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Abstract

Finding mean of matrices becomes increasingly im-
portant in modern signal processing problems that in-
volve matrix-valued images. In this paper, we define
the mean for a set of symmetric positive definite (SPD)
matrices based on information-theoretic divergences as
the unique minimizer of the averaged divergences, and
compare it with the means computed using the Rieman-
nian and Log-Euclidean metrics. For the class of diver-
gences induced by the convexity gap of a matrix func-
tional, we present a fast iterative concave-convex op-
timization scheme with guaranteed convergence to effi-
ciently approximate those divergence-based means.

1. Introduction

A recent trend in image processing is to consider
matrix-valued images, where each pixel of the image
is represented as a matrix of coefficients instead of a
traditional intensity value. Typical applications include
diffusion magnetic resonance image analysis [15], radar
signal processing [16], elasticity tensors [7] in mechan-
ical engineering, and structure tensors [3, 14, 13] in
computer vision.

Due to the use of matrix based images, the conven-
tional intensity-based image processing toolbox (e.g.,
inpainting, interpolation, segmentation etc.) needs to
be extended to matrix-valued images. In this paper,
we consider calculating the mean of matrices that is re-
quired for example in interpolation and clustering.

The mean of matrices is in general defined
as follows: Given a collection of SPD matrices
{M1, ...,Mn} ⊂ Sym?

+(d), where Sym?
+(d) represents

the set of d × d SPD matrices. The mean M̄ is defined

as

M̄ = arg min
M∈Sym?+(d)

1

n

n∑
i=1

D(Mi,M)2, (1)

where D is a distance function. Different distance
functions give different means. For instance, if D is
the Fröbenius norm induced distance, i.e., D(P,Q) =
‖P − Q‖2F , then M̄ becomes the arithmetic matrix
mean, and M̄ = 1

n

∑n
i=1Mi. However, the arithmetic

matrix mean is not robust to outliers, and it may have a
determinant larger than the input which is physically not
plausible in many applications [1]. The Log-Euclidean
(LE) distance is defined as D(P,Q) = ‖ logQ −
logP‖F , where logM is the principal logarithm of ma-
trix M . In [1], Arsigny et al. showed that the LE mean
inherits a vector space structure, and has a closed-form
M̄LE = exp[(

∑
i logMi)/n]. The Riemannian dis-

tance is defined as D(P,Q) = [tr(log2(P−1Q))]1/2

and the mean is shown to be the unique matrix M̄R sat-
isfying

∑n
i=1 log(M−1i M̄R) = 0, which has a closed-

form solution when n = 2. For n > 2, Fiori et al. pro-
posed an optimization scheme to approximate the mean
[8].

In [5], Ando et al. summarized ten properties for a
“good” matrix mean. Bathia and Holbrook [2] investi-
gated properties of Riemannian matrix means. Bini and
Iannazzo [4] recently proposed another geometric ma-
trix mean definition that satisfies most but not all of the
ten Ando-Li-Mathias properties.

In this work, we study the SPD mean with respect to
a non-metric distance function, called a divergence. A
divergence may not be symmetric nor satisfy the trian-
gle inequality as regular metrics.

2. Divergences from Jensen convexity gaps

Let (PQ)λ denote the linear interpolant (1− λ)P +
λQ for λ ∈ (0, 1). From the (open cone) convexity of
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the domain of Sym∗+, it follows that

∀P,Q ∈ Sym∗+, (PQ)λ ∈ Sym∗+. (2)

We build a family of skewed divergences from a strictly
convex generator F : Sym∗+ → R+ as follows:

J
(α)
F (P,Q) = (F (P )F (Q))α − F ((PQ)α), (3)

for 0 < α < 1. J (α)
F ≥ 0 and J (α)

F = 0 iff P = Q.
Common convex matrix generators are

• F (X) = tr(XTX) (quadratic matrix entropy),

• F (X) = − log detX (matrix Burg entropy),

• F (X) = tr(X logX −X) (von Neumann entropy).

In particular, the symmetric Burbea-Rao diver-
gence [6] is obtained by choosing α = 1

2 , i.e.,

BRF (P,Q) =
F (P ) + F (Q)

2
− F

(
P +Q

2

)
≥ 0.

