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ABSTRACT

We develop a variational model and a faster and robust numerical
algorithm for simultaneous sensitivity map estimation and image
reconstruction in partially parallel MR imaging with significantly
under-sampled data. The proposed model uses a maximum likeli-
hood approach to minimizing the residue of data fitting in the pres-
ence of independent Gaussian noise. The usage of maximum likeli-
hood estimation dramatically reduces the sensitivity to the selection
of model parameter, and increases the accuracy and robustness of the
algorithm. Moreover, variable splitting based on the specific struc-
ture of the objective function, and alternating direction method of
multipliers (ADMM) are used to accelerate the computation. The
preliminary results indicate that the proposed method resulted in fast
and robust reconstruction.

Index Terms— partially parallel imaging, primal-dual method,
sensitivity estimation, maximum likelihood estimation, SENSE

1. INTRODUCTION

Partially Parallel Imaging (PPI) is an emerging technique in MR
imaging. PPI reduces the acquisition time of the scanned object
data by surrounding the scanned objects by multiple radiofrequency
(RF) receivers and by acquiring a reduced number of k-space data
for each RF receiver. SENSitivity Encoding (SENSE)[1, 2], one
of the most commonly used image domain-based parallel imaging
methods, utilizes the information of the coil sensitivities to separate
aliased pixels resulted from under-sampled k-space data, satisfying
(MFS

j

u � f

j

), j = 1, 2, ...,K, where K is the number of coil
receivers, u is the underlying image, M is a mask(a binary matrix)
presenting the trajectories to acquire partial k-space data, F is the
Fourier transform, S

j

is the sensitivity map for jth coil and f

j

is the
observed under-sampled k-space data.

In [3], Chen et, al. develop a variational model and a fast algo-
rithm, referred as APD, to solve minimization problem

min
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�kukTV +
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by applying variable splitting with alternating direction method
of multipliers (ADMM)[4] to decompose it into one subproblem
involving Fourier transforms and another subproblem that can
be treated by the primal-dual hybrid gradient method (PDHG)[5]
scheme.

⇤
Asterisk indicates corresponding author.
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In PPI, however, the quality of SENSE reconstruction is highly
depending on the accuracy of coil sensitivity maps and it is difficult
to obtain artifact-free sensitivity maps. It is also important to have
accurate sensitivity estimates in any low signal regions surrounding
the object to avoid reconstruction artifacts[6]. Hence, It is argued
that for successful parallel imaging, the choice of sensitivity estima-
tion strategy is at least as important as the choice of reconstruction
strategy[7]. Many common methods of coil sensitivity calibration
has been to measure sensitivities directly using one or more low-
resolution calibration images, obtained from low-frequency calibra-
tion data in k-space after division by a body coil image[8], or by the
sum-of-squares (SoS) of low-resolution images from all the chan-
nels. It also introduces a possible source of error into the recon-
struction, since it is difficult to ensure that the patient and coil array
will be on the same positions during both the calibration scan and
the accelerated data acquisition. Misregistrations or inconsistencies
between the calibrated and the true sensitivities result in artifacts in
the reconstructions. Coil sensitivities are also subject to noise pro-
cesses. This causes sensitivity errors in regions of low signal and
where the body coil data itself is noisy. The SoS technique uses
fully sampled central k-space to obtain a relative sensitivity map. It
involves pixel-wise division, which can be reasonably considered to
yield nonidentically distributed but still fairly independent noise in
the sensitivity maps.

