. The intensity is updated after each event
tk. Within [tk, tk+1], we use �(tk) and the inten-
sity �(s) to solve the ODE and obtain �(tk+1).

We present the algorithm that transports the ini-
tial mass �̃(t0) to �̃(t) by solving the ODE.

Since the intensity function is history-dependent
and has a discrete jump when an event happens
at time tk, the matrix Q(t) in the ODE is discon-
tinuous at tk. Hence we split [0, t] into intervals
[tk, tk+1]. On each interval, the intensity is con-
tinuous and we can use the classic numerical
Runge-Kutta (RK) method [7] to solve the ODE.
Figure 2 illustrates the overall algorithm.

Our algorithm works as follows. First, with the initial intensity on [0, t1] and �̃(t0) as input, the RK
method solves the ODE on [0, t1] and outputs �̃(t1). Since an event happens at t1, the intensity is
updated on [t1, t2]. Next, with the updated intensity and �̃(t1) as the initial value, the RK method
solves the ODE on [t1, t2] and outputs �̃(t2). This procedure repeats for each [tk, tk+1] until time t.

Now we present the RK method that solves the ODE on each interval [tk, tk+1]. RK divides this
interval into equally-spaced subintervals [⌧i, ⌧i+1], for i = 0, · · · , I and �⌧ = ⌧i+1 � ⌧i. It then
conducts linear extrapolation on each subinterval. It starts from ⌧0 = tk and uses �̃(⌧0) and the
approximation of the gradient �̃(⌧0)0 to compute �̃(⌧1). Next, �̃(⌧1) is taken as the initial value and
the process is repeated until ⌧I = tk+1. Appendix D contains details of this method.

The RK method approximates the gradient �̃(t)0 with different levels of accuracy, called states s.
When s = 1, it is the Euler method, which uses the first order approximation �̃(⌧i+1)� �̃(⌧i)/�⌧ .
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We use the ODE45 solver in MATLAB and choose the stage s = 4 for RK. Moreover, the main
computation in the RK method comes from the matrix-vector product. Since the matrix Q(t) is
sparse and bi-diagonal with O(M) non-zero elements, the cost for this operation is only O(M).

4.5 Hybrid inference machine with mass transport equation

With the conditional probability mass, we are now ready to express g(Ht�) in closed form and
estimate EHt�

[g(Ht�)] using the MC sampling method. We present our framework HYBRID:

(i) Generate n samples {Hi
t�} from a point process N(t) with a stochastic intensity �(t).

(ii) For each sample H
i
t� , we compute the value of intensity function �(s|Hi

s�), for each s 2

[0, t]; then we solve (5) to compute the conditional probability mass �̃i(x, t).
(iii) We obtain the estimator of the probability mass function �(x, t) and µ(t) by taking the

average: �̂n(x, t) =
1
n

Pn
i=1 �̃

i(x, t), µ̂n(t) =
P

x f(x)�̂n(x, t)

Algorithm 2 summarizes the above procedure. Next, we discuss two properties of HYBRID.

First, our framework efficiently uses all event information in each sample. In fact, each event tk
influences the transport rate of the conditional probability mass (Figure 2). This feature is in sharp
contrast to MC that only uses the information of the total number of events and neglects the differences
in event times. For instance, the two samples in Figure 1(a) both have three events and MC treats them
equally; hence its estimator is an indicator function �̂

mc
n (x, t) = I[x = 3]. However, for HYBRID,

these samples have different event information and conditional probability mass functions, and our
estimator in Figure 1(d) is much more informative than an indicator function.

Moreover, our estimator for the probability mass is unbiased if we can solve the mass transport
equation in (4) exactly. To prove this property, we show that the following equality holds for an
arbitrary function f : (f,�) = E[f(N(t))] = EHt�

[g(Ht�)] = (f,EHt�
[�̃]). Then EHt�

[�̂n] = �

follows from the fundamental lemma of the calculus of variations [14]. Appendix B contains detailed
derivations. In practice, we choose a reasonable finite support for the conditional probability mass in
order to solve the mass transport ODE in (5). Hence our estimator is nearly unbiased.

