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ABSTRACT
Multiclass classification is one of the core problems in many
applications. High classification accuracy is fundamental to
be accepted as a valuable or even indispensable tool in the
work flow. In the classification problem, each sample is usu-
ally represented as a vector of features. Most of the cases,
some features are usually redundant or misleading, and high
dimension is not necessary. Therefore, it is important to find
the intrinsically lower dimensional space to get the most
representative features that contain the best information for
classification. In this paper, we propose a novel dimension
reduction method for multiclass classification. Using the
constraint of the triplet set, our proposed method projects
the original high dimensional feature space to a much lower
dimensional feature space. This method enables faster com-
putation, reduce the space needed, and mostly importantly
produces more meaningful representations that leads to bet-
ter classification accuracy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Dimension reduction, multiclass classification, triplet

1. INTRODUCTION

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISABEL ’11, October 26-29, Barcelona, Spain

Copyright c© 2011 ACM ISBN 978-1-4503-0913-4/11/10...
$10.00

Classification is an important task in computer vision, ma-
chine learning, and pattern recognition etc. Nonparametric
classification techniques, such as nearest neighbor voting or
template matching [20, 14], can be flexible and powerful rep-
resentations for joint classification, clustering and retrieval.
But both nearest neighbor voting and template matching
are sensitive to high dimensional feature space, due to the
reason that high dimension is not necessary or some features
may be misleading. Therefore, it becomes important to find
the lower dimensional space which is able to represent the
data set intrinsically. Dimension reduction is such a method.

Dimension reduction is an important step to improve the
classification accuracy and decrease computational and spa-
cial complexity. There are lots of dimension reduction tech-
niques in the literature [2, 12]. Dimension reduction is usu-
ally achieved by using feature selection [15] or feature pro-
jection. Feature projections can be done in different ways:
minimizing the reconstruction error as principal component
analysis (PCA) [5, 10]; preserving distances in the original
space, e.g. multidimensional scaling (MDS) [4], ISOMAP
[19] which uses geodesic distances in the data space, diffusion
maps which uses diffusion distances in the data space, and
curvilinear component analysis [11]; maximizing class-data
separation as linear discriminant analysis (LDA) [5]; retain-
ing the linear relationship between locality neighbors, e.g.,
neighborhood component analysis (NCA) [8], locally linear
embedding (LLE) [17]; preserving all pairwise distances be-
tween nearest neighbors (in the inner product space), while
maximizing the distances between points that are not near-
est neighbors, e.g., maximum variance unfolding (MVU)
[21]. We follow the principle that keeps the locality of data
belonging to the same class closer and maps data belonging
to different classes further, in the graph-induced subspace,
which is similar to Laplacian Eigenmap [1] and Locality Pre-
serving Projection [9]. We will propose a novel triplet con-
straint based method to reduce the dimension of the feature
space, which enables accessible and accurate multiclass clas-
sification accuracy.

In this paper, we exploit a novel triplet based graph em-
bedding (TGE) to project data into an even lower dimen-
sional subspace.A triplet is composed of three data samples,
representing the approximation relationship between them.
This will be explained at length later. TGE makes the data
samples from the same class getting closer and samples from
different classes moving away, to make nearest neighbor vot-
ing, template matching or any other classification methods



more robust and semantically interpretable. Therefore, it
greatly enhances the classification accuracy.

The rest of the paper is organized as follows. In section 2,
we present our proposed dimension reduction method, with
triplets as the constraints, and explain that in detail. This
is unlike all the existing dimension reduction techniques. In
section 3, we evaluate our dimension reduction technique on
various benchmark data sets, which belong to the challeng-
ing UCI machine learning repository [7]. Finally, this paper
is concluded with discussion in section 4.

2. PROPOSEDMETHOD: TRIPLETBASED

GRAPH EMBEDDING
The input for our proposed dimension reduction includes a
set of N points X = {x1,x2, · · · ,xN} ⊂ R

n, along with
their labels X = {l1, l2, · · · , lN} ⊂ C. C is the label set,
which is usually a set composed of integers, e.g., for binary
classification problems, C is usually {1,−1}.