However, the quality of SENSE reconstruction is highly depend-
ing on the accuracy of coil sensitivity maps. Based on the fact of
difficulties on obtaining sufficiently accurate sensitivity maps, peo-
ple need to find methods to update sensitivities to improve the qual-
ity of image reconstructions. Several iterative methods, such as
JSENSE[9] by Ying et al., IRGN-TV/TGV [10, 11] by Uecker et
al. and Knoll et al., and Sparse BLIP [12] by H. She et al., have been
proposed to jointly reconstruct image and estimate sensitivity maps.
JSENSE addresses the issue of sensitivity errors by iteratively cor-
recting the sensitivities functions, represented by a simple polyno-
mial. As well, IRGN-TV/TGV is a regularized nonlinear inversion
framework based on a Newton-type method with variational penal-
ties for auto-calibrated parallel imaging with arbitrary sampling pat-
terns. Sparse BLIP is another joint method, which improves upon
JSENSE by incorporating the concept of Compressed Sensing into
the data consistency formulation and assumes the image and sen-
sitivities are sparse in total variation (TV) of the spatial domain.
These prior arts have demonstrated that the accuracy of coil sen-
sitivity maps can be improved iteratively, and hence can improve the
quality of SENSE reconstruction.

Keeling, et al. also propose a variational approach for PPI,
named TVSENSE[13], using a high-order penalty for coil sensitiv-
ities and a TV like penalty,the Gauss-TV penalty for reconstructing
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image. TVSENSE is formulated purely in image space as opposed
to k-space, and it also jointly reconstructs image and estimates sen-
sitivity maps. The numerical method in [13] is based on CGM, a
Newton-type optimization framework introduced in [14]. However,
the numerical result shows that TVSENSE is quite slower than many
other algorithms of PPI such as IRGN and SENSE.

However, these algorithms still suffer one or both of the follow-
ing two numerical problems. One is the sensitivity to the choice of
regularization parameters, and the other is the high computational
cost. As for the robustness, most algorithms of PPI reconstructions
still suffer from two numerical problems. One is high computational
cost, and the other is the sensitivity to the choice of regularization pa-
rameters. They require selecting parameters of regularizations man-
ually, and the algorithms are sensitive to the selections of parameters.
An inappropriate ratio, determined by the regularization parameters,
between data fidelity and regularizations may result in either resid-
ual artifact or reduced spatial resolution. Intuitively, we wish that
the regularization could be strong in the beginning and would grad-
ually reduce when the fidelity term decreases. Therefore, it inspires
us to borrow the idea of maximum likelihood estimation (MLE) on
the residue of data fitting on k-space in the presence of independent
Gaussian noise.

Motivated by all discussed above, we are interested in propos-
ing a novel variational model, and a fast and robust algorithm, called
TVL1SS, to simultaneously reconstruct the image and estimate the
sensitivity maps. Except data fidelity, we utilize TV regularization
to image and sparse representation, for instance by wavelet trans-
form, to sensitivity maps as regularizations. Combined with MLE,
we develop a self-adjusted technique to iteratively optimize the reg-
ularization ratio, i.e. the balance between the regularization terms
and the data fidelity term. The numerical approach is adopted from
and based on [3] and [15]. By introducing auxiliary variables, the
objective function is splitted into several subproblems, which can
be solved by PDHG, 1-dimensional Shrinkage, and linear inverse
problems with diagonal inversion matrices. All the subproblems are
fast numerical schemes, which guarantee our algorithm is a fast ap-
proach. The usage of MLE dramatically reduces the difficulty of
parameter decision and increases the practicability of regularized re-
construction techniques. The regularization parameter can be se-
lected from a large range (the details will be given in section 3.2).

2. PROPOSED MODEL AND NUMERICAL METHOD

2.1. Proposed Model

We develop our model in this section. Assume that, for each j-th
channel, the residues of (MFS

j

u� f

j

) on k-space indexed by r

are identically independently distributed (i.i.d.), and obey a Gaus-
sian distribution with zero-mean, standard deviation �, which is to
be optimized. The joint probability density function (PDF) of the
residues in j-th channel is
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The likelihood function, also assumed the independence of the
residues of all the channels, LE (�) is the joint PDF can be written
as
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Maximizing the likelihood enforces (MFS
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) optimally fol-
lowing the Gaussian distribution. Instead of maximizing the like-
lihood, we minimize the negative log-likelihood function, given as
follows:
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where |⌦| is the area of each k-space domain. Combined with reg-
ularizations on underlying image and sensitivity maps, we establish
a variational model for simultaneous image reconstruction and sen-
sitivity map estimation in PPI, as follows:
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We minimize TV-norm of the reconstruction of image because
it is edge-preserved and sparse in the finite difference domain. We
propose L1-norm of sensitivity maps on wavelet domain because of
the sparsity of sensitivity maps on wavelet domain.

