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Abstract We propose and analyze a potential induced random walk and its mod-
ification called random teleportation on finite graphs. The transition probability is
determined by the gaps between potential values of adjacent and teleportation nodes.
We show that the steady state of this process has a number of desirable properties. We
present a continuous time analogue of the random walk and teleportation, and derive
the lower bound on the order of its exponential convergence rate to stationary distri-
bution. The efficiency of proposed random teleportation in search of global potential
minimum on graphs and node ranking are demonstrated by numerical tests. Moreover,
we discuss the condition of graphs and potential distributions for which the proposed
approach may work inefficiently, and introduce the intermittent diffusion strategy to
overcome the problem and improve the practical performance.

Keywords Randomwalk ·Random teleportation · Potential · Intermittent diffusion ·
Gibbs distribution · Metropolis–Hastings algorithm · Finite graphs

1 Introduction

In this paper, we propose a generic optimization algorithm on finite graphs where
each node is associated with a given potential value. The purpose is to find the node
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which has the lowest potential value. The graphs of interests have extensively large
size and hence exhaustive search of the optimal node is either impossible or extremely
cost ineffective. Our method, which is an extension of random walk and teleportation,
considers a randomized search on the graph with transition probability from node to
node based on potential value changes. Recall that in classical settings, random walk
on a graph defines a stochastic process in the discrete state space of the nodes. A
random walk takes random successive movements on the graph as follows: starting
from a node, select one of its neighbor nodes randomly and move there, and then
choose a neighbor of this node at random and move again, etc. If the consecutive
step is not restricted to adjacent nodes but can be some much “farther” (non-adjacent)
nodes, random walk becomes random teleportation. Namely, random teleportation
defines a stochastic process on the graph such that one can be transferred or teleported
at random to a node which is not a neighbor of the current node in each step.

In the literature, randomwalk and teleportation on graphs or networks have received
considerable attention in recent years due to their tremendous applications in a variety
of scientific areas [3,4,13,22,28,31,33]. For instance, consider an electric network as
a graphwhere each edge has unit or variable resistances, then characteristics of random
walk, such as access time and commute time, reflect the properties of electric current
flowing through the network [10,12,13,30]. In graph partition problem, the dynamics
of random walk can reveal structures of complex networks and provide hints for
optimal partitions [27,34]. In statistical simulations, random walk serves as a feasible
algorithm for sampling from probability distributions [5,9,26].More recently, random
walkhas becomeaubiquitous tool to explore theproperties of extremely largenetworks
such as those in web search and social networks on the Internet [15,19,20,28]. For
theory of classical random walk, such as hitting and commute time, covering time,
and mixing rate, see, for example, [1,4,8,21,22]. For applications in contemporary
sciences and technology including those mentioned above, see [3,11,18,28,33] and
references therein.

In its classical settings, behaviors and properties of random walk are dependent
only on graph structures such as node degrees (number of adjacent nodes). However,
in many real-world applications, there are usually potential values associated to the
nodes on graphs. For instance, the possible states of certain material can be modeled
as nodes on a graph, and the potential of each node has physical meaning such as the
energy configuration of the state represented by this node, [31]. In this case, it is of
interests to find the optimal state (node) among extensively many possible ones such
that the material is most stable or has best strength. In social networks, nodes and
edges indicate people and their relationships, and the potential value of a node can be
a virtual property that describes the importance or influence of an individual in the
network [2,17]. Thenwe need to find themost influential individuals in a huge network
quickly. For web search problem, a node is a webpage on the Internet and the potential
measures how closely the webpage is related to a given search keyword or criterion,
etc. In these cases, it is often of interests to locate the nodes with globally extremal
potential values, or to provide a ranking of nodes according to their potential values
and their connectivities to other nodes. Although in theory the graph structure and
node potential distribution can be revealed by the eigensystem of the stochastic matrix
of randomwalk, it is usually intractable to directly compute such systems numerically
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Random teleportation on finite graphs 691

due to the exponentially large sizes of graphs and networks in real-world applications.
On the other hand, random walk and teleportation method, if properly designed, is
feasible and usually efficient for such global optimization and ranking problems on
large graphs, since it dose not require complete exploration of the entire graph but still
can return optimal solution with high probability.

The new random walk and teleportation algorithm proposed in this paper is closely
related to theMetropolis algorithm. TheMetropolis orMetropolis–Hastings algorithm
[16,24] is one of the earliest randomwalk methods and can be used to solve large scale
optimization problemongraphswhere node potential values are associated. In themost
basic setting, suppose that one is currently at node x with potential φ(x) ∈ R, the
Metropolis–Hastings algorithm first selects another node y randomly with uniform
distribution. If φ(y) ≤ φ(x) then accept y as the next step automatically, otherwise
accept y with probability e−(φ(y)−φ(x))/β for some prescribed parameter β > 0 which
is usually referred to as temperature. Under this formulation, the stationary probability
distribution of this walk is the Gibbs distributionπ(x) ∝ e−φ(x)/β . More generally, for
any target stationary distribution π , the Metropolis–Hastings algorithm can convert
the stochastic matrix K (x, y), the probability of moving to y from x on the graph, of a
base Markov chain to a stochastic matrix M(x, y) of a π -reversible chain [6]. Hence,
the Metropolis–Hastings algorithm can be used to construct a feasible chain such that,
at the steady state, one hasmuch larger chance to attain x of globally minimal potential
since φ(x) < φ(y) and the Gibbs distribution π(x) � π(y) for any non-optimal node
y if β is small enough. This property provides a theoretical foundation for finding
optimal node on a large graph based on samplings.

