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Abstract—We analyze the convergence of a decentralized
consensus algorithm with delayed gradient information across
the network. The nodes in the network privately hold parts of
the objective function and collaboratively solve for the consensus
optimal solution of the total objective while they can only commu-
nicate with their immediate neighbors. In real-world networks,
it is often difficult and sometimes impossible to synchronize the
nodes, and therefore they have to use stale gradient information
during computations. We show that, as long as the random
delays are bounded in expectation and a proper diminishing step
size policy is employed, the iterates generated by decentralized
gradient descent method still converge to a consensual optimal
solution. Convergence rates of both objective and consensus are
derived. Numerical results on a variety of consensus optimization
problems are presented to show the performance of the method.

Index Terms—Decentralized consensus; delayed gradient;
stochastic gradient; decentralized networks.

I. INTRODUCTION

In this paper, we consider a decentralized consensus opti-

mization problem arising from emerging technologies such as

big data analysis [1], distributed machine learning [2], sensor

networks [3], and smart grids [4]. Decentralized optimization

is particularly useful due to the proliferation in recent years

of very large data and parameter sizes arising from text and

imaging problems [5], leading to optimization problems which

are too large to process at a single centralized node.

Given a network G(V,E), where V = {1, 2, . . . ,m} is the

node (also called agent, processor, or sensor) set and E ⊂
V × V the edge set. Two nodes i and j are called neighbors

if (i, j) ∈ E. The communications between neighbor nodes

are bidirectional, meaning that i and j can communicate with

each other as long as (i, j) ∈ E. In a decentralized sensor

network G, individual nodes can acquire, store, and process data

about large-sized objects. Each node i collects data and holds

objective function Fi(x; ξi) privately where ξi ∈ Θ is random

with fixed but unknown probability distribution in domain

Θ to model environmental fluctuations such as noise in data

acquisition. Here x ∈ X is the unknown to be solved, where

the domain X ⊂ R
n is compact and convex. Furthermore, we

assume that Fi(·; ξi) is convex for all ξi ∈ Θ and i ∈ V , and

define fi(x) = Eξi [Fi(x; ξi)] which is convex with respect to

x ∈ X . Now the goal of decentralized consensus optimization

is to solve the minimization problem

minimize
x∈X

f(x), where f(x) :=

m∑
i=1

fi(x) (1)

with the restrictions that Fi(x; ξi), and hence fi(x), are

accessible by node i only, and that nodes i and j can

communicate only if (i, j) ∈ E during the entire computation.

There are a number of practical issues that need to be taken

into consideration in solving real-world decentralized consensus

optimization problem (1):

• The partial objective Fi (and fi) is held privately by node

i, and transferring Fi to a data fusion center is either

infeasible or cost-ineffective due to data privacy, the large

size of Fi, and/or limited bandwidth and communication

power overhead of sensors. Therefore, the nodes can only

communicate their own estimates of x ∈ R
n with their

neighbors in each iteration of a decentralized consensus

algorithm.

• Since it is often difficult and sometimes impossible for the

nodes to be fully synchronized, they may not have access to

the most up-to-date (stochastic) gradient information during

computations. In this case, the node i has to use out-of-date

(stochastic) gradient ∇Fi(xi(t− τi(t)); ξi(t− τi(t))) where

xi(t) is the estimate of x obtained by node i at iteration

t, and τi(t) is the level of (possibly random) delay of the

gradient information at t.
• The estimates {xi(t)} by the nodes should tend to be

consensual as t increases, and the consensual value is a

solution of problem (1). In this case, there is a guarantee

of retrieving a good estimate of x from any surviving node

in the network in the event that some nodes are sabotaged,

lost, or run out of power during the computation process.

In this paper, we analyze a decentralized consensus algorithm

which takes all the factors above into considerations in solving

(1). We provide comprehensive convergence analysis of the

algorithm, including the decay rates of objective function and

disagreements between nodes, in terms of iteration number,

level of delays, and network structure etc.
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A. Related work

Distributed computing on networks is an emerging technol-

ogy with extensive applications in big data analysis [1] and

modern machine learning [6]. There are two types of scenarios

in distributed computing: centralized and decentralized. In

centralized scenario, computations are carried out locally by

worker (slave) nodes while computations of certain global

variable must eventually be processed by a designated master

node, or at a center of shared memory during each (outer)

iteration. A major effort in this scenario has been devoted

to update the global variable more effectively using an

asynchronous setting in, for example, distributed centralized

alternating direction method of multipliers (ADMM) [7], [8].

In the decentralized scenario considered in this paper, the

nodes privately hold parts of objective functions and can

only communicate with neighbor nodes during computations.

In many real-world applications, decentralized computing is

particularly useful when a master-worker network setting is

either infeasible or not economical, or the data acquisition and

computation have to be carried out by individual nodes which

then need to collaboratively solve the optimization problem. A

decentralized network is also more robust to node failure and

can better address privacy concerns. For more discussions about

the motivations and advantages of decentralized computing,

see, e.g., [9]–[11] and the references therein.

Decentralized consensus algorithms take the data distribution

and communication restriction into consideration, so that

they can be implemented at individual nodes in the network.

