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ABSTRACT
Classification is one of the core problems in Computer-Aided
Diagnosis (CAD), targeting for early cancer detection using
3D medical imaging interpretation. High detection sensitiv-
ity with desirably low false positive (FP) rate is critical for
a CAD system to be accepted as a valuable or even indis-
pensable tool in radiologists’ workflow. Given various spu-
rious imagery noises which cause observation uncertainties,
this remains a very challenging task. In this paper, we pro-
pose a novel, two-tiered coarse-to-fine (CTF) classification
cascade framework to tackle this problem. We first obtain
classification-critical data samples (e.g., samples on the deci-
sion boundary) extracted from the holistic data distributions
using a robust parametric model (e.g., [13]); then we build
a graph-embedding based nonparametric classifier on sam-
pled data, which can more accurately preserve or formulate
the complex classification boundary. These two steps can
also be considered as effective “sample pruning”and“feature
pursuing + kNN/template matching”, respectively. Our ap-
proach is validated comprehensively in colorectal polyp de-
tection and lung nodule detection CAD systems, as the top
two deadly cancers, using hospital scale, multi-site clinical
datasets. The results show that our method achieves over-
all better classification/detection performance than exist-
ing state-of-the-art algorithms using single-layer classifiers,
such as the support vector machine variants [17], boosting
[15], logistic regression [11], relevance vector machine [13],
k-nearest neighbor [9] or spectral projections on graph [2].

Categories and Subject Descriptors
Industrial and Application Paper [Knowledge Manage-
ment (KM)]:

Keywords
computer-aided diagnosis, coarse-to-fine classification, class
regularized graph embedding, total Bregman divergence (tBD)
clustering , t-centers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
Colon cancer and lung cancer are the top two leading

causes of cancer deaths in western population. Meanwhile,
these two cancers are also highly preventable or “curable”
if detected early. Image interpretation based cancer detec-
tion via 3D computer tomography has emerged as a common
clinical practice, and many computer-aided detection tools
for enhancing radiologists’ diagnostic performance and ef-
fectiveness are developed in the last decade [4, 9, 11, 15,
17]. The key for radiologists to accept the clinical usage of a
computer-aided diagnosis (CAD) system is the high detec-
tion sensitivity with reasonably low false positive (FP) rate
per case.

This paper mainly focuses on the classification aspect of
CAD. We explain that Why CAD is an important yet
domain-specific classification problem as follows. 1),
In CAD scenario, positive examples (i.e., true cancers) in
large population screen are very rare and precious, thus high
sensitivity (recall) is a must-to-have feature to make
CAD meaningful. 2), On the other hand, CAD is legally
used as a second-assisted tool for radiologists, which hopes to
improve radiologists’ overall performance but mostly relies
on them to disambiguate false positives from CAD1. CAD
findings (with only < 1% true positives) can be very ex-
pense burden for radiologists, lowering their confidence, and
without effectively guiding them to real detections. There-
fore it is equivalently important to archive sensibly
low false positive rate per case (e.g., 2 ∼ 5). 3), To
better address doctor’s final decision support on CAD and
even his/her own findings, an ideal setup is to make
the system capable of retrieving similar or counter-
part lesions when available. For such consideration,
we argue that nearest neighbor (NN) or template matching
(TM) type nonparametric classification methodology will be
a more sensible choice by precisely modeling all distribu-
tional information of rare positives for classification. This is
a more complete representation, versus discriminative mod-
els (e.g., SVM [17] and RVM [13]) with linear or nonlin-
ear parametric decision boundaries, which is prone to over-
training given small number of positives. However, there
are two fundamental problems needed to be solved to make
nonparametric classification method robust. 1), There are
dominating numbers of false positives initially (from
a highly sensitive candidate-generation process), which not
only can effect the performance negatively also makes the
computation slow. 2), It is well known that NN and TM

1A clinical report stating the reason to dismiss or accept
each CAD findings is required in the workflow.



are very sensitive to the feature space or subspace
where matching distance or (dis-)similarity metrics
are computed.