Choosing F (X) = tr(X logX − X), we get the
Jensen-von Neumann divergence, the matrix counter-
part of the celebrated Jensen-Shannon divergence. An
interesting property is that asymptotic skew Jensen di-
vergences are equivalent to Bregman divergences [12]:

BF (P,Q) = lim
α→0

1

α
J
(α)
F (P,Q),

BF (Q,P ) = lim
α→1

1

1− α
J
(α)
F (P,Q), with

BF (P,Q) = F (P )− F (Q)− 〈P −Q,∇F (Q)〉,

where 〈X,Y 〉 = tr(XY ) is the matrix inner product.
The von Neuman divergence

DvN(P,Q) = tr(P (logP − logQ)− P +Q) (4)

belongs to a broader parametric family of matrix diver-
gences:

Dα(P,Q) =
4

1− α2
tr

(
1− α
2

P +
1 + α

2
Q− P

1−α
2 Q

1+α
2

)
,

with DvN(P,Q) = limα→1Dα(P,Q), and
DvN(P,Q) = limα→−1Dα(P,Q).

3. Concave-convex minimization for
Jensen-based matrix means

By definition, the divergence-based (right-sided)
means on a set of SPD matrices {M1, ...,Mn}, are ob-
tained by minimizing the average distortion measure:

l(X) =
1

n

n∑
i=1

J
(α)
F (Mi, X). (5)

Note the left-sided mean can be calculated as a right
sided-mean for parameter α′ = 1−α. The matrix mean
is solved according to

M̄ = argX∈Sym∗
+

min l(X). (6)

Removing the constant terms independent of X in
l(X), we get an equivalent optimization problem,

l′(X) = αF (X)−
n∑
i=1

F ((1− α)Mi + αX). (7)

This loss function l′(X) = A(X)+B(X) is a sum of a
convex function A(X) = αF (X) plus a concave func-
tion B(X) = −

∑n
i=1 F ((1−α)Mi +αX). It follows

that we can apply the concave-convex procedure [17] to
get the following iterative scheme: We start from an ini-
tial estimate C0 of the mean (say, the arithmetic mean
C0 = 1

n

∑n
i=1Mi), and update iteratively the current

mean Ct using the concave-convex procedure (CCCP)
optimization step [17] (that does not require to set up a
learning rate):

∇A(Ct+1) = −∇B(Ct), (8)

and get

Ct+1 = (∇F )−1

(
n∑
i=1

∇F ((1− α)Mi + αCt)

)
.

This iterative scheme is guaranteed to converge to a
minimizer [17], and avoids to tune a learning step pa-
rameter as it is customary in gradient descent methods.

3.1. Matrix α-log-det divergence

When the convex generator is F (X) = − log detX ,
it gives us the α-log-det divergence, for α ∈ (−1, 1):

J
(α)
LD(X,Y ) =

4

1− α2

(
1− α

2
F (X) +

1 + α

2
F (Y )

−F
(

1− α
2

X +
1 + α

2
Y

))
The matrix mean of {M1, ...,Mn} is defined as the

minimizer of the following optimization problem:

M̄α = arg min
X∈Sym∗

+

1

n

n∑
i=1

J
(α)
LD(X,Mi). (9)

This can be solved by removing all terms independent
of X , and applying the concave-convex procedure. We
initializeC0 = 1

n

∑n
i=1Mi and update iteratively using

the CCCP rule [17]

Ct+1 =

(
n∑
i=1

1

n

(
1− α

2
Ct +

1 + α

2
Mi

)−1)−1
.
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Note that we can swap arguments in the α-log-det di-
vergence by turning α into −α:

J
(α)
LD(X,Y ) = J

(−α)
LD (Y,X) (10)

Furthermore, the α-log-det divergence is invariant un-
der inversion and invertible transformations, i.e.,

J
(α)
LD(X,Y ) = J

(α)
LD(X−1, Y −1),

J
(α)
LD(CXCT , CY CT ) = J

(α)
LD(X,Y ),∀C ∈ GL(d),

where GL(d) is the set of invertible transformations.
These properties are very important in many applica-
tions [15].

3.2. Symmetrized matrix α-log-det divergence

The symmetrized matrix α-log-det divergence is

sJ
(α)
LD(X,Y ) =

1

2

(
J
(α)
LD(X,Y ) + J

(α)
LD(Y,X)

)
.