A number of developments have been made in the ideal
synchronous case of decentralized consensus, where all the

nodes are coordinated to finish computation and then start

to exchange information with neighbors in each iteration. A

class of methods is to rewrite the consensus constraints for

minimization problem (1) by introducing auxiliary variables

between neighbor nodes (i.e., edges), and apply ADMM

(possibly with linearization or preconditioning techniques) to

derive an implementable decentralized consensus algorithm

[12]. Most of these methods require each node to solve a local

optimization problem at every iteration before communication,

and reach a convergence rate of O(1/T ) in terms of outer

iteration (communication) number T for general convex and

smooth (continuously differentiable) objective functions {fi}.
First-order methods based on decentralized gradient descent

require less computational costs at individual nodes such that

between two communications they only perform one step of

a gradient descent-type update at the weighted average of

previous iterates obtained from neighbors. In particular, Nes-

terov’s optimal gradient scheme is employed in decentralized

gradient descent with diminishing step sizes to achieve rate

of O(1/T ) in [9], where an alternative gradient method that

requires excessive communications in each inner iteration is

also developed and can reach a theoretical convergence rate

of O(log T/T 2), despite the fact that it seems to work less

efficiently in terms of communications than the former in

practice. A correction technique is developed for decentralized

gradient descent with convergence rate of O(1/T ) with constant

step size in [11], which results in a saddle-point algorithm as

pointed out in [13]. In [14], the authors combine Nesterov’s

gradient scheme and a multiplier-type auxiliary variable to

obtain a fast optimality convergence rate of O(1/T 2). Other

first-order decentralized methods have also been developed

recently, such as dual averaging [15]. Additional constraints

for primal variables in decentralized consensus optimization

(1) are considered in [16].
In real-world decentralized computing, it is often difficult and

sometimes impossible to coordinate all the nodes in the network

such that their computation and communication are perfectly

synchronized. One practical approach for such asynchronous
consensus is using a broadcast scenario where in each (outer)

iteration one node in the network is assumed to wake up at

random and broadcasts its value to neighbors (but does not hear

them back). A number of algorithms for broadcast consensus

are developed, for instance, in [17]. Another important issue in

the asynchronous setting is that the nodes may have to use out-

of-date (stale) gradient information during updates [10]. This

delayed scenario in gradient descent is considered in distributed

but not decentralized setting in [18]. In addition, analysis of

stochastic gradients in distributed computing is also carried

out in [18]. In [19], a linear convergence rate of optimality is

derived for strongly convex objective functions with delays.

Extending [18], a fixed delay at all nodes is considered in dual

averaging [20] and gradient descent [21] in a decentralized

setting, but they did not consider more practical and useful

random delays, and there are no convergence rates on node

consensus provided in these papers.

B. Contributions
The contribution of this paper is in three phases.
First, we consider a general decentralized consensus algo-

rithm with randomly delayed and stochastic gradients (Section

II). In this case, the nodes do not need to be synchronized and

they may only have access to stale gradient information. This

renders stochastic gradients with random delays at different

nodes in their gradient updates, which is suitable for many real-

world decentralized computing applications such as machine

learning and big data analysis.
Second, we provide a comprehensive convergence analysis of

the proposed algorithm (Section III). More precisely, we derive

convergence rates for both objective function (optimality) and

disagreement (feasibility constraint of consensus), and show

their dependency on the characteristics of the problem, such as

Lipschitz constants of (stochastic) gradients and spectral gaps

of the underlying network.
Third, we conduct a number of numerical experiments on

various types of datasets to validate the performance of the

proposed algorithm (Section IV). In particular, we examine the

convergence on synthetic decentralized least squares, robust

least squares (Huber loss), and logistic loss functions.

C. Notations and assumptions
In this paper, all vectors are column vectors unless otherwise

noted. We denote by xi(t) ∈ R
n the estimate of node i at



78

iteration t, and x(t) = (x1(t), . . . , xm(t))T ∈ R
m×n. We

denote ‖x‖ ≡ ‖x‖2 if x is a vector and ‖x‖ ≡ ‖x‖F if x
is a matrix, which should be clear in the context. For any

two vectors of same dimension, 〈x, y〉 denotes their inner

product, and 〈x, y〉Q := 〈x,Qy〉 for symmetric nonnegative

definite matrix Q. For notation simplicity, we use 〈x, y〉 =∑m
i=1〈xi, yi〉 where xi and yi are the i-th row of the m× n

matrices x and y respectively. Such matrix inner product is

also generalized to 〈x, y〉Q for matrices x and y. In this paper,

we set the domain X := {x ∈ R
n : ‖x‖∞ ≤ R} for some

R > 0,. We further denote X := Xm ⊂ R
m×n.

For each node i, we define fi(x) := Eξi [Fi(x; ξi)] as the

expectation of objective function, and gi(t) := ∇Fi(x(t); ξi(t))
(here gradient ∇ is taken with respect to x) is the stochastic

gradient at xi(t) for node i. We let τi(t) be the delay of gradient

at node i in iteration t, and τ(t) = (τ1(t), . . . , τm(t))T . We

write f(x(t)) in short for
∑m

i=1 fi(xi(t)) ∈ R, x(t − τ(t))
for (x1(t− τ1(t)), . . . , xm(t− τm(t)))T ∈ R

m×n. and g(t−
τ(t)) for (g1(t − τ1(t)), . . . , gm(t − τm(t)))T ∈ R

m×n. We

assume fi is continuously differentiable and ∇fi has Lipschitz

constant Li, and denote L := max1≤i≤m Li. Let x∗ ∈ R
n be

a solution of (1). Since x∗ is consensual, we denote 1(x∗)T

simply by x∗ in this paper which is clear in the context, for

instance f(x∗) = f(1(x∗)T ) =
∑m

i=1 fi(x
∗). Furthermore, we

let y(T ) := (1/T )
∑T

t=1 x(t + 1) be the running average of

{x(t + 1) : 1 ≤ t ≤ T}, and z(T ) := (1/m)
∑m

i=1 y(T ) be

the consensus average of y(T ). We denote J = (1/m)11T , so

z(T ) = Jy(T ). Note that for all T , z(T ) is always consensual

but x(T ) and y(T ) may not be.