We propose and comprehensively evaluate a novel coarse-
to-fine classification framework. The method consists of
the following two steps, in both training and testing. (1)
Sample Pruning: Parametric classification models (e.g., lo-
gistic regression [11], boosting [15], support/relevance vec-
tor machines [13]) are trained on the complexly distributed
datasets as coarse, distribution-level classification. The goal
is not to assign class labels, but to prune data samples to
select more “classification-critical” candidates, which are ex-
pected to preserve the decision boundary in the high di-
mensional feature space (thus vast numbers of samples lying
far from classification boundary are discarded 2). (2) Fea-
ture Pursuing + kNN/Template Matching: We first apply
feature selection and graph embedding methods jointly to
find intrinsic lower dimensional feature subspace that pre-
serves group-wise data topology, and then employ nonpara-
metric classifiers for final classification, using kNN or tem-
plate matching. We argue that more precisely modeling the
intrinsic geometric of decision boundary, by graph embed-
ding and nonparametric classifiers in a finer level, can po-
tentially improve the final classification performance. The
overall process is illustrated as follows

Samples → Sample pruning → Feature selection

→ Class regularized graph embedding

→ kNN/Template matching

We applied our proposed framework on colon polyp and

lung nodule detection, using two large scale clinical datasets
collected from multiple clinical sites across continents.

2. SAMPLE PRUNING USING PARAMET-
RIC RVMMIL

We start by developing a “coarse” classifier for sample
pruning using a parametric model. Considering the specific
characteristics of CAD classification problems, in this pa-
per we use the RVMMIL approach [13] which is a powerful
extension to integrate feature selection and handle multiple
instance learning (MIL).

In RVMMIL, the probability for an instance xi to be pos-
itive is p(y = 1|xi) = σ(a′xi), where σ is the logistic func-
tion defined as σ(t) = 1/(1 + e−t) and a′xi is the linear
dot-product between data feature vector xi and model co-
efficient vector a. For the contents of sparse feature selec-
tion and multiple instance learning in RVM, we refer the
readers to [13]. From our coarse-to-fine classification model,
RVMMIL is adopted as the coarse-level cascade classifier for
sample pruning, i.e., we will remove samples xi satisfying

2This is related with using nearest neighbor analysis to find
data samples either near the decision boundary or in local
neighborhoods [18], then training SVM classifiers on reduced
or clustered datasets. However we perform sample pruning
by selecting data upon their classification scores/confidences
of a learned parametric model that is well studied, more ro-
bust and stable, compared with nearest neighbor (NN) clus-
tering method, especially in high dimensional space. For
example, the neighborhood size selection and defining sen-
sible distance measure problems in NN are non-trivial.

p(y = 1|xi) < ρ̂. This step can eliminate massive amount of
negatives without effecting much on sensitivity, by choosing
a balanced ρ̂. The remained data samples p(y = 1|xi) ≥ ρ̂
are either true positives (at high recall) or “hard” false pos-
itives, lying close to the classification boundary, which will
largely impact the final classification accuracy. Note that
other classifiers with confidence estimates, as boosting [15]
and regularized SVM [17], are also applicable.

3. FEATURE SPACE PURSUIT
Our goal of feature pursuit is to estimate intrinsic, lower

dimensional feature subspace of data for later sensible non-
parametric classification, while preserves generative data-
graph topology. This is the key to achieve superior classi-
fication performance with simple nonparametric classifiers.
In the proposed framework it consists of two steps: feature
selection and class regularized graph embedding.

Feature Selection: By applying feature selection, only
a compact subset of highly statistical relevant features is
retained, to simplify the later graph embedding or feature
projection process. There are many feature selection tech-
niques, we use Maximum Relevance Minimum Redundancy
(MRMR) feature selection algorithm [10] due to its empirical
good performance and computational efficiency. Given a set
of features F = {fi}, its MRMR feature subset H maximizes
the following objective κ:

κ(H,y) = γ(H,y)− γ(H), (1)

where

γ(H) =
1

m2

∑

fi,fj∈H
γ(fi, fj), (2)

γ(H,y) =
1

m

∑

fi∈H
γ(fi,y), (3)

and m is the total number of elements in H. Due to space
limit, refer the algorithm details to [10].