By taking a closer look, we can see that the merit ofMetropolis–Hastings algorithm
is in the possibility of accepting a node with larger potential value and hence can
guide the walker escape from local minimum. On the contrary, gradient or greedy
method always selects the neighbor node of minimal potential and hence can get
stuck at a local optimum easily. However, the Metropolis–Hastings algorithm does
not distinguish between nodes as long as they have potential values no larger than that
of the current node. This can be quite inefficient when the walker is already close to
a global optimum, where it is desirable to go steepest descent direction. Therefore,
the main purpose of this paper is to design a new random walk and teleportation
algorithm that incorporates the merits of the Metropolis–Hastings algorithm and the
gradient algorithm such that the walker can escape from local minima with moderate
probability and reach the global optimum more easily.

In this paper, we also introduce an intermittent strategy to overcome the issue of the
restrictive requirement on the noise or “temperature” parameter β. The choice of noise
parameter β has been a major concern of sampling-based optimization algorithms on
graphs. This parameter behaves as noise added to gradient descent (greedy search)
method. Noise yields an analogue to diffusion as Brownian motion introduced to a
deterministic system in continuous setting. To increase the ratio of probabilities of
reaching global minimizer and other nodes, the noise β needs to be small in both of
the Metropolis–Hastings algorithm and the proposed random walk and teleportation.
However, small β yields slow convergence and hence is not efficient in practice.
To overcome this difficulty, the simulated annealing adopts the Metropolis–Hastings
algorithm with slowly decreasing β → 0 [23,29,32]. The name annealing emulates
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the physical process where a solid is slowly cooled down such that the structure is
frozen at minimum energy configuration. It is obvious that dynamically decreasing β

is critical to annealing efficiency. For a survey of existing cooling strategies, see [25].
The similar annealing approach can also be used for random walk and teleportation.
In general the cooling rate is at logarithmic rate in time to guarantee convergence
[14], and hence can be very inefficient in general. As an alternative, the intermittent
diffusion strategy introduced in this paper switches β off periodically followed by
greedy search. We show in theory the effectiveness of intermittent diffusion in this
paper, and justify its practical performance in global optimization.

The remainder of this paper is organized as follows. In the next section we propose
the potential induced random walk and random teleportation. We provide a compar-
ison of the Metropolis–Hastings algorithm and the proposed random walk to reveal
their major differences. In Sect. 3, we provide a continuous analogue of the random
walk, and prove the convergence properties of the proposed random walk and tele-
portation. In Sect. 4, we introduce the intermittent diffusion strategy and justify its
effectiveness in search of globalminimum theoretically. Experimental results of global
minimum search and node ranking on several graphs, effects of intermittent diffusion,
and evaluations are presented in Sect. 5.

2 Proposed algorithm

2.1 Potential induced random walk

Let G = (V, E) be a finite non-bipartite undirected graph with node set V and edge
set E . The edge e(x, y) = 1 if edge (x, y) ∈ E and 0 otherwise. Without likelihood
of confusion, we also use notation E = [e(x, y)]x,y∈V as the adjacency matrix. Let
φ(x) ∈ R be the potential of node x ∈ V . In the remainder of this paper, |V | is the
total number of nodes in V , and Nx denotes the neighborhood of node x (including
x , i.e. e(x, x) = 1) as follows,

Nx := {y ∈ V : e(x, y) = 1}. (2.1)

According to the potential function φ defined on V , we can further partition the
neighborhood Nx to two disjoint subsets N−

x and N+
x defined by

N−
x = {y ∈ Nx : φ(y) ≤ φ(x)} and N+

x = {y ∈ Nx : φ(y) > φ(x)}. (2.2)

Using the notation introduced above, we propose a random walk corresponding to
Markov chain with transition probability

M(x, y) ∝ e−(φ(y)−φ(x))/β, y ∈ Nx . (2.3)

More precisely, the algorithm proceeds as in Algorithm 1.
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Random teleportation on finite graphs 693

Algorithm 1 Potential induced random walk on graph
Given G = (V, E) and potential φ : V → R. Set β > 0 and start from initial node x .
repeat
Move to y ∈ Nx with probability

e−(φ(y)−φ(x))/β
∑

z∈Nx
e−(φ(z)−φ(x))/β

. (2.4)

until Stopping criterion is satisfied.

Table 1 Comparison of unnormalized transition probabilityM(x, y) of theMetropolis–Hastings algorithm
and the Algorithm 1

Metropolis–Hastings Algorithm 1

M(x, y) ∝ min
(
1, e−(φ(y)−φ(x))/β

)
e−(φ(y)−φ(x))/β

Here x �= y ∈ Nx

Remark 2.1 As β → 0, the proposed method is essentially the steepest descent gra-
dient or greedy algorithm, i.e. in every step one moves to the node of lowest potential
value in the neighborhood.