Suppose h : Rn → R is a continuously differentiable convex

function, then for any x, y ∈ R
n we denote the Bregman

distance (divergence) between x and y (order matters) by

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉. (2)

If in addition ∇h is Lh-Lipschitz continuous, then we can

verify that for any x, y, z, w ∈ R
n, we have

〈∇h(z)−∇h(w), x− y〉
= Dh(y, z)−Dh(x, z)−Dh(y, w) +Dh(x,w) (3)

≤ Dh(y, z)−Dh(x, z) +
Lh

2
‖x− w‖2 (4)

where we used the facts that Dh(y, w) ≥ 0 and Dh(x,w) ≤
Lh

2 ‖x− w‖2.

An important ingredient in decentralized gradient descent is

the mixing matrix W = [wij ] in (5). For the algorithm to be

implementable in practice, wij > 0 if and only if (i, j) ∈ E. In

this paper, we assume that W is symmetric and
∑m

j=1 wij = 1
for all i, and hence W is doubly stochastic, namely W1 =
1W = 1 where 1 = (1, . . . , 1)T ∈ R

m. With the assumption

that the network G is simple and connected, we know ‖W‖2 =
1 and eigenvalue 1 of W has multiplicity 1 by the Perron-

Frobenius theorem. As a consequence, Wx = x if and only

if x is consensual, i.e., x = c1 for some c ∈ R. We further

assume W � 0 (otherwise use 1
2 (I +W ) � 0 since stochastic

matrix W has spectrum radius 1). Given a network G, there

are different ways to design the mixing matrix W . For some

optimal choices of W , see, e.g., [22], [23].

Now we make several mild assumptions that are necessary

in our convergence analysis.

1) The network G(V,E) is undirected, simple, and connected.

2) The stochastic gradient satisfies Eξi [∇Fi(x; ξi)] = ∇fi(x)
for all i and x. Moreover, for all i, ξ, and x,

‖∇fi‖,Eξi [‖∇Fi(x; ξi)‖2] ≤ G2 and for some G > 0,

and Eξi [‖∇Fi(x; ξi)−∇fi(x)‖2] ≤ σ2 for some σ > 0.

3) The delays τi(t) may follow different distributions at

different nodes, but their second moments are assumed

to be uniformly bounded, i.e., there exists B > 0 such that

E[|τi(t)|2] ≤ B2 for all i = 1, . . . ,m and iterations t. For

each node i, we assume each update happens once, i.e.,

t → t− τi(t) is strictly increasing as t increases.

It is worth pointing out that these assumptions are rather

standard and easy to satisfy in practice. For instance, the

boundedness of ∇fi is a consequence of the compactness of

domain X and the Lipschitz continuity of ∇fi. The assumption

on random delays in a distributed system is also used in [18].

We further assume that the the stochastic error ξi and the

random delay τi are independent.

II. ALGORITHM

Taking the delayed stochastic gradient and the constraint that

nodes can only communicate with immediate neighbors, we

propose the following decentralized delayed stochastic gradient

descent method for solving (1). Starting from an initial guess

{xi(0) : i = 1, . . . ,m}, each node i performs the following

updates iteratively:

xi(t+ 1) = ΠX

⎡
⎣ m∑
j=1

wijxj(t)− α(t)gi(t− τi(t))

⎤
⎦ . (5)

Namely, in each iteration t, the nodes exchange their most

recent xi(t) with their neighbors. Then each node takes

weighted average of the received local copies using weights

wij , performs a gradient descent type update using a delayed

stochastic gradient gi(t−τi(t)) with step size α(t), and projects

the result onto X .

Following the matrix notation in Section I-C, the iteration

(5) can be written as

x(t+ 1) = ΠX [Wx(t)− α(t)g(t− τ(t))]. (6)

Here the projection ΠX is accomplished by each node pro-

jecting to X due to the definition of X in Section I-C, which

does not require any coordinations between nodes. Note that

the update (6) is also equivalent to

x(t+ 1)

= argmin
x∈X

{
〈g(t− τ(t)), x〉+ 1

2α(t)
‖x−Wx(t)‖2

}
. (7)

In this paper, we may refer to the proposed decentralized

delayed stochastic gradient descent algorithm by any of (5),

(6), and (7) since they are equivalent.
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III. CONVERGENCE ANALYSIS

In this section, we provide a comprehensive convergence

analysis of the proposed algorithm (7) by employing proper

step size policy. In particular, we derive convergence rates for

the objective function and disagreement in order.

Lemma 1. Let {x(t)} be the iterates generated by Algorithm
(6), then the following inequality holds for all T ≥ 1:

T∑
t=1

〈∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗〉 (8)

≤ 2mnLR2(1 + 2B2) +
L

2
(B + 1)2

T∑
t=1

‖x(t+ 1)− x(t)‖2.

Proof. We first observe that

〈∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗〉

=
m∑
i=1

〈∇fi(xi(t))−∇fi(xi(t− τi(t))), xi(t+ 1)− x∗〉
(9)

≤
m∑
i=1

[
Dfi(x

∗, xi(t))−Dfi(x
∗, xi(t− τi(t)))

+
L

2
‖xi(t+ 1)− xi(t− τi(t))‖2

]

where we applied (3) to get the inequality. We further note

that the convexity of ‖ · ‖2 implies

‖xi(t+ 1)− xi(t− τi(t))‖2

≤ (τi(t) + 1)

τi(t)∑
s=0

‖xi(t− s+ 1)− xi(t− s)‖2. (10)

Combining (9) and (10), and taking the sum of t from 1 to T ,

we obtain

T∑
t=1

〈∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗〉

≤
m∑
i=1

[
T∑

t=1

(Dfi(x
∗, xi(t))−Dfi(x

∗, xi(t− τi(t)))) (11)

+
L

2

T∑
t=1

(τi(t) + 1)

τi(t)∑
s=0

‖xi(t− s+ 1)− xi(t− s)‖2
⎤
⎦ .