Class Regularized Graph Embedding: We propose
and exploit a new Class Regularized Graph Embedding (CRGE)
scheme to project data (after feature selection) into an even
lower dimensional subspace, where data samples from the
same class getting closer and samples from different classes
moving apart, to make NN or TM more robust and seman-
tically interpretable, as shown later. In Graph embedding,
feature projections can be learned in many different ways.
We follow the principle that keeps the locality of nearby data
and maps apart data further in the graph-induced subspace,
which is similar to Laplacian Eigenmap [1, 3] and Locality
Preserving Projection [6].

Given a set of N points X = {x1,x2, · · · ,xN} ⊂ Rn,
and a symmetric N ×N matrix W which measures the sim-
ilarity between all pairs of points in X . The set X and
matrix W compose a graph G, with X as vertices and W
as weights of the edges. The conventional graph embed-
ding method will map X to a much lower dimensional space
Y = {y1,y2, · · · ,yN} ⊂ Rñ, ñ ¿ n. The optimal Y should
minimize the loss function L(Y) which is defined as

L(Y) =
∑
i,j

‖yi − yj‖2Wij , (4)

under some appropriate constraints. Though performed well
in many applications [3, 6], the limitation of Eq. (4) is that



it does not penalize the similarity between points belong-
ing to different classes. For this means, we propose class
regularized graph embedding (CRGE) to find a mapping
φ : X 7→ Y, such that φ minimizes the function E(Y) de-
fined as

E(Y) =
∑

i,j∈S
‖yi − yj‖2Wij −

∑
i,j∈D

‖yi − yj‖2Wij ,

subject to: ‖Y‖F = 1.

(5)

where i, j ∈ S means xi and xj belong to the same class,
and i, j ∈ D means xi and xj are in different classes. ‖· ‖F

is the Frobenius norm. To avoid notation clutter, we rewrite
(5) and get

min
∑
i,j

‖yi − yj‖2WijHij , (6)

where Hij is the Heaviside function and

Hij =

{
1, if i, j ∈ S

−1, if i, j ∈ D .

The mapping function φ(x) can be linear or nonlinear, and
We use linear mapping because of its simplicity and gener-
ality, such as

y = φ(x) = M ′x, M ∈ Rn×ñ , ñ ¿ n . (7)

Plugging (7) into (6), we get

min
M

∑
i,j

‖M ′xi −M ′xj‖2WijHij ,

subject to: ‖M‖F = 1 ,

(8)

where the constraint ‖M‖F = 1 eliminates the scaling effect.
Eq. (8) can be solved very quickly using gradient descent
technique along with iterative projections [14]. The com-
putation of W is chosen in the following manner, to fit our
problem specific need.

W (i, j) = x′ixj/‖xi‖‖xj‖ . (9)

Finally, we argue that our stratified approach which prunes
non-informative or redundant features, using feature selec-
tion from an information-theoretic aspect, before feature graph
embedding or projection, can simplify the optimization pro-
cess of graph embedding on a reduced feature set. This strat-
egy may achieve better overall results, compared from the
joint sparsity-constrained graph embedding (as SPG) [2].

4. NONPARAMETRIC CLASSIFICATION
The naive KNN classification on data instances, in feature

space Y = φ(x), performs poorly due to unbalanced number
of rare positives and dominating negatives. Thus we propose
to do KNN voting using learned templates from clustering.

Clustering & Templates: Our previous total Bregman
divergence (tBD) clustering algorithm [7] is utilized here.
tBD is based on the orthogonal distance between the con-
vex generating function of the divergence and its tangent
approximation at the second argument of the divergence,
which is naturally robust and leads to efficient algorithms
for soft and hard clustering. Denote that c1 clusters, with
the cluster centers {zi−}c1

i=1, are obtained for negatives; and
c2 clusters with centers {zj+}c2

j=1 for positives. The numbers
of clusters c1,c2 is chosen to minimize the intra-inter-validity

index [12], given by

index =
intra

inter
,

intra =
1

N

c∑
i=1

∑
y∈Ci

‖y − zi‖2,

inter = min
i,j

‖zi − zj‖2,

(10)

where Ci is the ith cluster with center zi. Each cluster is
represented as the tBD center, termed t-center [7], which
is the `1 norm median of all samples in the corresponding
cluster. For example, if {yi}N

i=1 is the set of samples, then
its t-center z is

z = arg min
z̃

N∑
i=1

δf (z̃,yi), (11)

where δf is the total Bregamn divergence generated by some
convex and differentiable generator function f :