5 Applications and extensions to multi-dimensional point processes
In this section, we present two real world applications, where the point process models have inter-
twined stochasticity and co-evolving intensity functions.

Predicting the activeness and popularity of users in social networks. The co-evolution model [12]
uses a Hawkes process Nus(t) to model information diffusion (tweets/retweets), and a survival process
Aus(t) to model the dynamics of network topology (link creation process). The intensity of Nus(t)
depends on the network topology Aus(t), and the intensity of Aus(t) also depends on Nus(t); hence
these processes co-evolve over time. We focus on two tasks in this model: (i) inferring the activeness
of a user by E[

P
u Nus(t)], which is the number of tweets and retweets from user s; and (ii) inferring

the popularity of a user by E[
P

u Aus(t)], which is the number of new links created to the user.

Predicting the popularity of items in recommender systems. Recent works on recommendation
systems [10, 25] use a point process Nui(t) to model user u’s sequential interaction with item i.
The intensity function �ui(t) denotes user’s interest to the item. As users interact with items over
time, the user latent feature uu(t) and item latent feature iu(t) co-evolve over time, and are mutually
dependent [25]. The intensity is parameterized as �ui(t) = ⌘ui+uu(t)>ii(t), where ⌘ui is a baseline
term representing the long-term preference, and the tendency for u to interact with i depends on the
compatibility of their instantaneous latent features uu(t)>ii(t). With this model, we can infer an
item’s popularity by evaluating E[

P
u Nui(t)], which is the number of events happened to item i.

To solve these prediction tasks, we extend the transport equation to the multivariate case. Specifically,
we create a new stochastic process x(t) =

P
u Nus(t) and compute its conditional mass function.

Theorem 3 (Mass Transport for Multidimensional Point Processes). Let Nus(t) be the point process
with intensity �us(t), x(t) =

PU
u=1 Nus(t), and �̃(x, t) = P[x(t) = x|Ht� ] be the conditional

probability mass of x(t); then �̃ satisfies: �̃t = �
�P

u �us(t)
�
�̃(x, t) +

�P
u �us(t)

�
�̃(x� 1, t).

To compute the conditional probability mass, we also solve the ODE in (5), where the diagonal and
off-diagonal of Q(t) is now the negative and positive summation of intensities in all dimensions.
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Figure 3: Prediction results for user activeness and user popularity. (a,b) user activeness: predicting
the number of posts per user; (c,d) user popularity: predicting the number of new links per user. Test
times are the relative times after the end of train time. The train data is fixed with 70% of total data.
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Figure 4: Prediction results for item popularity. (a,b) predicting the number of watching events per
program on IPTV; (c,d) predicting the number of discussions per group on Reddit.

6 Experiments

In this section, we evaluate the predictive performance of HYBRID in two real world applications in
Section 5 and a synthetic dataset. We use the following metrics:

(i) Mean Average Percentage Error (MAPE). Given a prediction time t, we compute the MAPE
|µ̂n(t)� µ(t)|/µ(t) between the estimated value and the ground truth.

(ii) Rank correlation. For all users/items, we obtain two lists of ranks according to the true and
estimated value of user activeness/user popularity/item popularity. The accuracy is evaluated by
the Kendall-⌧ rank correlation [18] between two lists.

6.1 Experiments on real world data

We show HYBRID has both accuracy and efficiency improvement in predicting the activeness and
popularity of users in social networks and predicting the popularity of items in recommender systems.

Competitors. We use 103 samples for HYBRID and compare it with the following the state of the art.

• SEISMIC [32]. It defines a self-exciting process with a post infectiousness factor. It uses the
branching property of Hawkes process and heuristic corrections for prediction.

• RPP [13]. It adds a reinforcement coefficient to Poisson process that depicts the self-excitation
phenomena. It sets dN(t) = �(t)dt and solves a deterministic equation for prediction.