For each i, the sum of Dfi terms for t from 1 to T above

leaves only those not received by the gradient procedure within

T iterations, namely

T∑
t=1

(Dfi(x
∗, xi(t))−Dfi(x

∗, xi(t− τi(t))))

=
∑

t∈Si(T )

Dfi(x
∗, xi(t)) (12)

where Si(T ) := {1 ≤ t ≤ T : t > T − τi(T )}. Then by

Chebyshev’s inequality, we can bound the expected cardinality

of Si(T ) by

E[|Si(T )|] =
T∑

t=1

P(τi(T ) > T − t)

≤ 1 +
T−1∑
t=1

B2

(T − t)2

≤ 1 + 2B2 (13)

where we used the fact that
∑T−1

t=1
1

(T−t)2 =
∑T−1

t=1
1
t2 ≤

2 − 1
T−1 ≤ 2. Combining (12) and (13), and using the fact

that Dfi(x
∗, xi(t)) ≤ 2nLR2 for all t and i, we obtain,

m∑
i=1

T∑
t=1

(Dfi(x
∗, xi(t))−Dfi(x

∗, xi(t− τi(t))))

≤ 2mnLR2(1 + 2B2). (14)

For each i, the second sum of t from 1 to T on the right side

of (11) yields

T∑
t=1

(τi(t) + 1)

τi(t)∑
s=0

‖xi(t− s+ 1)− xi(t− s)‖2

≤
T∑

t=1

Ni(t, T )‖xi(t+ 1)− xi(t)‖2 (15)

where the coefficient Ni(t, T ) is defined by

Ni(t, T ) :=
∑
s∈Y

(τi(s) + 1) (16)

with Y = {t ≤ s ≤ T : 0 ≤ s − τi(s) ≤ t}. Therefore, we

have for each i that

E[Ni(t, T )] =

E

[∑
s∈Y

(τi(s) + 1)

]

=
T∑

s=t

s∑
k=s−t

(k + 1)P(τi(s) = k) (17)

≤
T∑

k=0

(k + 1)2 P(τi(s) = k)

≤ E[|τi(s) + 1|2]
≤ (B + 1)2

where the first inequality is obtained by listing each possible

value of k in the double sum, and upper bounding its occurrence

by (k + 1), and the last inequality is due to E[|τi(s)|] ≤√
E[|τi(s)|2] = B. Therefore, (15) can be bounded by

m∑
i=1

T∑
t=1

(τi(t) + 1)

τi(t)∑
s=0

‖xi(t− s+ 1)− xi(t− s)‖2

≤ (B + 1)2
T∑

t=1

‖x(t+ 1)− x(t)‖2. (18)
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Applying (14) and (18) to (11) completes the proof.

Theorem 2. Let {x(t)} be the iterations generated by Al-
gorithm (6) with α(t) = [2 (L+ η(t))]−1 where η(t) is a
nondecreasing function of t, then

E[f(y(T ))− f(x∗)]

≤ 2mnR2[4L+ 2η(1) + 2η(T ) + L(1 + 2B2)]

T

+
2mσ2

T

T∑
t=1

1

η(t)

+
L(B + 1)2

2T

T∑
t=1

E[‖x(t+ 1)− x(t)‖2] (19)

where y(T ) = (1/T )
∑T

t=1 x(t+ 1) is the running average of
{x(t)}.
Proof. We first note that there is

f(x(t+ 1))− f(x∗) =
m∑
i=1

(fi(xi(t+ 1))− fi(x
∗))

=
m∑
i=1

[fi(xi(t+ 1))− fi(xi(t)) + fi(xi(t))− fi(x
∗)]

≤
m∑
i=1

〈∇fi(xi(t)), xi(t+ 1)− xi(t)〉

+
m∑
i=1

Li

2
‖xi(t+ 1)− xi(t)‖2

+

m∑
i=1

〈∇fi(xi(t)), xi(t)− x∗〉 (20)

≤
m∑
i=1

〈∇fi(xi(t)), xi(t+ 1)− x∗〉

+
m∑
i=1

Li

2
‖xi(t+ 1)− xi(t)‖2

≤ 〈∇f(x(t)), x(t+ 1)− x∗〉+ L

2
‖x(t+ 1)− x(t)‖2

≤ 〈g(t− τ(t)), x(t+ 1)− x∗〉
+ 〈∇f(x(t))− g(t− τ(t)), x(t+ 1)− x∗〉
+

L

2
‖x(t+ 1)− x(t)‖2

where we used the Li-Lipschitz continuity of∇fi and convexity

of fi to obtain the first inequality. Note that x(t+1) is obtained

by (7) as

x(t+ 1)

= argmin
x∈X

{
〈g(t− τ(t)), x〉+ 1

2α(t)
‖x−Wx(t)‖2

}
(21)

= argmin
x∈X

{〈
g(t− τ(t)) +

1

α(t)
(I −W )x(t), x

〉

+
1

2α(t)
‖x− x(t)‖2

}
.

Therefore, the optimality of x(t+ 1) in (7) implies that

〈g(t− τ(t)), x(t+ 1)− x∗〉
≤ − 1

α(t)
〈(I −W )x(t), x(t+ 1)− x∗〉

+
1

2α(t)

[
‖x∗ − x(t)‖2 − ‖x(t+ 1)− x(t)‖2

− ‖x∗ − x(t+ 1)‖2
]
. (22)

Furthermore, we note that 1 ∈ Null(I − W ) and x∗ is

consensual, hence we have

− 1

α(t)
〈(I −W )x(t), x(t+ 1)− x∗〉

= − 1

α(t)
〈(I −W )(x(t)− x∗), x(t+ 1)− x∗〉

=
1

2α(t)

(
‖x(t)− x(t+ 1)‖2I−W − ‖x(t)− x∗‖2I−W

− ‖x(t+ 1)− x∗‖2I−W

)
(23)

≤ 1

4α(t)
‖x(t)− x(t+ 1)‖2I−W

where we have used the fact that

‖x(t)− x(t+ 1)‖2I−W

≤ 2
(
‖x(t)− x∗‖2I−W + ‖x(t+ 1)− x∗‖2I−W

)
to obtain the inequality above. We also have that

‖x(t)− x(t+ 1)‖2I−W ≤ ‖x(t)− x(t+ 1)‖2

with which we can further bound (23) as

− 1

α(t)
〈(I −W )x(t), x(t+ 1)− x∗〉

≤ 1

4α(t)
‖x(t)− x(t+ 1)‖2.