δf (y1,y2) =
f(y1)− f(y2)− 〈y1 − y2,∇f(y2)〉√

1 + ‖∇f(y2)‖2
. (12)

Here, we use f(y) = ‖y‖2, and hence δf becomes the total
square loss [7] and the t-center in Eq. (11) becomes

z =

N∑
i=1

aiyi , where ai =
1/

√
1 + 4‖yi‖2

(
∑

j 1/
√

1 + 4‖yj‖2)
. (13)

Template Matching via kNN Voting: Given a test
sample yi, we need to find its k nearest neighbors from
the t-centers. Suppose the neighbors are {z1, z2, · · · , zk}
and the corresponding distance from yi to the neighbors
are {d1, d2, · · · , dk}. We define the empirical probability of
yi being positive as p, and

p =

∑
(zj is positive) 1/dj∑

(zl is negative) 1/dl +
∑

(zj is positive) 1/dj
. (14)

Based on the p value, we can draw the FROC curve of sensi-
tivity and FP rate per case for training and testing datasets.
Eq. (14) is a soft kNN voting scheme using the reciprocal of
distance 1/di. We found that t-centers are more robust as
they lead to preserve better sparsity and diversity of CAD
lesion data distribution than proximity data samples (as in
kNN). The number of nearest neighbors k is chosen dur-
ing the training/validation stage, by maximizing the partial
Area Under FROC Curve (AUC):

k = arg max
k̃

AUC(FPrate ∈ [2, 4]). (15)

5. EXPERIMENTAL RESULTS
Our CTF classification frame is evaluated on representa-

tive large scale colon polyp and lung nodule datasets, col-
lected from dozens of hospitals across US, Europe and Asia.

Colon Polyp Detection & Retrieval: The colon polyp
dataset contains 134,116 polyp candidates obtained from
an annotated CT colonography (CTC) database of 429 pa-
tients. Each sample is represented by a 96-dimensional com-
puter extracted imagery feature vector, describing its shape,
intensity pattern, segmented class-conditional likelihood statis-
tics and other higher level features [11, 8, 15, 17]. There
are 1,116 positives out of the 134,116 samples. The CAD
sensitivity is calculated at per-polyp level for all actionable



polyps ≥ 6mm (i.e., polyp is classified correctly at least from
one view), and the FP rate counts the sum of two (prone-
supine) scans per patient. The colon polyp dataset is split
into training and testing datasets with no overlapping.

Upon obtaining the parametric RVMMIL model [13], we
get the probability (or classification score) of each instance
being positive. Then we perform thresholding and only con-
sider candidates with p(y = 1|xi) ≥ ρ̂ = 0.0157 as a clas-
sification cascade with high-recall. A total of 3,466 data
samples are retained, pruned from 134,116 polyp candidates
on the training dataset. All the 554 true positive lesion in-
stances are contained, along with other “harder” negatives,
having higher classification scores. For fine-level classifica-
tion, we learn the mapping function φ : X 7→ Y after feature
selection using the pruned dataset, and the t-centers are
fitted in the reduced Y feature space for the soft kNN clas-
sifier. We plot the FROC curves comparing using RVMMIL
as a single classifier, using SPG as a integrated sparsity and
dimension reduction approach, and our two-tiered coarse-
to-fine classifier, on training and testing datasets, as shown
in Fig. 1 Left. For validation, the testing results demon-
strate that our CTF method can increase the sensitivity of
RVMMIL by 2.58% (from 0.8903 to 0.9161) at the FP rate
= 4, or reduce the FP rate by 1.754 (from 5.338 to 3.584)
when sensitivity is 0.9097, which are statistically significant
improvements for colorectal cancer detection. It also clearly
outperforms other state-of-the-arts, e.g. SPG [2] as shown
in Fig. 1, as well as [11, 13, 15, 17].