• FPE [29]. It uses a deterministic function to approximate the stochastic intensity function.
• MC-1E3. It is the MC sampling method with 103 samples (same as these for HYBRID), and

MC-1E6 uses 106 samples.

6.1.1 Predicting the activeness and popularity of users in social networks

We use a Twitter dataset [2] that contains 280,000 users with 550,000 tweet, retweet, and link creation
events during Sep. 21 - 30, 2012. This data is previously used to validate the network co-evolution
model [12]. The parameters for tweeting/retweeting processes and link creation process are learned
using maximum likelihood estimation [12]. SEISMIC and RPP are not designed for the popularity
prediction task since they do not consider the evolution of network topology. We use p proportion of
total data as the training data to learn parameters of all methods, and the rest as test data. We make
predictions for each user and report the averaged results.
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Figure 6: Rank correlation results in different problems. We vary the proportion p of training data
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Predictive performance. Figure 3(a) shows that MAPE increases as test time increases, since the
model’s stochasticity increases. HYBRID has the smallest error. Figure 3(b) shows that MAPE
decreases as training data increases since model parameters are more accurate. Moreover, HYBRID is
more accurate than SEISMIC and FPE with only 60% of training data, while these works need 80%.
Thus, we make accurate predictions by observing users in the early stage. This feature is important
for network moderators to identify malicious users and suppress the propagation undesired content.

Moreover, the consistent performance improvement shows two messages: (i) considering all the
randomness is important. HYBRID is 2⇥ more accurate than SEISMIC and FPE because HYBRID
naturally considers all the stochasticity, but SEISMIC, FPE, and RPP need heuristics or approximations
that discard parts of the stochasticity; (ii) sampling efficiently is important. To consider all the
stochasticity, we need to use the sampling scheme, and HYBRID has a much smaller sample size.
Specifically, HYBRID uses the same 103 samples, but has 4⇥ error reduction compared with MC-1E3.
MC-1E6 has a similar predictive performance as HYBRID, but needs 103⇥ more samples.

Scalability. How does the reduction in sample size improve the speed? Figure 5(a) shows that as the
error decreases from 0.5 to 0.1, MC has higher computation cost, since it needs much more samples
than HYBRID to achieve the same error. We include the plots of HYBRID in (c). In particular, to
achieve the error of 0.1, MC needs 106 samples in 27.8 hours, but HYBRID only needs 14.4 minutes
with 103 samples. We use the machine with 16 cores, 2.4 GHz Intel Core i5 CPU and 64 GB memory.

Rank correlation. We rank all users according to the predicted level of activeness and level of
popularity separately. Figure 6(a,b) show that HYBRID performs the best with the accuracy around
80%, and it consistently identifies around 30% items more correctly than FPE on both tasks.

6.1.2 Predicting the popularity of items in recommender systems

In the recommendation system setting, we use two datasets from [25]. The IPTV dataset contains
7,100 users’ watching history of 436 TV programs in 11 months, with around 2M events. The Reddit
dataset contains online discussions of 1,000 users in 1,403 groups, with 10,000 discussion events.
The predictive and scalability performance are consistent with the application in social networks.
Figure 4 shows that HYBRID is 15% more accurate than FPE and 20% than SEISMIC. Figure 5 also
shows that HYBRID needs much smaller amount of computation time than MC-1E6. To achieve the
error of 0.1, it takes 9.8 minutes for HYBRID and 7.5 hours for MC-1E6. Figure 6(c,d) show that
HYBRID achieves the rank correlation accuracy of 77%, with 20% improvement over FPE.
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6.2 Experiments on synthetic data

We compare HYBRID with MC in two aspects: (i) the significance of the reduction in the error and
sample size, and (ii) estimators of the probability mass function. We study a Hawkes process and set
the parameters of its intensity function as ⌘ = 1.2, and ↵ = 0.5. We fix the prediction time to be
t = 30. The ground truth is computed with 108 samples from MC simulations.