Remark 2.2 In the case of constant potential, i.e. φ ≡ constant, the proposed method
reduces to classical random walk on graph. Note that there is slight difference to the
definitions of classical random walk that staying at the current location is possible in
Algorithm 1.

This proposed method is similar to the Metropolis–Hastings algorithm in the sense
that it allows movement to nodes of larger potential values with positive probabilities.
However, it also differs from the conventional Metropolis–Hastings algorithm as the
proposed method distinguishes between the descent directions. Their difference in
terms of transition probability is summarized in Table 1. From Table 1, one can readily
see that the difference: in the proposed random walk Algorithm 1, X is more likely to
take y if φ(y) is smaller; On the contrary, there is no preference among the nodes y
as long as φ(y) ≤ φ(x) in Metropolis–Hastings algorithm. Therefore, the Algorithm
1 is expected to move to the global optimum faster than the Metropolis–Hastings if
it is nearby. We remark here that the transition probability M(x, y) of Metropolis–
Hastings algorithm in Table 1 corresponds to amodified local version and its stationary
distribution is not exactly Gibbs distribution π(x) ∝ e−φ(x)/β unless node degrees are
taken into account.

2.2 Potential induced random teleportation

Classical random walk restricts the movement to neighbor nodes only, which can
be quite inefficient in exploring large graphs. For instance, an arbitrary initial guess
can be far from the global optimum, and hence taking consecutive steps to neighbor
nodes only on the graph towards the global optimum requires long time. Recall that

123



694 S.-N. Chow et al.

the Metropolis–Hastings algorithm would have the capability of jumping to any node
on the graph, we hence extend the proposed algorithm by adding n nodes randomly
selected from the entire graph G to the original neighborhood Nx (but not eliminate
repeated nodes) for consideration, and calculate the transition probability similar as
(2.4). The modified algorithm essentially defines a random teleportation procedure
and it is summarized in Algorithm 2 as follows.

Algorithm 2 Potential induced random walk and teleportation on graph
Given G = (V, E) and potential φ : V → R. Set β > 0 and start from initial node x .
repeat
Randomly select n nodes {y1, . . . , yn} from V (with equal probabilities), and move to y ∈ Nx or
y ∈ {y1, . . . , yn} with probability

e−(φ(y)−φ(x))/β
∑

z∈Nx
e−(φ(z)−φ(x))/β + ∑n

i=1 e
−(φ(yi )−φ(x))/β

. (2.5)

until Stopping criterion is satisfied.

Remark 2.3 The teleportation (2.5) enables possibility to move to any nodes on the
graph. This essentially converts any given graph to a complete graph where all nodes
are connected to each other. Hence the graph structure becomes quite regular. Actually,
the Google’s PageRank web search algorithm also implements teleportation as the so-
called damping factor, where a randomwalk between linked webpages can be directed
to any webpage with a prescribed probability [19].

Based to the presentation of Algorithm 2, the transition probability M(x, y) can be
written as follows,

M(x, y) ∝
{

(1 + r)e−(φ(y)−φ(x))/β if y ∈ Nx

re−(φ(y)−φ(x))/β otherwise
(2.6)

where r = n/|V | ∈ [0, 1] is the portion of nodes that are considered as possible
destinations in addition to nodes in Nx in each step.

2.3 Stationary distribution

To analyze the probabilistic properties of randomwalk and teleportation inAlgorithms
1 and 2, we first define a set function Kβ as follows,

Kβ(W ) :=
∑

x∈W
e−φ(x)/β, (2.7)

where W is a subset of nodes in V . Then the transition probability M in (2.6) can be
written as

M(x, y) = (1Nx (y) + r)e−φ(y)/β

Kβ(Nx ) + r Kβ(V )
(2.8)
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Random teleportation on finite graphs 695

where 1Nx is the indicator function ofNx , i.e. 1Nx (y) = 1 if y ∈ Nx and 0 otherwise.
One can easily observe that the analysis includes the case of Algorithm 1 with r = 0.
According to the detailed balance condition

p∗
x M(x, y) = p∗

yM(y, x), (2.9)

we obtain the stationary distribution p∗ as

p∗
x = C(Kβ(Nx ) + r Kβ(V ))e−φ(x)/β, (2.10)

where the normalizing constant C of p∗
x is defined by

C−1 =
∑

x∈V
(Kβ(Nx ) + Kβ(V ))e−φ(x)/β

=
∑

x∈V
Kβ(Nx )e

−φ(x)/β + Kβ(V )

(
∑

x∈V
e−φ(x)/β

)

(2.11)

=
∑

e(x,y)=1

e−(φ(x)+φ(y))/β + r

(
∑

x∈V
e−φ(x)/β

)2

= q(E + r J )qT

where q = [e−φ(x)/β ]x∈V ∈ R|V | is a row vector, E = [e(x, y)]x,y∈V is the adjacency
matrix, and J is the matrix of all ones of size |V |.