To fully leverage the feature space topology-preserving
property of the lower-dimensional embedding Y, we also test
it for polyp retrieval, which is defined as giving a query polyp
in one prone/supine scan, to retrieve its counterparts in the
other view. To achieve this, we find the k nearest neighbors
(kNN) of a query yi ∈ Y using the classified polyps, and
check whether the true match is inside the neighborhood of
kNN. If the true matched polyp is in the kNN, a ‘hit’ will
occur. We record the retrieval rate, as the ratio of the num-
ber of ‘hit’ polyp divided by the query polyp number, at
different k levels. Especially, high retrieval rate with small
k can greatly alleviate radiologists’ manual efforts on find-
ing the counterpart same polyp, with better accuracy. To
demonstrate its advantage, we employ a conventional geo-
metric distance feature based polyp retrieval scheme, namely
geodesic distance that measures the geodesic length of a
polyp to a fixed anatomical point (e.g., rectum), along the
colon centerline. The retrieval rate comparison is illustrated
in Fig. 1 Middle, for both training and testing datasets.
The results indicate that the retrieval accuracy can achieve
80% when only 2 to 4 neighbors are necessary. This shows
that nonparametric kNN in Y subspace based retrieval sig-
nificantly improves the conventional polyp matching scheme,
contingent on geometric computation of geodesic distance
and the SPG based retrieval.

Lung Nodule Classification: The lung nodule dataset
is collected from 1, 000+ patients from multiple hospitals
in different countries, using multi-vendor scanners. Before
sample pruning, there are 28, 804 samples of which 27, 334
are negatives and 1, 470 are true nodule instances from 588
patients in training dataset. The testing dataset contains
20, 288 candidates, with 19, 227 are negatives and 1, 061
are positives of 412 patients. Several instances may corre-
spond to the same lung nodule in one volume. All types of
solid, partial-solid and Ground Glass Nodules with a diam-

eter range of 4-30mm are considered. Each sample has 112
informative imagery features, including texture appearance
features (e.g. as the moments of responses to a multiscale
filter bank [5]), shape (e.g. width, height, volume, number
of voxels), location context (e.g. distance to the wall, at
the right or left of the wall), gray value, and morphologi-
cal features. First, FROC analysis by using our proposed
coarse-to-fine classification framework, compared to single-
layer RVMMIL classifier, for the lung nodule classification
in training and testing is shown in Fig. 1 Right. We can
see that the testing FROC of CTF dominates the RVMMIL
FROC, when the FP rate ∈ [3, 4], with 1.0 ∼ 1.5% consis-
tent sensitivity improvements. We also compared with the
SPG framework, and the FROC analysis is shown in Fig. 2
Left. The comparison also shows the higher classification
accuracy of our proposed method. Furthermore, our CTF
classification performance compares favorably with other re-
cent developments in lung CAD [4]. Next, we compare our
method to a related locality-classification framework, SVM-
kNN [18] which shows highly competitive results on image
based multiclass object recognition problems. SVM-kNN
uses kNN to find data clusters as nearest neighbors and
train a support vector machine (SVM) on each locality group
for “divide-and-conquer” classification [18]. The comparison
results are illustrated in 2 Middle, which shows that our
method outperforms the SVM-kNN method on both lung
training and testing datasets. Finally, we evaluate the ef-
fects of using t-center (default), mean or median as esti-
mated templates in CTF. The comparison in testing using
the lung dataset is shown in Fig. 2 Right. The comparison
validates that t-center outperforms the templates formed by
typical mean or median method.

6. CONCLUSIONS & FUTURE WORK
Our main contributions are summarized in three folds.

First, we introduce a new coarse-to-fine classification frame-
work for computer-aided (cancer) detection problems by ro-
bustly pruning data samples and mining their heterogeneous
imaging features. Second, we propose a new objective func-
tion to integrate the between-class dissimilarity information
into embedding method. Third, two challenging large scale
clinical datasets on colon polyp and lung nodule classifica-
tion are employed for performance evaluation, which show
that we outperform, in both tasks, the state-of-the-art CAD
systems [4, 9, 11, 15, 17] where a variety of single para-
metric classifiers were used. For future work, we plan to
investigate optimizing the fine-level classification in an as-
sociate Markov network [16] setting, which integrates struc-
tured prediction among data samples (i.e., graph parameters
are jointly learned with classification).
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