Error vs. number of samples. In four tasks with different f , Figure 7 shows that given the same
number of samples, HYBRID has a smaller error. Moreover, to achieve the same error, HYBRID needs
100⇥ less samples than MC. In particular, to achieve the error of 0.01, (a) shows HYBRID needs 103
and MC needs 105 samples; (b) shows HYBRID needs 104 and MC needs 106 samples.

Probability mass functions. We compare our estimator of the probability mass with MC. Fig-
ure 8(a,b) show that our estimator is much smoother than MC, because our estimator is the average of
conditional probability mass functions, which are computed by solving the mass transport equation.
Moreover, our estimator centers around 85, which is the ground truth of E[N(t)], while that of MC
centers around 80. Hence HYBRID is more accurate. We also plot two conditional mass functions in
(c,d). The average of 1000 conditional mass functions yields (a). Thus, this averaging procedure in
HYBRID adjusts the shape of the estimated probability mass. On the contrary, given one sample, the
estimator in MC is just an indicator function and cannot capture the shape of the probability mass.

7 Conclusions

We have proposed HYBRID, a generic framework with a new formulation of the prediction problem
in point processes and a novel mass transport equation. This equation efficiently uses the event
information to update the transport rate and compute the conditional mass function. Moreover,
HYBRID is applicable to general point processes and prediction tasks with an arbitrary function f .
Hence it can take any point process models as input, and the predictive performance of our framework
can be further improved with the advancement of point process models. Experiments on real world
and synthetic data demonstrate that HYBRID outperforms the state of the art both in terms of accuracy
and efficiency. There are many interesting lines for future research. For example, HYBRID can be
generalized to marked point processes [4], where a mark is observed along with the timing of each
event.
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A Proof of Theorem 2

Theorem 2 (Mass Transport Equation for Point Processes). Let �(t) := �(t|Ht�) be the conditional

intensity function of the point process N(t) and �̃(x, t) := P[N(t) = x|Ht� ] be its conditional

probability mass function; then �̃(x, t) satisfies the following differential-difference equation:

�̃t(x, t) :=
@�̃(x, t)

@t
=

⇢
��(t)�̃(x, t) + �(t)�̃(x� 1, t) if x = 1, 2, 3, · · ·
��(t)�̃(x, t) if x = 0

(7)

Proof. For the simplicity of notation, we define a functional operator F [�̃] as follows:

F [�̃] = ��(t)�̃(x, t) + �(t)�̃(x� 1, t)I[x > 1],

where I(·) is an indicator function.

Our goal is to prove F [�̃] = �̃t. For the simplicity of notation, we define the inner product [11]
between functions f(x) and g(x) as the summation of the product of of f(x) and g(x), where x 2 N:

(f, g) =
1X

x=0

f(x)g(x)

To prove the equality �̃t = F [�̃], we will prove that the equality (v, �̃t) = (v,F [�̃]) holds for any
test function v(x). Then the equality �̃t = F [�̃] follows from the famous Fundamental Lemma of
Calculus of Variations [15]. To show the above equality, we start by computing (v, �̃t).

Computing (v, �̃t). According to the definition of expectation and the fact that �̃(x, t) is the
conditional probability mass, we have

E[v(N(t))|Ht� ] =
X1

x=0
v(x)P[N(t) = x|Ht� ] =

X1

x=0
v(x)�̃(x, t) = (v, �̃).

Taking the gradient with respect to t yields
@E[v(N(t))|Ht� ]

@t
=

X1

x=0
v(x)�̃t(x, t) = (v, �̃t). (8)

Next, we obtain another expression for (v, �̃t). First we show the following property of dv(N(t))

dv(N(t)) =
�
v(N(t) + 1)� v(N(t))

�
dN(t) (9)

In fact, from the definition of the differential operator d, we have the following property:
dv(N(t)) := v

�
N(t+ dt)

�
� v

�
N(t)

�
= v

�
N(t) + dN(t)

�
� v

�
N(t)

�

Since dN(t) = {0, 1}, if dN(t) = 0, we have dv(N(t)) = 0; otherwise, we have dv(N(t)) =
v(N(t) + 1)� v(N(t)). For both cases, equation (9) holds.