Now applying the inequality above and (22) to (20), and

summing t from 1 to T , we get

T∑
t=1

f(x(t+ 1))− Tf(x∗) (24)

≤
T∑

t=1

[
1

2α(t)

(
‖x(t)− x∗‖2 − ‖x(t+ 1)− x∗‖2

)

+
(L
2
− 1

4α(t)

)
‖x(t)− x(t+ 1)‖2

]

+
T∑

t=1

〈∇f(x(t))− g(t− τ(t)), x(t+ 1)− x∗〉 .
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For the last term on the right hand side of (24), we have

T∑
t=1

〈∇f(x(t))− g(t− τ(t)), x(t+ 1)− x∗〉

=
T∑

t=1

〈∇f(x(t))−∇f(x(t− τ(t))), x(t+ 1)− x∗〉

+
T∑

t=1

〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗〉
(25)

≤ 2mnLR2(1 + 2B2)

+
T∑

t=1

L

2
(B + 1)2‖x(t+ 1)− x(t)‖2

+

T∑
t=1

〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗〉

where we applied the Lemma 1 to obtain the inequality.

Note that the running average y(T ) = (1/T )
∑T

t=1 x(t+ 1)

satisfies f(y(T )) ≤∑T
t=1 f(x(t+ 1)) due to the convexity of

all fi. Therefore, together with (24) and (25) and the definition

of α(t), we have

T (f(y(T ))− f(x∗)) (26)

≤
T∑

t=1

[
1

2α(t)

(
‖x(t)− x∗‖2 − ‖x(t+ 1)− x∗‖2

)

+
L(B + 1)2 − η(t)

2
‖x(t)− x(t+ 1)‖2

]

+ 2mnLR2(1 + 2B2)

+
T∑

t=1

〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗〉 .

Now, by taking expectation on both sides of (26), we obtain

T E[f(y(T ))− f(x∗)] (27)

≤
T∑

t=1

[
1

2α(t)

(
e(t)− e(t+ 1)

)

+
L(B + 1)2 − η(t)

2
E[‖x(t)− x(t+ 1)‖2]

]

+ 2mnLR2(1 + 2B2)

+
T∑

t=1

E 〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗〉

where we denoted e(t) := E[‖x(t) − x∗‖2] for simplicity of

notation.

Now we work on the last sum of inner products on the right

side of (27). First we observe that

E 〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x∗〉 (28)

= E 〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t)− x∗〉
+ E 〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x(t)〉 .

Note that g(t−τ(t)) is used to calculate x(t+1), and hence its

stochastic error g(t− τ(t))−∇f(x(t− τ(t))) is independent

of x(t). Therefore, we have

E 〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t)− x∗〉 = 0. (29)

Furthermore, by Young’s inequality, we have

E 〈∇f(x(t− τ(t)))− g(t− τ(t)), x(t+ 1)− x(t)〉
≤ 2

η(t)
E[‖∇f(x(t− τ(t)))− g(t− τ(t))‖2]

+
η(t)

2
E[‖x(t+ 1)− x(t)‖2] (30)

≤ 2mσ2

η(t)
+

η(t)

2
E[‖x(t+ 1)− x(t)‖2]

where we used the fact that E[‖∇f(x(t − τ(t))) − g(t −
τ(t))‖2] ≤ mσ2 for all t. Now applying (28), (29) and (30)

in (27), we have

T E [f(y(T ))− f(x∗)]

≤
T∑

t=1

1

2α(t)
(e(t)− e(t+ 1))

+ 2mnLR2(1 + 2B2) +

T∑
t=1

2mσ2

η(t)

+
L(B + 1)2

2

T∑
t=1

E[‖x(t+ 1)− x(t)‖2] (31)

≤ e(1)

2α(1)
+

T∑
t=2

e(t)

2

(
1

α(t)
− 1

α(t− 1)

)

+ 2mnLR2(1 + 2B2) +

T∑
t=1

2mσ2

η(t)

+
L(B + 1)2

2

T∑
t=1

E[‖x(t+ 1)− x(t)‖2].

Note that α(t) is nonincreasing, therefore 1
α(t) − 1

α(t−1) ≥ 0
and hence

T∑
t=2

e(t)

2

(
1

α(t)
− 1

α(t− 1)

)

≤ 2mnR2
T∑

t=2

(
1

α(t)
− 1

α(t− 1)

)

≤ 2mnR2

α(T )
(32)

where we used the fact that e(t) = E[‖x(t)−x∗‖2] ≤ 4mnR2

for all t. Applying (32) to (31) yields (19).

We have shown that the running average y(T ) makes the

objective function decay as in (19). However, an important

feature in decentralized computing is that xi(t) tends to be

consensual. Now we prove that consensus can be achieved by

the proposed algorithm (6), and we derive the convergence rate

for the employed step size policy.
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Next we observe that projection is a non-expansive operation

as it bounds the individual components of a vector so their

disagreement does not increase. By disagreement we mean

‖(I − J)x‖2 =

m∑
i=1

(xi − x)2

where x is the arithmetic mean of the components xi of x.

Due to space limitations, we state the lemma without proof.