The stationary distribution (2.10) explains how the random teleportation behaves
under steady state. For comparison, we recall that the stationary distribution of
Metropolis–Hastings algorithm, i.e. the Gibbs distribution, is

π(x) ∝ e−φ(x)/β . (2.12)

Compare the ratio of stationary probabilities at any two nodes x and y for the stationary
distribution (2.10) and (2.12), we have

p∗
x/p

∗
y

πx/πy
= Kβ(Nx ) + r Kβ(V )

Kβ(Ny) + r Kβ(V )
. (2.13)

Let us consider Algorithm 1 with r = 0 for example, then the ratio (2.13) reduces to
Kβ(Nx )/Kβ(Ny). Note that by definition there is

Kβ(Nx ) =
∑

z∈Nx

e−φ(z)/β . (2.14)

Therefore, when β is sufficiently small, there is a dominant term e−φ(x∗) on the right
side of (2.14), where x∗ has the minimal potential value among nodes in Nx . Hence
there is
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Kβ(Nx ) ≈ e−φ(x∗). (2.15)

Thus, if Nx contains the global minimizer (for example if x itself is the global mini-
mizer) but Ny does not, we have

Kβ(Nx ) ≈ e−φ(x∗) � e−φ(y∗) ≈ Kβ(Ny), (2.16)

and hence there is
p∗
x/p

∗
y

πx/πy
= Kβ(Nx )

Kβ(Ny)
� 1. (2.17)

In other words, the stationary probability distribution p∗ (2.10) by Algorithm 1 is
more favorable to global minimizer x compared to Gibbs distribution π in (2.12) from
the Metropolis–Hastings algorithm. This is a desirable property if the task is to find
the global minimizer because the chance to reach this particular node is automatically
increased.

The value of β determines how much the random walk relies on graph structure
and potential distribution. If β is very large, then the variation of potential values has
little impact and hence the proposed randomwalk reduces to classical randomwalk for
which the stationary distribution is proportional to node degrees. In this case, the graph
structure determines the behavior of random walk completely. When β → 0, the walk
goes steepest descent direction only and hence the potential distribution dominates
the process. Therefore, a moderate value β yields a random walk that balances graph
structure and potential distribution.

The degree of freedom of teleportation, which is described by r = n/|V |, also
affects the stationary distribution. When random teleportation is enabled, there is
r > 0 and both the numerator and denominator in (2.13) are bumped by r Kβ(V ).
Nevertheless, to remain feasibility of the algorithm, the value of r , or the size of
additional teleport nodes n, cannot be large.

3 Convergence analysis

We have shown in the previous section that the random walk or teleportation has
stationary distribution (2.10). Therefore, Algorithms 1 and 2 construct p∗-reversible
Markov chain of nodes on graph G. As a consequence of Perron-Frobenius theorem,
the chain converges to p∗ exponentially fast depending on the second largest eigen-
value of transition matrix M(x, y). Therefore the convergence rate, or the so-called
mixing rate, depends on graph structure, particularly the spectral gap of the graph
Laplacian matrix of G, the potential function φ, and temperature β. As the transition
matrix M(x, y) can have tremendously large size and values of entries vary a lot due
to non-uniform distribution of node potentials for graphs in real-world applications,
calculating its eigensystem to reveal these properties becomes difficult. In this section,
we first provide a continuous time analogue of randomwalk and teleportation process,
and derive the lower bound of convergence rate in an alternative way based on the
continuous time dynamics of the probability evolution.
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3.1 Continuous time analogue of discrete time random walks

We consider the random walk defined in Algorithm 1 first and the analysis can be
easily carried out for random teleportation in Algorithm 2. Let p(t) = [px (t)]x∈V
and p∗ = [p∗

x ]x∈V be row vectors in R|V |, where px (t) is the probability that one
is at node x at time step t , and p∗

x is the stationary distribution at node x . Then p(t)
satisfies

p(t + 1) = p(t)M, t = 0, 1, 2, . . . , (3.1)

and p(t) → p∗ as t → ∞. In this paper, we always choose starting node at random
uniformly on the graph and hence the initial probability is p(0) = (1, · · · , 1)/|V |.
The random walk has a continuous time analogue as follows: once arrived at x , we
draw time tx,y ∼ exp(M(x, y))1 for each y ∈ Nx independently, and move to y in
time tx,y if tx,y = min{tx,z : z ∈ Nx }. Note that in general, suppose random variables
ti ∼ exp(αi ), i = 1, · · · , n are independent, where αi > 0,∀i and ∑n

i=1 αi = 1.
Then E(min{ti : i = 1, · · · , n}) = 1 and Prob(ti ≤ t j ,∀ j �= i) = αi . Note that
the coincidence tx,y = tx,y′ for y �= y′ occurs with probability 0. This analogue
is a continuous time Markov process. Moreover, E(min{tx,y : y ∈ Nx }) = 1 and
tx,y has exactly chance M(x, y) to be the minimal among {tx,z : z ∈ Nx }. Namely,
one is expected to make a move in time 1 since arrived at x , and the probability of
moving to y is M(x, y). This is consistent with (3.1). For sufficiently long random
walk and teleportations on large graphs, the discrete and continuous time versions are
expected to behave quite similarly. Therefore, we use the continuous time evolution
of probability p(t) to estimate the convergence rate. In particular, p(t) has derivatives
with respect to time t and it follows conservation law etc.