Next, we integrate both sides of (9) on [0, t] and express v(N(t)) as follows:

v(N(t)) = v(N(0)) +

Z t

0

�
v(N(t) + 1)� v(N(t))

�
dN(t) (10)

Given Ht� , we take the conditional expectation of (10) and obtain the following expression:

E[v(N(t))|Ht� ] = v(N(0)) + E
h Z t

0

�
v(N(t) + 1))� v(N(t))

�
�(t)dt

���Ht�

i
(11)

Now we differentiate both sides of (11) with respect to time t and obtain the following expression:

@E[v(N(t))|Ht� ]

@t
= E


@

@t

Z t

t0

⇣
B[v](N(s))

⌘
ds

���H(t�)

�

= E
h
B[v](N(t))

���Ht�

i

=
X1

x=0
B[v](x(t))�̃(x, t)

= (B[v], �̃) (12)
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where B[v] is another functional operator defines as

B[v]
�
N(t)

�
=

�
v(N(t) + 1)� v(N(t))

�
�(t) (13)

Since (12) and (8) are equivalent, we have:

(v, �̃t) = (B[v], �̃)

Now we have finished the first part of the proof. In the second part, our goal is to move the operator B
from test function v to the conditional probability mass function � and prove (B[v], �̃) = (v,F [�̃]).
We start by computing (B[v], �̃) as follows.

Computing (B[v], �̃). We define a new post-jump variable as y = x+ 1, and conduct a change of

variable from x to y = x+ 1 in (B[v], �̃). Specifically, we express (B[v], �̃) as follows
1X

x=0

�
v(x+ 1)� v(x)

�
�(t)�̃(x, t) =

1X

x=0

v(x+ 1)�(t)�̃(x, t)�
1X

x=0

v(x)�(t)�̃(x, t)

=
1X

y=1

v(y)�(t)�̃(y � 1, t)�
1X

x=0

v(x)�(t)�̃(x, t) (14)

Next, we use an indicator function and let the value of y to start from 0 in the first term of (14):
1X

y=1

v(y)�(t)�̃(y � 1, t) =
1X

y=0

v(y)�(t)�̃(y � 1, t)I[y > 1]

=
⇣
v(y),�(t))�̃(y � 1, t)I[y > 1]

⌘
(15)

Now we substitute (15) back to (14) and obtain the following equation:
1X

x=0

�
v(x+ 1)� v(x)

�
�(t)�̃(x, t) =

⇣
v(y),�(t))�̃(y � 1, t)I[y > 1]

⌘
�

⇣
v(x),�(t)�̃(x, t)

⌘

=
⇣
v(x),�(t))�̃(x� 1, t)I[x > 1]

⌘
�

⇣
v(x),�(t)�̃(x, t)

⌘

= (v,F [�̃]) (16)
Hence, for an arbitrary function v(x), we have shown the following equality:

(v, �̃t) = (B[v], �̃) = (v,F [�̃]).

This yields �̃t = F [�̃] and the proof is now complete.
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B Proof of unbiasedness of the estimator for the probability mass function

We just need to show the following equality: �(x, t) = EHt�
[�̃(x, t)]. For the simplicity of notation,

we define the inner product between functions f(x) and g(x) as (f, g) :=
P

x f(x)g(x), where
x 2 N.

First, according to the definition of expectation, we have
E[f(N(t))] := (f,�)

Next, from the definition of conditional probability mass, g(Ht�) can be expressed as

g(Ht�) =
X

x

f(x)�̃(x, t) = (f, �̃) (17)

Taking expectation to both sides of (17) yields

EHt�
[g(Ht�)] = (f,EHt�

[�̃])

Finally, since E[f(N(t))] = EHt�
[g(Ht�)], we have (f, �̃) = (f,EHt�

[�̃]), which holds for an
arbitrary function f . Hence the equality EHt�

[�̃] = � follows from the Fundamental Lemma of
Calculus of Variations [15].
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C Proof of Theorem 1

Theorem 1. For time t > 0 and an arbitrary function f , we have:

VAR[g(Ht�)] < VAR[f(N(t))] (18)

Proof. The proof contains two steps. We first compute the expected value of the conditional vari-
ance E

h
VAR

h
f(N(t))|Ht�

ii
, and next compute the variance of the conditional expected value

VAR
h
g(Ht�)

i
.