The goal of dimension reduction is to give small distances
between instances to be matched and large distance for oth-
ers, in the reduced dimensional space. There are a number of
ways to design dimension reduction. One popular technique
is to perform dimension reduction according to the relations
of the training samples. One type of relation is equivalence
constrained, where equivalence constraints are provided for
pairs (xi,xj), each associated with a binary label of ”similar”
or ”dissimilar” [18]. Another relation representation often
used in information retrieval is the proximity relationships
[13] over triplet set T = {(i, j, k)}, meaning that xi is closer
to xj than to xk. Here xi is the feature vector representation
for the training sample i.

The goal of dimension reduction is to learn a function f :
X 7→ Y, where Y = {y1,y2, · · · ,yN} ⊂ R

ñ, and ñ ≪ n,
such that d(xi,xj) < d(xi,xk), and the distance between
two samples xi and xj in the reduced dimensional space is

d(xi,xj) = (f(xi)− f(xj))
T (f(xi)− f(xj)) , (1)

where T is the vector/matrix transpose transformation. The
optimal f should maximize the following function

E =
∑

ijk

w(i, j, k)(d(xi,xk)− d(xi,xj)), (2)

under some appropriate constraints. w(i, j, k) is the weight
for the triplet (i, j, k), and usually it is set to be the uniform
distribution, i.e., w(i, j, k) = 1/|T | where |T | is the cardi-
nality of T . This objective function ensures yi and yj to be
close if xi and xj belong to the same class, and vise versa.

Triplet based graph embedding (TGE) is a comprehensive
strategy to simultaneously maximize the similarity between
data pairs of the same class and minimize the similarity
between two points rooted from different classes. In other
words, we optimize on mapping the same class data to prox-
imity subspaces, while projecting different class data sam-
ples to be far apart, explicitly. Once satisfying this, we
can classify the testing samples in the reduced dimensional
space.

2.1 Choose the mapping function

Various choices of the mapping function f have been pro-
posed recently, e.g. linear mapping, kernel mapping and
tensor mapping. We use linear mapping because of its sim-
plicity and generality. A linear mapping function f is de-
scribed as

y = f(x) = PTx,

subject to: ‖P‖F = 1,

P ∈ R
n×ñ , ñ ≪ n ,

(3)

where ‖· ‖F is the Frobenius norm, and the constraint ‖M‖F =
1 removes the scaling effect.

Plugging (3) into (1), we get

d(xi,xj) = ‖PTxi −PTxj‖
2

= (xi − xj)
TPPT (xi − xj) .

(4)

Plugging (1) into (2), we get

E = tr



P
∑

(i,j,k)

w(i, j, k)(‖xi − xk‖
2 − ‖xi − xj‖

2)PT



 ,

subject to: ‖P‖F = 1 .

(5)

Eq. (5) can be solved very quickly using gradient descent
technique along with iterative projections [16].

2.2 Choose the dimension of the reduced space
The dimension of the reduced space ñ can be determined in
many ways, the most popular ways are:

1. The variance is covered to some extent, e.g. 90% per-
cent.

2. Some small numbers like 1, 2 or 3 for visualization.

3. Chosen to be the number of positive eigenvalues of the
covariance matrix of the data set.

4. A fixed number according to the needs of customers.

5. Chosen to be the dimension which gives optimal clas-
sification performance on the training/validation data
set.

6. Chosen to be the number such that the loss function
(5) is minimized.

We will use the last one in the applications of this paper.

2.3 Evaluate the dimension reduction meth-

ods
The effectiveness of dimension reduction can be evaluated
according to several criteria, such as information gain [3],
and Fisher score [6]. We validate the effectiveness of our
proposed dimension reduction technique using Fisher Score,
where the class separability between different classes is mea-
sured via Fisher’s linear discriminant [6].

Let the covariance matrices of the negatives and positives be
Σ− and Σ+, and the means of the negatives and positives



be µ− and µ+, then the Fisher linear discriminant of the
binary classes is

s = (µ+ − µ−)
T (Σ+ +Σ−)

−1(µ+ − µ−) , (6)

where the larger s is, the more statistically distinguishable
negative-positive class distributions will be.

3. EXPERIMENTAL RESULTS
We evaluated our algorithm on numerous public domain
data sets from the UCI machine learning repository [7]. The
UCI repository [7] is a collection of popular databases that
have been extensively used for analyzing machine learning
especially classification techniques. The repository contains
very noisy data (e.g. waveform) as well as relatively clean
data, which is optimal for testing classification algorithms.
We selected many data sets from the UCI repository. The
selected data sets include noisy and relative clean data sets,
cover small size to large size data sets in terms of number of
instances in the data sets, and range from low dimension to
high dimension in terms of number of attributes per sample
of the data sets. The description of the selected data sets
is shown in Table 1. We compared our classification results
with those generated from MRMR feature selection.