3.2 Convergence results

For notation simplicity, we consider the convergence of random walk in Algorithm 1
only. The steps can be readily modified to show the convergence properties of random
teleportation in Algorithm 2. We first derive the dependence of p′(t) on p(t), then use
Gronwall’s inequality to estimate convergence rate. In our derivation, we define

hx (t) := px (t)

p∗
x

− 1, ∀x ∈ V . (3.2)

Lemma 3.1 The evolution of px (t) satisfies

p′
x (t) =

∑

y∈Nx

Ce−(φ(y)+φ(x))/β

(
py(t)

p∗
y

− px (t)

p∗
x

)

, (3.3)

where C is defined in (2.11) and depends only on G, φ, and β.

1 An exponential random variable T ∼ exp(α) for α > 0 has probability density function p(t) = αe−αt

for t > 0.
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Proof According to the conservation law, the change of probability px (t) equals the
difference of probabilities enter x and those flow out. Namely, we have

p′
x (t) =

∑

y∈Nx\{x}
py(t)M(y, x) −

∑

y∈Nx\{x}
px (t)M(x, y)

=
∑

y∈Nx

(
py(t)M(y, x) − px (t)M(x, y)

)
(3.4)

=
∑

y∈Nx

(

p∗
yM(y, x)

py(t)

p∗
y

− p∗
x M(x, y)

px (t)

p∗
x

)

=
∑

y∈Nx

Ce−(φ(y)+φ(x))/β

(
py(t)

p∗
y

− px (t)

p∗
x

)

,

where in the last equality we used the fact that

p∗
x M(x, y) = p∗

yM(y, x) = Ce−(φ(y)+φ(x))/β (3.5)

by recalling the formulas of M(x, y) and p∗
x in (2.8) and (2.10), respectively. ��

Let λ > 0 be the spectral gap of graph G, i.e. λ is the second largest eigenvalue of
D − E , the Laplace matrix of G, where E = [e(x, y)]x,y∈V is the adjacency matrix
and D is the diagonal matrix so that Dxx = ∑

y e(x, y). Then we have the following
result.

Lemma 3.2 Let p∗
max = max{p∗

x : x ∈ V }, then there is

λ

p∗
max

∑

x∈V
h2x (t)p

∗
x ≤ 1

p∗
max

∑

e(x,y)=1

(
hx (t) − hy(t)

)2
p∗
x ≤

∑

e(x,y)=1

(
hx (t) − hy(t)

)2
.

(3.6)

Proof Due to the Poincaré-type inequality (see, e.g., [7]), there is

λ

p∗
max

Var p∗(h(t)) ≤
∑

e(x,y)=1

(
hx (t) − hy(t)

)2
. (3.7)

On the other hand, there is

Var p∗(h(t)) =
∑

x∈V
p∗
x

(

hx (t) − 1

|V |
∑

x∈V
hx (t)

)2

=
∑

x∈V
p∗
xh

2
x (t)−

(
∑

x∈V
p∗
xhx (t)

)2

,

(3.8)
where the second term on right vanishes:

∑

x∈V
p∗
xhx (t) =

∑

x∈V
p∗
x

(
px (t)

p∗
x

− 1

)

=
∑

x∈V
(px (t) − p∗

x ) = 0, (3.9)
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since
∑

x px (t) = ∑
x p∗

x = 1. This completes the proof. ��
Theorem 3.3 Assume that φ∗ := maxx∈V φ(x) < ∞, then probability distribution
px (t) of the random walk defined in Algorithm 1 converges to the stationary distrib-
ution p∗

x ∝ Kβ(Nx )e−φ(x)/β exponentially fast. Moreover, there is

∥
∥
∥
∥
p(t)

p∗ − 1

∥
∥
∥
∥
p∗

≤
∥
∥
∥
∥
p(0)

p∗ − 1

∥
∥
∥
∥
p∗
e−Cλte−2φ∗/β/p∗

max . (3.10)

where C is defined in (2.11) with r = 0 and depends only on G, φ, and β.

Proof The squared (1/p∗)-weighted distance L between p(t) and p∗ at t > 0 is
defined as follows,

L(t) := 1

2

∥
∥
∥
∥
p(t)

p∗ − 1

∥
∥
∥
∥

2

p∗
= 1

2

∑

x∈V

∣
∣
∣
∣
px (t)

p∗
x

− 1

∣
∣
∣
∣

2

· p∗
x = 1

2

∑

x∈V
h2x (t)p

∗
x . (3.11)

Since h′
x (t) = p′

x (t)/p
∗
x , by taking the derivative of L with respect to t , we have

L ′(t) =
∑

x∈V
p∗
xhx (t)h

′
x (t) =

∑

x∈V
hx (t)p

′
x (t), (3.12)

Due to the definition of h in (3.2) and Lemma 3.1, we can substitute p′
x (t) in (3.12)

by (3.3) and obtain

L ′(t) =
∑

x∈V
hx (t)