(i) Expected value of the conditional variance. Since VAR[f(N(t))|Ht� ] is a random variable,
we can compute its expected value. Using the definition of variance, i.e., VAR[f(N(t))|Ht� ] =
E[f(N(t))2|Ht� ]� [E[f(N(t))|Ht� ]]

2, we have

E
h
VAR

h
f(N(t))|Ht�

ii
= E

h
E
h
f(N(t))2|Ht�

ii
� E

hh
f(N(t))|Ht�

i2i
(19)

= E[f(N(t))2]� E
hh
E[f(N(t))|Ht� ]

i2i
(20)

(ii) Variance of the conditional expected value. We express VAR
h
g(Ht�)

i
as follows

VAR
h
g(Ht�)

i
= VAR

h
E
h
f(N(t))|H(t)

ii
(21)

= E
h
E
h
f(N(t))|Ht�

i2i
�

h
E
h
E[f(N(t))|Ht� ]

ii2
(22)

= E
h
E
h
f(N(t))|Ht�

i2i
� E[f(N(t))]2 (23)

Combining (20) and (23) yields the following equation:

VAR[g(Ht�)] + E
h
VAR

⇥
f(N(t))|Ht�

⇤i
= VAR[N(t)]

Next, we show that the inequality in our theorem is strict. According to the definition of counting
process, we have N(0) = 0. Moreover, we are only interested in the scenarios where the number
of events are positive, i.e., N(t) > 0 for future time t > 0. Since the point process N(t) is right
continuous and not a predictable process [4], we obtain the fact that conditioning on Ht� , there
is a stochastic jump at time t and the value of f(N(t)) is random and not a constant. Hence the
conditional variance VAR

⇥
f(N(t))|Ht�

⇤
is positive and we have E

h
VAR

⇥
f(N(t))|Ht�

⇤i
> 0.

The proof is now complete.
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D Details on the Runge-Kutta (RK) method

We present details of the RK method. For the simplicity of notation, we set �̃0(t) = f(�̃, t) =
Q(t)�̃(t).

The RK method divides the interval [tk, tk+1] into intervals [⌧i, ⌧i+1], for i = 0, · · · , I , with �⌧ =
⌧i+1�⌧i. This method conducts linear extrapolation on contiguous subintervals [⌧i, ⌧i+1]. Specifically,
it starts from ⌧0 := tk, and within [⌧0, ⌧1] the RK method of stage s computes ym = f(�̃m, ⌧0 +
�⌧cm) at s recursively defined input locations, for m = 1, · · · , s, where �̃m is computed as a linear
combination of previous yn<m as �̃m = �̃0 +�⌧

Pm�1
n=1 wmnyn. Then, it returns the prediction

for the solution at ⌧1 as �̃(⌧0 +�⌧). In the compact form,

ym = f
⇣
�̃0 +�⌧

m�1X

n=1

wmnyn, ⌧0 +�⌧cm

⌘
, m = 1, · · · , s, �̃(⌧0 +�⌧) = �̃0 +�⌧

sX

m=1

bmym

Next, �̃(⌧0 +�⌧) is taken as the initial value for ⌧1 = ⌧0 +�⌧ and the process is repeated until
⌧I := tk+1. Note that RK outputs the conditional probability mass at all timestamps {⌧i}; hence it
captures the mass transport on [tk, tk+1].

The main computation in RK is the matrix-vector product. Since the matrix Q(t) is sparse and
bi-diagonal with O(M) non-zero elements, the cost for this operation is only O(M).
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