We form the triplets in the following way. For each train-
ing sample xi, we find all the training samples {xj}

n
j=1 that

belong to the same class as xi, and all other training sam-
ples {xk}

m
k=1 which belong to different classes from the class

of xi. Then (i, j, k) will form a triplet, requiring d(xi,xj) <
d(xi,xk). We repeat the same process on each training sam-
ple to build more triplets, in a similar way. All the triplets
form a triplet set T , which will be used as inputs for dimen-
sion reduction algorithm to optimize the matrix M .

We use 5-fold cross-validation, i.e. 80% of the samples are
for training and validation, and 20% of the samples are for
testing. We determine the parameters for TGE and MRMR
algorithms during the training and validation period, and
the parameters are set to be those maximizing the classifi-
cation accuracy of the training samples.

TGE is capable to increase the discriminant between dif-
ferent classes in the projected feature subspaces, both vi-
sually and numerically. This is validated on the data sets
of Connectionist Bench (Sonar, Mines vs. Rocks), Statlog
(German Credit Data), and UJI Pen Characters. For com-
parison, we plot the first MRMR selected original features
and the first projected dimensions after TGE, on testing
data sets in Fig. 1. The Fisher linear discriminant score
for the first three MRMR selected features on the Connec-
tionist Bench (Sonar, Mines vs. Rocks) data set is 0.3215,
but after TGE, the score increases to 0.8910. For the Stat-
log (German Credit Data) data set, the score increases from
0.1137 to 0.5902, reflecting the impact of TGE. For the UJI
Pen Characters data set, the score increases from 0.2608 to
0.8351. The numerical results demonstrate that our TGE
technique indeed enlarges the class separability between dif-
ferent classes.

The experimental results of classification on the testing data
sets are shown in Table 2. The results show that TGE is
capable to give a much higher classification accuracy.
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Figure 1: Plot of the data samples (testing) accord-
ing to the first three features selected by MRMR
(a) and the first three dimensions after dimension
reduction (b) on the Connectionist Bench (Sonar,
Mines vs. Rocks) data set. Plot of the data samples
(testing) according to the first two features selected
by MRMR (c) and the first two dimensions after di-
mension reduction (d) on the German Credit data
set. Plot of the data samples (testing) according to
the first three features selected by MRMR (e) and
the first three dimensions after dimension reduction
(f) on the UJI Pen Characters data set. Note that
the dimension coordinates on the figures are not di-
rectly comparable.

4. CONCLUSIONS
Our main contribution is summarized as follows. We pre-
sented a new dimension reduction method, namely triplet
based graph embedding (TGE). This method is triplet con-
strained, where a triplet represents the proximity relation-
ships between samples. TGE can be applied to classify
multiclass data sets. We evaluated this method on a num-
ber of data sets from the benchmark UCI machine learn-
ing repository. The results show that our method reduces
or eliminates the redundancy between the components of
high-dimensional vector data, obtains a compact as well as
accurate representation, and enables higher classification ac-
curacy.
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data set ♯ instances ♯ attributes description

Breast Cancer Wisconsin (Original) 699 9 breast cancer diagnosis
Pima Indians Diabetes 768 8 diabetes diagnosis
Statlog (German Credit Data) 1000 24 good/bad credit
Heart Disease 303 74 diagnosis of heart disease
Ionosphere 351 33 radar returns from the ionosphere
Liver Disorders 345 6 liver disorders arise from alcohol consumption
Connectionist Bench (Sonar, Mines vs. Rocks) 208 60 sonar signals
UJI Pen Characters 1364 16 handwritten digits
Pima Indians Diabetes 768 8 signs of diabetes

Table 1: Description of the UCI data sets that we use.

data set MRMR feature selection Dimension reduction

Breast Cancer Wisconsin (Original) 0.658 ± 0.049 0.701 ± 0.037
Pima Indians Diabetes 0.647 ± 0.051 0.705 ± 0.028
Heart Disease 0.708 ± 0.042 0.801 ± 0.030
Ionosphere 0.670 ± 0.036 0.743 ± 0.021
Liver Disorders 0.702 ± 0.061 0.766 ± 0.024

Table 2: Classification accuracy (mean ± deviation) for MRMR method and our dimension reduction method.

Ye.
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