Lemma 3. For any x ∈ R
m×n, its projection onto X yields

nonincreasing disagreement. That is

‖(I − J)ΠX (x)‖2 ≤ ‖(I − J)x‖2 (33)

Lemma 4. Let c1 ≥ 0 and c2 > 0, and define α(t) = 1/(c1 +
c2
√
t). Then for any λ ∈ (0, 1) there is

t−1∑
s=0

α(s)λt−s−1 ≤
√
πλ−2

c2
√
t log(λ−1)

= O

(
1√
t

)
(34)

for all t = 1, 2, . . . .

Proof. First, we note that

t−1∑
s=0

α(s)λt−1−s = α(0)λt−1 + α(1)λt−2 +

t−1∑
s=2

α(s)λt−1−s

(35)

which means that the rate is bound from above by the last sum

on the right side since the first two tend to 0 at a linear rate

λ ∈ (0, 1).

Next, note that for all w ∈ [s− 1, s] we have 1√
s
≤ 1√

w
and

λ−s ≤ λ−(w+1) since λ ∈ (0, 1), and therefore

α(s)λt−1−s =
λt−1−s

c1 + c2
√
s
≤ λt−1λ−s

c2
√
s

≤ λt−1λ−(w+1)

c2
√
w

=
λt−2−w

c2
√
w

. (36)

This inequality allows us to bound the last term on right hand

side of (35) by

t−1∑
s=2

α(s)λt−1−s ≤
t−1∑
s=2

∫ s

s−1

λt−2−w

c2
√
w

dw

=

∫ t−1

1

λt−2−w

c2
√
w

dw

=
λt−2

c2

∫ t−1

1

λ−w

√
w

dw. (37)

Now we focus on the value of integral

It :=
1

2

∫ t−1

1

λ−w

√
w

dw =

∫ √
t−1

1

λ−u2

du (38)

where we applied a change of variables w = u2. Note that we

have

I2t =

∫ √
t−1

1

∫ √
t−1

1

λ−(u2+v2)dudv

≤
∫ √

t

0

∫ √
t

0

e−(u2+v2) log λdudv

= 2

∫ π/4

0

∫ √
t/ cos θ

0

e−ρ2 log λρdρdθ (39)

= − 1

log λ

∫ π/4

0

(e−t log λ/ cos2(θ) − 1)dθ

< − 1

log λ

∫ π/4

0

e−t log λ/ cos2(θ)dθ

where the third equality comes from changing to a polar system

with the substitutions u = ρ cos θ and v = ρ sin θ. Note that

cos−2(θ)−(1+4θ/π) ≤ 0 for all θ ∈ [0, π/4] since cos−2(θ)−
1 − 4θ/π is convex with respect to θ and vanishes at θ = 0
and θ = π/4. Therefore

I2t ≤ −
1

log λ

∫ π/4

0

e−t log λ(1+4θ/π)dθ ≤ πλ−2t

4t(log λ)2
. (40)

Hence the sum in (37) is bounded by

t−1∑
s=2

α(s)λt−1−s ≤ 2λt−2

c2
It ≤ 2λt−2

c2

√
πλ−t

2
√
t log(λ−1)

=

√
πλ−2

c2
√
t log(λ−1)

(41)

which completes the proof.

Theorem 5. Let {x(t)} be the iterates generated by Algorithm
(7) with α(t) = [2(L+η

√
t)]−1 for η > 0, and λ = ‖W −J‖.

Then λ is the second largest eigenvalue of W and hence
λ ∈ (0, 1). Moreover, the disagreement of x(t) is bounded
above by

‖(I − J)x(t)‖

≤ √mG

t−1∑
s=0

α(s)λt−s−1 ≤
√
πmGλ−2

η
√
t log(λ−1)

(42)

and the disagreement of running average y(T ) =
(1/m)

∑T
t=1 x(t+ 1) is bounded above by

‖(I − J)y(T )‖ ≤ 2
√
πmGλ−2

η
√
T log(λ−1)

= O

(
1√
T

)
. (43)

Proof. We prove this bound by induction. It is trivial to show

the bound for t = 1. Assume (42) is true for t, then we have

‖(I − J)x(t+ 1)‖
= ‖(I − J)ΠX (Wx(t)− α(t)g(t− τ(t)))‖ (44)

≤ ‖(I − J)(Wx(t)− α(t)g(t− τ(t)))‖ (45)

≤ ‖(I − J)Wx(t)‖+ α(t)‖(I − J)g(t− τ(t))‖
≤ ‖(I − J)Wx(t)‖+ α(t)

√
mG
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where we used Lemma 3 in the first inequality, and ‖I−J‖ ≤ 1
and ‖gi(t − τi(t))‖ ≤ G in the last inequality. Noting that

J2 = J and JW = WJ = J , we have

(W − J)(I − J) = (I − J)W.

Therefore, we obtain

‖(I − J)x(t+ 1)‖
≤ ‖(I − J)Wx(t)‖+ α(t)

√
mG

= ‖(W − J)(I − J)x(t)‖+ α(t)
√
mG

≤ ‖(W − J)‖‖(I − J)x(t)‖+ α(t)
√
mG (46)

≤ λ
√
mG

t−1∑
s=0

α(s)λt−s−1 + α(t)
√
mG

=
√
mG

t∑
s=0

α(s)λt−s

where we used the induction assumption for t in the last

inequality. Applying Lemma 4 yields the second inequality in

(42). By convexity of ‖ · ‖ and definition of y(T ), we have

‖(I − J)y(T )‖

≤ 1

T

T∑
t=1

‖(I − J)x(t+ 1)‖

≤
T∑

t=1

√
πmGλ−2

η
√
t log(λ−1)

≤ 2
√
πmGλ−2

η
√
T log(λ−1)

(47)

by applying (42) and using
∑T

t=1
1√
t
≤ 2

√
T .