Following the standard treatment we will vectorize an two-
dimensional image u into one-dimensional column vector, i.e.

u 2 CN , where N is the number of pixels of the image u. Each S

j

is a N⇥N diagonal matrix in which the diagonal entries correspond
the sensitivities of the j-th coil for all the pixels of the image. Then
the (isotropic) TV norm is defined by

kukTV =

Z

⌦
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where for each i = 1, 2, ..., N , D
i

2 R2⇥N has two nonzero en-
tries in each row corresponding to finite difference approximations
to partial derivatives of u at the i-th pixel along the coordinate axes.
In addition,  = [ 1, ..., N

] 2 CN⇥N is the wavelet transform
matrix that sparsifies the underlying sensitivity maps.

2.2. Numerical Method
By the idea of variable splitting, introduce auxiliary variables and
obtain a constrained problem,
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subject to
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To optimize the minimization problem, we propose the following
scheme, named TVL1SS, based on ADMM, as follows
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In this algorithm, each subproblem is easy to solve. For t-
subproblem, 1-D Shrinkage can be applied. For u-subproblem,
apply the framework of PDHG scheme. For v-subproblem and
S-subproblem, we can solve them efficiently because the matrices
to be taken the inversion is the product of Fourier transforms and a
diagonal matrix or just a diagonal matrix. �-subproblem is also a
step of simple computation. Therefore the computation of TVL1SS
is cheap and considerably fast.

3. NUMERICAL EXPERIMENTS

In this section, in order to examine if our work is improved from
APD and performances comparably better than other existing algo-
rithms for joint image reconstruction and sensitivity estimation, tak-
ing IRGN-TGV for example, we design two groups of experiments
using the same acquired data with three different initial guesses of
sensitivity maps to compare TVL1SS with APD and IRGN-TGV.

The first group of experiments tests the convergence speed and
reconstruction quality of the proposed method for data sets with dif-
ferent initial guesses of the sensitivity maps. The second group tests
the robustness and sensitivity of the proposed method to the choice
of regularization parameters.

Briefly speaking, the constrained problem of APD is,

min

u

�kukTV +

KX

j=1

kMFv

j

� f

j

k

2
2 subject to v

j

= S

j

u,

and the ADMM of APD is
8
>>>><

>>>>:

v

k+1
j

= argmin

vj

kMFv

j

� f

j

k2 + ↵kS
j

u

k+1 � v

j

+ b

k

j

k2,

u

k+1
= argmin

u

�kukTV + ↵

KX

j=1

kS
j

u� v

k

j

+ b

k

j

k2,

b

k+1
j

= b

k

j

+ S

j

u

k+1 � v

k+1
j

, j = 1, ...,K.

In IRGN-TGV, the authors establish the relation between image,
coil sensitivities and acquired k-space as the following function:

F (u, S) = (MFS1u, ...,MFS

K
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As known in [10], using the IRGN method, compute the solution
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derivative of F evaluated at xk. The term W(S) = kWck
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2 is a penalty of the high Fourier coefficients of the sensitivities
and R is the TV regularization for the image. The authors apply the
duality property of TV term and rewrite the minimization problem
into a convex-concave saddle-point problem.