∑

y∈Nx

Ce−(φ(y)+φ(x))/β(hy(t) − hx (t))

= C
∑

e(x,y)=1

e−(φ(y)+φ(x))/βhx (t)(hy(t) − hx (t))

+C
∑

e(y,x)=1

e−(φ(y)+φ(x))/βhy(t)(hx (t) − hy(t)) (3.13)

= −C
∑

e(x,y)=1

e−(φ(y)+φ(x))/β(hy(t) − hx (t))
2

≤ −Ce−2φ∗/β ∑

e(x,y)=1

(hy(t) − hx (t))
2,

since φ(y) + φ(x) ≤ 2φ∗. Then from Lemma 3.2 we get

L ′(t) ≤ −2Cλe−2φ∗/β

p∗
max

L(t). (3.14)

Using Gronwall’s inequality, we can readily deduce that p(t) converges to p∗ expo-
nentially fast
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∥
∥
∥
∥
p(t)

p∗ − 1

∥
∥
∥
∥

2

p∗
≤

∥
∥
∥
∥
p(0)

p∗ − 1

∥
∥
∥
∥

2

p∗
e−2Cλte−2φ∗/β/p∗

max . (3.15)

��
Corollary 3.4 For constant potential, the probability p(t) converges to stationary
distribution p∗

x ∝ d(x), the degree of x, exponentially fast and

∥
∥
∥
∥
p(t)

p∗ − 1

∥
∥
∥
∥
p∗

≤
∥
∥
∥
∥
p(0)

p∗ − 1

∥
∥
∥
∥
p∗
e−λt/d∗

. (3.16)

where d∗ is the largest node degree in G = (V, E).

Proof Without loss of generality we assume φ = 0. Then p∗
x = Cd(x). Applying

Theorem 3.3 we can get the estimate. ��
The results above can be easily extended to the random teleportation in Algorithm

2. We only present the results below since the proofs are very similar. Note that
for the case of Algorithm 2, the graph G is completed due to the fact that random
teleportation essentially allows moving to any node in G (although the probability of
moving to a non-adjacent node could be very small). Therefore the edge set becomes
E = {e(x, y) : x, y ∈ V } and the spectral gap of G becomes (N − 1)/N .

Theorem 3.5 Assume that φ∗ := maxx∈V φ(x) < ∞, then probability distribution
px (t) of the random walk defined in Algorithm 2 converges to the stationary distrib-
ution p∗

x ∝ (Kβ(Nx ) + r Kβ(V ))e−φ(x)/β exponentially fast. Moreover, there is

∥
∥
∥
∥
p(t)

p∗ − 1

∥
∥
∥
∥
p∗

≤
∥
∥
∥
∥
p(0)

p∗ − 1

∥
∥
∥
∥
p∗
e−C(N−1)te−2φ∗/β/Np∗

max . (3.17)

where C is defined in (2.11) and depends only on G, r , φ, and β.

For constant potentials, we can again assume φ(x) = 0, ∀x ∈ V . Then Kβ(Nx ) +
r Kβ(V ) = d(x) + r N = d(x) + n and we have the following estimate.

Corollary 3.6 For constant potential, the probability p(t) converges to stationary
distribution p∗

x ∝ (d(x) + n) exponentially fast and

∥
∥
∥
∥
p(t)

p∗ − 1

∥
∥
∥
∥
p∗

≤
∥
∥
∥
∥
p(0)

p∗ − 1

∥
∥
∥
∥
p∗
e−(N−1)t/[N (d∗+n)]. (3.18)

where d∗ is the largest node degree in G = (V, E).

4 Intermittent diffusion

The stationary distributions p∗ in (2.10) is shown to be favorable to global min-
imum if β is small enough. However, the convergence to stationary distribution
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can be slow if β is too small. In this case, the random walk can also get stuck
near local minimum and requires extensively long time to escape. This yields
unsatisfactory performance of the proposed random walk in practice. Alternatively,
one can make β decrease gradually to 0 as in simulated annealing, however,
the decay rate is in general too slow and hinders the practical efficiency of the
algorithm.

To overcome this issue with β, we introduce the intermittent diffusion strategy that
can significantly improve the efficiency of random walk for global optimum search.
The intermittent diffusion implements multiple cycles of diffusion-greedy strategy to
Algorithms 1 and 2. More specifically, in each cycle, Algorithms 1 and 2 first proceed
with a constant β drawn from [βmin, βmax] ⊂ R+ until close to steady state, followed
by greedy search to reach the nearest local minimum. The algorithm is summarized in
Algorithm 3 below. The first part in each cycle i is an analogue to adding noise to the
greedy approach so that one can move to nodes of larger potential values, similar to
the diffusion as Brownian motion is added to a deterministic process. This step should
not take long time due to the exponential convergence rate shown in Theorem 3.3. The
second part, on the contrary, is completely greedy search since the noise is turned off,
i.e. β = 0. This β switch-on-switch-off intermittent diffusion strategy is illustrated in
Fig. 1.