Corollary 6. Let {x(t)} be the iterates generated by Algorithm
(7) with the settings of α(t), λ, and η same as in Theorem 5.
Then there is

‖x(t+ 1)− x(t)‖2 ≤ 2G2

η2t

[
πmλ−4

log2(λ−1)
+

1

4

]
. (48)

Proof. According to the update (7) or equivalently (6), we

have

‖x(t+ 1)− x(t)‖2
= ‖ΠX (Wx(t)− α(t)g(t− τ(t)))− x(t)‖2
≤ ‖(I −W )x(t) + α(t)g(t− τ(t)))‖2 (49)

≤ 2
(‖(I −W )x(t)‖2 + ‖α(t)g(t− τ(t)))‖2)

where we used the facts that x(t) ∈ X and that projection

ΠX is nonexpansive. Note that WJ = J and hence I −W =
(I −W )(I − J), we have

‖(I −W )x(t)‖2 = ‖(I −W )(I − J)x(t)‖2
≤ ‖(I − J)x(t)‖2

≤ πmG2λ−4

η2t log2(λ−1)
(50)

where we used the fact that ‖I−W‖ ≤ 1 in the first inequality

and applied Theorem 5 to obtain the second inequality.

On the other hand, we have by the definition of α(t) that

‖α(t)g(t− τ(t)‖2 = (α(t))2G2 =
G2

4(L+ η
√
t)2

≤ G2

4η2t
.

(51)

Applying (50) and (51) to (49) yields (48).

Theorem 7. Let x(t) be generated by Algorithm (5) with
α(t) = [2(L + η

√
t)]−1 for some η > 0. Let y(T ) =

(1/T )
∑T

t=1 x(t + 1) be the running average of x(t) and
z(T ) = Jy(T ) = (1/m)

∑m
i=1 yi(T ) be the consensus

average of y(T ), then

E[f(z(T ))]− f(x∗)

≤ 2
√
πmG2

ηλ2
√
T log(λ−1)

+
2mnR2(4L+ 2η + L(1 + 2B2))

T

+
2mnR2η√

T
+

4mσ2

η
√
T

+
2L(B + 1)2G2(1 + log T )

η2T

[
πmλ−4

log2(λ−1)
+

1

4

]
. (52)

Proof. We first bound the difference between the function

values at the running average y(T ) and the consensus average

z(T ) = Jy(T ):

|f(y(T ))− f(z(T ))| =
∣∣∣∣∣

m∑
i=1

(fi(yi(T ))− fi(z(T )))

∣∣∣∣∣
≤

m∑
i=1

|〈∇fi(z(T )), yi(T )− z(T )〉|

≤ G
m∑
i=1

‖yi(T )− z(T )‖

≤ √mG‖(I − J)y(t)‖

≤
√
mG

T

T∑
t=1

‖(I − J)x(t+ 1)‖ (53)

≤
√
πmG2

ηλ2T log(λ−1)

T∑
t=1

1√
t
≤ 2

√
πmG2

ηλ2
√
T log(λ−1)

where we used convexity of fi in the first inequality, ‖∇fi‖ ≤
G in the second inequality, the convexity of ‖ · ‖ in the fourth

inequality, and Theorem 5 to get the fifth inequality. Note that

Theorem 2 implies

E[f(y(T ))− f(x∗)]

≤ 2mnR2(2L+ η + L(1 + 2B2))

T
+

2mnR2η√
T

+
4mσ2

η
√
T

+
L(B + 1)2

2T

T∑
t=1

E[‖x(t+ 1)− x(t)‖2], (54)
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and the last term on the right hand side can be bounded by

using Corollary 6:

L(B + 1)2

2T

T∑
t=1

E[‖x(t+ 1)− x(t)‖2]

≤ 2L(B + 1)2G2

η2T

[
πmλ−4

log2(λ−1)
+

1

4

] T∑
t=1

1

t

≤ 2L(B + 1)2G2(1 + log T )

η2T

[
πmλ−4

log2(λ−1)
+

1

4

]
(55)

where we used the fact that
∑T

t=1(1/t) ≤ 1+log T . Therefore,

we obtain

E[f(z(T ))]− f(x∗)
≤ E[|f(z(T ))− f(y(T ))|] + E[f(y(T ))− f(x∗)]

≤ 2
√
πmG2

ηλ2
√
T log(λ−1)

+
2mnR2(2L+ η + L(1 + 2B2))

T

+
2mnR2η√

T
+

4mσ2

η
√
T

+
2L(B + 1)2G2(1 + log T )

η2T

[
πmλ−4

log2(λ−1)
+

1

4

]
. (56)

On the other hand, z(T ) is consensus, so f(z(T )) ≥ f(x∗)
since x∗ is a solution of (1). This completes the proof.

IV. NUMERICAL EXPERIMENTS

In this section, we test algorithm (5) on decentralized

consensus optimization problem (1) with delayed stochastic

gradients using a number of synthetic datasets. In particular, we

apply algorithm (5) to decentralized least squares, decentralized

robust least squares, and decentralized logistic regression

problems. The structure of network G(V,E) and objective

function in (1) are explained for each dataset, followed by

performance evaluation shown in plots of objective function

f(z(T )) and disagreement
∑m

i=1 ‖yi(T )− z(T )‖2 versus the

iteration number T , where yi(T ) = (1/T )
∑T

t=1 xi(t+1) is the

running average of xi(t) in algorithm (5) over t from 1 to T at

each node i, and z(T ) = (1/m)
∑m

i=1 yi(T ) is the consensus

average of yi(T ) over all nodes at iteration T . For reference,

we also show f∗ := f(x∗) in the plots of objective functions,

where x∗ is the optimal solution computed by MATLAB built-

in linear system solvers for the synthetic decentralized least

squares dataset and the real seismic datasets, and by a regular

centralized gradient descent method for the synthetic robust

least squares and logistic regression datasets.