3.1. Data Acquisition

The original full-acquired k-space is a collection of sagittal Carte-
sian brain data acquired on a 3T system with 8-channel head coil
(Invivo Corp., Gainesville, USA). The data acquisition parameters
are field of view (FOV) 220 mm2, size 512 ⇥ 512 ⇥ 8, repetition

time (TR) 2060ms, echo time (TE) 126ms, slice thickness 5mm, and
flip angle 90

�. The phase encoding direction is anterior-posterior.
We reduced the image size from 512 to 256, and normalized the data
sets such that the intensities of reference images have range [0, 1]. In
our experiments, we artificially downsample the pseudofull k-space
data using the Poisson mask with the reduction factor (RF) 4 (Figure
1a), i.e. 25% sampling ratio.

3.2. Experimental Setting

3.2.1. Initial Guess of Sensitivity Maps and Image

For all tests, we set the initial guess u

0 to zero. We generally esti-
mate the initial sensitivity maps S0

j

by the low-resolution image ũ

j

generated by inverse Fourier transformed central k-space as part of
under-sampled data,
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2
, (5)

where ũ

j

is the Fourier transform of the central k-space data. The
sensitivity maps are also normalized into the same range. The pa-
rameter setting and further discussion are based on the normalized
data.

In our experiments, we estimate three different initial guesses
of sensitivity maps, called SMAP1, SMAP2 and SMAP3, by the
following ways.

For SMAP1, we simulate S

0
j

using the central 32 ⇥ 32 k-space
data and applying inverse-Fourier-transform and (5). We add a
complex-valued Gaussian noise (same level for both real and imagi-
nary parts) with standard deviation 0.01 in magnitude to the pseudo
full data.

For SMAP2 and SMAP3, S0
j

’s are generated using central 64⇥
64 and added complex-valued Gaussian noise (same level for both
real and imaginary parts) with variance 0.01 and 0.025 in magnitude
to the inverse-Fourier-transformed low-resolution images, ũ

j

in (5),
from all the channels, respectively, before the sum-of-squares tech-
nique. In this case, the sensitivity maps are corrupted by the noise
carried from the surface coil images and computation. Hence im-
proving their accuracy during iterations is necessary for high quality
reconstruction.

3.2.2. Termination Condition

The computation is set to be terminated when the relative change
ku

k

� u

k�1
k2/ku

k

k2 of the iteration reaches the prescribed stop-
ping criterion 5⇥ 10

�4.

3.2.3. Computing Enviroment

All the experiments are implemented in MATLAB, R2010aSV, on
a Macbook Pro with Mac OS X Lion operating system equipped a
2.66 Intel Core i7 processor and 4 GB 1067 MHz DDR3 memory.
The sparsifying operator T , discrete orthogonal wavelet transform,
is set to use a level 4 Daubechies-4 (D4) wavelet transform in Rice
Wavelet Toolbox (RWT) for MATLAB.

3.3. Experimental Results

3.3.1. Efficiency and Accuracy

The relative errors in the reconstructed image u, ku� ūk2/kūk2,
are indicated in the tables and figures. Here signal-to-noise ratio
(SNR) is defined as 10 log10(dv/mse), where mse is the mean of
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the squared difference between u and ū, E[u � ū]

2, and dv is the
variance of ū, V ar(ū) = E[(ū�m)

2
] with m = E(ū).

Compared with the performances of three algorithms on three
different data sets. For SMAP2 and SMAP3, TVL1SS converges
much faster than APD and IRGN-TGV do (see Table 1).

Data Algorithms SNR Rel.err. CPU Time(s)