Algorithm 3 Global minimizer search using Algorithm 2 implemented with intermit-
tent diffusion
Given G = (V, E) and potential φ : V → R. Set 0 < βmin < βmax, diffusion time T > 0, maximum
number of diffusion cycles k ∈ N, and initial node x .
for i = 1, · · · , k do
Draw β ∼ Uniform(βmin, βmax).
Run Algorithm 2 with β for T steps and stop at x ∈ V .
Run greedy search starting from x , and return a local minimum xi .

end for
Set x = argmin1≤i≤k φ(xi ).

We now justify how such an intermittent diffusion strategy can possibly improve the
practical performance of Algorithms 1 and 2. Recall that when β is switched on and
the algorithm proceeded sufficiently long to be close to steady state p∗, the probability
c(β) that one is nearby the global minimum x∗ and such that search can find x∗ is at
least

∑
z∈Nx∗ p∗

z . In otherwords, the probability that the globalminimum is not located
in one of such switch-on-switch-off cycle is 1 − c(β). Note that if βmax is small (not
need to be that small as for p∗ → δx∗ ), then the c(β) ≥ c∗ >

∑
z∈Ny

p∗
z > 0 for any

non-optimum y ∈ V . Hence, if the cycle described above is repeated independently
for k times with βi ∈ [βmin, βmax], i = 1, . . . , k, then the probability that x∗ is not
returned by any of these k cycles is

k∏

i=1

(1 − c(βi )). (4.1)
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t

β(t)

0 t1 T1 t2 T2 t3 T3 tk Tk
· · ·

βmin

βmax

Fig. 1 Illustration of intermittent diffusion strategy. In each cycle of (Tk−1, Tk ], switch on 0 < β ∈
[βmin, βmax] during (Tk−1, tk ) to enable possibility ofmoving to nodeswith higher potential, as an analogue
of noise or diffusion process. Then switch to β = 0 and proceed gradient descent (greedy search) until a
local minimum is returned at time Tk . Repeat such cycle for multiple times. The probability that the global
minimum is returned by one of the cycles converges to 1 exponentially fast (at the order higher than any
other local minima for βmax small enough) as k → ∞

As a consequence, the probability that x∗ is returned by at least one of such cycles is

1 −
k∏

i=1

(1 − c(βi )) ≥ 1 − (1 − c∗)k → 1, (4.2)

as k → ∞. Note that the convergence rate in (4.2) is much faster than the decay rate of
β in simulated annealing. Therefore, by repeating the switch-on-switch-off strategy,
we expect to reach the global minimum very quickly. In the next section, we show the
significant improvements in efficiency gained by intermittent diffusion.

5 Experimental results

5.1 Experiment setting

We test the performance of the proposed method on a number of synthetic undirected
graphs, and select three of the graphs with different structures and potential distribu-
tions to present the typical effects of the algorithm in this section. The first graph is a
two-dimensional lattice of 103 × 103 mesh grid nodes, i.e. |V | = 106. The potential
function has geographical mountain shapewith 10 local minima and one unique global
minimum. The second one is a 6-regular graph of |V | = 106: node x is connected
to nodes x − 3, x − 2, . . . , x + 3 for x = 1, 2, . . . , |V |, and wrap to the other end
if x ≥ |V | − 2 and x ≤ 3. The potential values of these nodes are shown in Fig. 2.
The distribution of potential values has multiscale structure and exhibits many local
minima. The search of global minimizer is considerably challenging in this case. The
third graph is a 20-level complete binary tree with total of |V | = 220−1 ≈ 1.05×106

nodes. The first four levels of 24 − 1 = 15 nodes are plotted in Fig. 3. The potential
value starts from 2 at node x = 1 and monotonically decays to −2 at x = |V | in the
order of node indices. Each of the 219 leaves at the 20th level is a local minimum (has
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Fig. 2 Distribution of node
potential value φ(x) of the
6-regular graph (Test 2 in
Table 2, |V | = 106). Node x is
connected to x − 3, . . . , x + 3
(mod |V |), for x = 1, . . . , |V |.
There are a number of local
minima and one unique global
minimum
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Fig. 3 The first four levels of
the 20-level complete binary tree
(Test 3 in Table 2,
|V | = 220 − 1 ≈ 1.05 × 106)
with node indices. Potential
value φ(x) decays linearly in
order starting from node x = 1.
There are 219 local minima (the
leaves), and one unique global
minimum at the last node (the
right most leaf)

 1

32

 4  5  6  7

 8  9 10 11 12 13 14 15

Table 2 Tested graphs G = (V, E) and their properties

Test Graph name |V | Graph description

1 Lattice 106 103 × 103 Mesh grid nodes

2 Regular 106 6-Regular graph

3 Tree 220 − 1 20-Level complete binary tree

smaller potential value in its neighborhood), and the right most leaf, i.e. node x = |V |,
is the unique global minimum. Such combination of tree structure and potential distri-
bution is a hazard to any generic global optimization method on graphs without prior
knowledge. These three graphs are summarized in Table 2.