In decentralized least squares, we set the number of nodes

to m = 5 and dimension of unknown x to n = 5. The

radius specified for X is set to R = 10. For the given nodes,

we generate a network by randomly turning on each of
(
m
2

)
possible edges with probability 0.5 independently. For each

node i, we generate a matrix Ai with pi = 15 using MATLAB

built-in function randn. We also generate a random vector

x̂ ∈ R
n using randn with mean 0 and standard deviation

2. Then we simulate bi = Aix̂+ εi where εi is generated by

randn with mean 0 and standard deviation 0.001. We set

the objective function to fi(x) = (1/2)‖Aix − bi‖2 at node

i. Therefore the Lipschitz constant of ∇fi is Li = ‖AT
i Ai‖2,

and we further set L = max1≤i≤m{Li}. The initial guess

xi(0) is set to 0 for all i. For each iteration t, the delay

τi(t) at each node i is uniformly drawn from integers 1 to B
with B = 5, 10 and 20. For given t, the stochastic gradient

is simulated by setting ∇Fi(xi(t); ξi(t)) = AT
i (Aixi(t) −

bi) + ξi(t) where ξi(t) is generated by randn with mean

0 and standard deviation σ set to 0.1 and 0.5. We run

our algorithm using step size α(t) = 1/(2L + 2η
√
t) with

η =
√
[2σ2 +

√
πG2/λ2 log(λ−1)]/nR2 which minimizes the

O(1/
√
T ) terms in the right side of (52). The objective function

f(z(T )) and disagreement
∑m

i=1 ‖yi(T )− z(T )‖2 versus the

iteration number T are plotted in the top row of Figure 1. In

the two plots, we observe that f(z(T )) decays to the optimal

value f∗ := f(x∗) and disagreement
∑m

i=1 ‖yi(T )− z(T )‖2
decays to 0 as justified by our theoretical analysis in Section

III. In general, we observe that delays with larger bound B
and/or larger standard deviation σ in stochastic gradient yield

slower convergence, as expected.

In the second test, we apply (5) to the decentralized robust

least squares problem where the objective function is set to

fi(x) :=
∑pi

j=1 h
j
i (x) with

hj
i (x) =

{
1
2 |(aji )Tx− bji |2 if |(aji )Tx− bji | ≤ δ

δ
(
|(aji )Tx− bji | − 1

2δ
)

if |(aji )Tx− bji | > δ

(57)

where (aji )
T ∈ R

n is the j-th row of matrix Ai ∈ R
pi×n, and

bji ∈ R is the j-th component of bi ∈ R
pi at each node i. In

this test, we simulate network G(V,E) and set Ai, bi, m, n, R,

xi(0) the same way as in the decentralized least squares test

above, and set δ = 2 for the robust least squares. The stochastic

gradient is given by ∇Fi(x; ξi(t)) =
∑pi

j=1∇hj
i (x) + ξi(t)

where ξi(t) is generated as before with σ set to 0.1 and 0.5.

Lipschitz constants Li and L are determined as in the previous

test. The settings of η and τi(t) remain the same as well. The

objective function f(z(T )) and disagreement
∑m

i=1 ‖yi(T )−
z(T )‖2 are plotted in the middle row of Figure 1. In these two

plots, we observe similar convergence behavior as in the test

on the decentralized least squares problem above.

The last test using a synthetic dataset is on decentralized

logistic regression. In this test, we generate the network

G(V,E) as before but work on a slightly larger problem size

where each node i possesses Ai ∈ R
pi×n with pi = 45 and

n = 15. We generate Ai the same way as before but then

replace their first columns by 1. We also generate bi ∈ {0, 1}pi

where each component has a random binary value. Now the

objective function fi at node i is set to

fi(x) =

pi∑
j=1

(
log[1 + exp((aji )

Tx)]− bji (a
j
i )

Tx
)
, (58)

where (aji )
T ∈ R

n is the j-th row of matrix Ai ∈ R
pi×n, and

bji ∈ R is the j-th component of bi ∈ R
pi . Then we perform (5)

to solve this problem in the network G above. Note that Li ≤
‖AT

i Ai‖2 for all i, and we set L = max1≤i≤m{‖AT
i Ai‖2}.
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Fig. 1. Test on synthetic decentralized least-squares (left), robust least-squares
(middle), and logistic regression (right) for different levels of delay B = 5,
10, and 20 and standard deviation in stochastic gradient σ = 0.1 and 0.5. Top:
objective function f(z(T )) versus iteration T . Optimal value is f∗ := f(x∗).
Bottom: disagreement

∑m
i=1 ‖yi(T )− z(T )‖2 versus iteration number T .

The settings for the stochastic gradients, the delay τi(t), η, and

initial value xi(0) remain the same. The objective function

f(z(T )) and disagreement
∑m

i=1 ‖yi(T )− z(T )‖2 are plotted

in the bottom row of Figure 1, where similar convergence

behavior as in the previous two tests can be observed.

In these simulations, we notice that the largest impact to

convergence arises from the delay bound used, with a smaller

impact resulting from the choice of σ. Having a large maximum

delay significantly impacts performance much more than using

a large value for σ. In general, we expect that the best case

for convergence arises from the smallest σ and delay bound,

and the worst case arises when using the largest σ and largest

delay bound. Supposing that one of these cannot be changed,

it is best to minimize the other parameter as much as possible,

noting that even for large delay, better convergence arises from

smaller σ, and for large σ, reducing the delay bound ensures

better performance.

V. CONCLUDING REMARKS

We analyzed the convergence of method (5) for solving

problem (1). As long as the random delays are bounded in

expectation, using a proper diminishing step size policy, the

iterates generated converge to a consensual, optimal solution.

Fig. 2. Tests on decentralized regularized least-squares for different levels
of delay B = 5, 10, and 20 and standard deviation in stochastic gradient
σ = 0.01 and 0.05.

Fig. 3. Left: DDGD output image. Right: Centralized solution output image.
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