With initialization C0 = 1
n

∑n
i=1Mi, the mean can

also be solved using the updating CCCP rule,

Ct+1 = (∇F )−1(

n∑
i=1

1

n
(1− α)∇F (αMi + (1− α)Ct)

+ α∇F (αCt + (1− α)Mi))).

4. Experiments

We have implemented the Jensen-based matrix
concave-convex iteration algorithm in JavaTM using the
JAMA1 matrix package. Our open source implementa-
tion is readily available2 for reproducible research. We
evaluated our method on both synthetic dataset and real
shape dataset.

4.1. Synthetic dataset

To get an SPD matrix M , we randomly draw a lower
triangle matrix L and letM = LLT . Table 1 reports the
gradients and inverse gradients for several commonly
used convex generators .

The Log-Euclidean-based, Riemannian-based and
divergence-based methods all report the identity ma-
trix for the mean of M with M−1. We observed
that our divergence-based algorithm converges fast to

1http://math.nist.gov/javanumerics/jama/
2www.informationgeometry.org/SPD/

Entropy F (X) ∇F (∇F )−1

Quadratic 1
2
tr(XXT ) X X

log-det − log detX −X−1 −X−1

von Neum. tr(X logX −X) logX expX

Table 1. Gradients and inverse gradients
of several convex matrix generators.

a unique global minimum in practice for the Jensen-
von Neumann divergence: 10 iterations are enough to
get a 0.1%-error-approximation to the minimum (linear
convergence). As the dimension grows, the computa-
tional bottleneck is to calculate the eigendecomposition
of the matrix for performing the log/exp matrix opera-
tions required for computing∇F and (∇F )−1. Indeed,
eigendecomposition of d-dimensional square matrices
requires roughly cubic time with a naive implementa-
tion.

4.2. Shape clustering

Shape clustering is an important step for shape re-
trieval in a large database. Shape clustering enables hi-
erarchical shape retrieval which is more efficient than
brute force shape retrieval. We evaluated Jensen di-
vergence based clustering on the MPEG-7 database [9],
which consists of 70 different categories with 20 shapes
per category, for a total of 1400 shapes. For each shape,
we first extract its boundary points, align them using
affine transformation, and then use the covariance ma-
trix, which is an SPD matrix, of the aligned boundary
points to represent this shape [11]. The SPD matrix is
also the covariance matrix of the the Gaussian distri-
bution estimated from the boundary points. The above
process is portrayed using the flow chart shown below

Shape → Aligned boundary points → Covariance matrix

The hard clustering algorithm [10, 11] is used to per-
form clustering. The clustering accuracy is measured
according to a method proposed in [11], which is the
optimal number of categories per cluster (denoted by
|S|∗, |S| represents the cardinality of S, i.e., the num-
ber of categories in S), divided by the average num-
ber of categories in each cluster (denoted by Avg(|S|)).
For example, if there are 10 clusters {Si}10i=1, with an
average of 140 shapes per cluster, and thus, |S|∗ =

140/20 = 7; Avg(|S|) =
∑10
i=1 |Si|
10 . The clustering ac-

curacy describes the accuracy of separation of different
categories. The optimal clustering accuracy is 1. Fig-
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Figure 1. Shape clustering using Rieman-
nian, LE, and Jensen divergences.

Figure 2. Clustering using symmetrized
matrix α-log-det divergence for various
α’s.

ure 1 compares the clustering accuracy of using Log-
Euclidean, Riemannian and our proposed Jensen diver-
gence. The parameter α is set to be one which maxi-
mizes the clustering accuracy. In this experiment, the
result achieves the best when α ' 0.4 (this means that
the center has more weight than each single element in
the cluster). The results show that Jensen divergence
enables much higher clustering accuracy, implying sub-
stantial capability to distinguish shapes from different
categories.

We also used the symmetrized matrix α-log-det di-
vergence to do clustering. By changing the α, we get
different clustering accuracy, which is shown in Figure
2. The results illustrate that when α = 0.5, the cluster-
ing achieves better accuracy.

5. Concluding remarks

We introduced divergence-based matrix means as
minimizers of average divergences. We consider
the class of matrix divergences induced by a convex
functional, and described a novel efficient concave-
convex iteration method to compute those means. The
divergence-based mean depends on a convex matrix
functional which may be tuned according to specific ap-
plication domains.
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