SMAP1
APD 23.16 5.77% 16.09
IRGN-TGV 13.31 16.44% 538.52
TVL1SS 24.45 5.05% 71.53

SMAP2
APD 17.66 13.19% 213.78
IRGN-TGV 14.61 14.09% 546.88
TVL1SS 20.30 8.55% 29.81

SMAP3
APD 12.89 23.89% 459.68
IRGN-TGV 14.80 13.79% 544.35
TVL1SS 15.71 13.69% 82.35

Table 1: Comparison of APD, IRGN-TGV and TVL1SS

By Figure 2 and Table 1, first, the numerical results of TVL1SS
are more accurate than the results of APD. In the experiment of
SMAP1 with assumed well pre-estimated sensitivity maps, TVL1SS
does not converge the fastest among the three algorithms, but the
reconstruction quality of TVL1SS is better than the others, because
APD applies fixed sensitivities while TVL1SS updates the sensitiv-
ity maps to achieve more accuracy , benefits from MLE and obtains
more accurate reconstruction. Second, when sensitivity maps are
not well pre-estimated, the reconstruction from both of APD and
IRGN-TGV have more errors than results of TVL1SS. Compared
with the L2-norm of weighted Fourier transform of sensitivities in
IRGN-TGV, we use L1-norm of wavelet transform of sensitivities as
the regularization. In the minimization problems, L2-norm requires
all the entries to be uniformly small, but L1-norm allows sparse en-
tries to be big and forces other entries to be zero.

(a) Poisson Mask (b) Reference Image

Fig. 1. (a) Poisson mask in k-space; (b) Reference Image with red rectangle

indicating the zoomed-in box for comparison.

3.3.2. Robustness

Next, we discuss the robustness of TVL1SS. While the algorithm it-
erating, the data fitting term is getting smaller, so is �. Consequently,
the relative weights of TV and wavelet regularization terms are re-
duced automatically along with the iterations, which helps to find
the better data fitting. So the algorithm can be less sensitive to the
parameters of regularizations.

In Table 2, we fix the parameter µ of L1-term as 1 ⇥ 10

�2 in
TVL1SS and fix the initial setting of ↵0 as 0.1 in IRGN-TGV. We
change � of TV-term of TVL1SS and APD from 10

�5 up to 10

�2

and the initial setting of �0 from 10

�1 up to 100 in the same ratio
to test the robustness of all the three algorithms from the different
choices of parameters. We choose SMAP1 for example.

(a) 8.55% (b) 13.19% (c) 14.09%

(d) TVL1SS (e) APD (f) IRGN-TGV

Fig. 2. The comparison on SMAP2 of TVL1SS, APD and IRGN-TGV. The first

row shows the three numerical results obtained by three algorithm from SMAP2, corre-

sponding to (a)-(c). The second row shows the zoomed-in boxes shown in Figure 1(b)

of the reference.

� 10

�5
10

�4
10

�3
10

�2

APD SNR 23.16 22.90 20.93 15.40
Rel. err. 5.77% 5.93% 7.36% 13.34%

w/o MLE SNR 24.41 23.80 21.08 15.52
Rel. err. 5.09% 5.31% 7.20% 13.09%

TVL1SS SNR 24.43 24.43 24.45 24.41
Rel. err. 5.07% 5.07% 5.05% 5.09%

�0 = �⇥ 10

4
10

�1
1 10 100

IRGN-TGV SNR N.C N.C. 13.31 12.60
Rel. err. N.C. N.C. 16.44% 17.83%

Table 2:Robustness of TVL1SS with SMAP1 (N.C.: not convergent)

In the Table 2, the first and fifth rows indicate the choices of � and
�0. The numerical results of TVL1SS (in the fourth row of Table 2)
are quite similar, but the results of APD and IRGN-TGV vary a lot
while parameter changing (the second and the last rows of Table 2).
Even for IRGN-TGV, the algorithm does not converge when �0 is
not sufficiently large enough. On the other hand, we run TVL1SS
without applying MLE, i.e. the parameters are fixed and not self-
adjusted (the third row of Table 2), which is also sensitive to the
choice of the regularization parameters. In conclusion, TVL1SS is
less sensitive to the choice of parameters, hence much more robust.

4. CONCLUSION

We enhance our previous work to joint estimation of coil sensitiv-
ity maps and image reconstruction, and result in faster convergence,
higher accuracy and less sensitive to the selections of regularization
parameters. Then it practically helps to make up the difficulties of
reconstructions with low-quality coil sensitivity maps.
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