For a given graph, we start from an initial node randomly drawn from the graph,
then search for the global minimum using the following five methods: theMetropolis–
Hastings (MH), global Metropolis–Hastings (GMH), random walk only (RW) as in
Algorithm 1, random teleportation (RT) only, and the combination of random walk
and teleportation (RWT) as in Algorithm 2. The MH method restricts movement to
adjacent nodes with acceptance rate min(1, e−(φ(y)−φ(x))/β |Nx |/|Ny |) which yields
Gibbs distribution at steady state. The GMH method allows movements to any nodes
on the graph with acceptance rate min(1, e−(φ(y)−φ(x))/β) and also yields Gibbs distri-
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bution. The RT method implements teleportation in Algorithm 2 without using nodes
in neighbor Nx in (2.5).

As the acceptance rate for nodes of higher potential depends on β, we use a
large range of β values to see the performance of these five comparison methods.
In particular, we use β = 10−3, 10−4, . . . , 10−7 for all methods in Test 1, and
β = 10−1, 10−2, . . . , 10−5 for all methods in Tests 2 and 3. When β falls into these
ranges, the performance of all methods appears to be near optimal.

For each graph and β value combination, we run each of the five methods 5,000
times, and count the success rate, i.e. the portion in 5,000 runs that the method found
the global minimum. In each of the 5,000 runs, a method is restricted to take at most
104 node potential evaluations. For MH and GMH methods, this means that they can
take 104 steps since they evaluate only one node potential in each step. For RW,RT, and
RWT methods, they need to evaluate potentials of all neighbor nodes and/or random
drawn farther nodes (teleport nodes). Therefore, RW is allowed to take 2,500 steps if
there are four neighbors of each node on average, to count for a total of 104 node poten-
tial evaluations. For RT and RWT, we let them take 10 adjacent and/or teleport nodes
in each step (for instance, take all four adjacent nodes and additional six teleport nodes
for RWT), and hence restrict their maximal number of steps to 103, again a total of 104

node potential evaluations. Note that this counting is conservative for the proposed
algorithms: when we move to an adjacent node, it is very likely that the potentials of
some adjacent nodes of the new nodes have already been evaluated before, so one can
save time evaluating them again and hence the efficiency of the proposed algorithms is
further improved. We also point out that, at the same cost of 104 node potential evalu-
ations, the brute-force or exhaustive search is expected to have only 1% success rate.

5.2 Test results

The success rates of the five comparison algorithms in 5,000 runs on 2D lattice graph
(Test 1 in Table 2) are shown in Fig. 4. Because of the regular structure of lattice and
mild changes of potential distribution, random walk approach such as Metropolis–
Hastings (MH), randomwalk only (RW) as in Algorithm 1 appears to work efficiently:
they have about 30% success rates to find the global minimum at the cost of 104

node potential evaluations for all β values. The reason is that the neighbor nodes
provide useful potential descent information so that the walk follows the track to
global minimum.Moreover, the combination of randomwalk and teleportation (RWT)
is the most efficient algorithm among the five comparison methods: it is able to reach
the global minimum in every run. This improvement is because of the teleportation
step which helps the walk quickly jumps away from local minima to a much farther
node with even lower potential value, where a global minimum is likely to be nearby.
However, sole teleportation such as global Metropolis–Hastings (GMH) and random
teleportation only (RT) completely ignores local graph structure and potential descent
information and moves freely on the entire graph, and hence becomes very inefficient
and attains low success rate in search of global minimum.

We now turn to the results on the 6-regular graph in Test 2 of Table 2. As described
previously, the graph has relatively regular structure but the distribution of potential
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Fig. 4 Results of global minimum search on 2D lattice graph (Test 1 in Table 2, |V | = 106) using
different β values. Success rates in 5,000 runs, each at the cost of 104 node potential evaluations, of the
five methods: Metropolis–Hastings (MH), global Metropolis–Hastings (GMH), random walk only (RW),
random teleportation (RT) only, combination of random walk and teleportation (RWT)

values causes challenges in global minimization due to the multiscale variations and
many local minima as in Fig. 2. In this case, teleportation is necessary to escape
from local minima. Meanwhile, random walk provides important potential descent
information to attain local minimum in each potential valley. It is worth noting that,
although randomwalk can also escape from local minima efficiently if β is sufficiently
large, it can also pass the global minimum easily as it appears to be similar to local
minima for such large β. Therefore, a combination of random walk with relatively
small β and teleportation has benefits to both sides. This is justified by the outstanding
performance of RWT in Fig. 5: RWT successfully locates the global minimum in up to
54% of runs, whereas local search only methods (MH and RW) and sole teleportation
methods (GMH and RT) have much lower success rates.

However, there exist certain types of graphs, for instance the tree graph in Test 3
of Table 2, that the proposed method would not work efficiently. The tree graph, as
illustrated in Fig. 3, has extensively many local minima (the 219 leaves in the 20th
level), half of the nodes in V . Starting from any node in this tree, the right branch is a
descent direction, e.g. 2 → 5 → 11 in Fig. 3. Therefore, local search methods based
on potential descent, such as MH and RW can be misled to local minimum easily. On
the other hand, teleportation could not help much: even one teleports to a node on the
right most branch in the mid-levels, it is very likely that a teleportation that occurs
later will jump back to some node at lower left part of the tree since those nodes also
have small potential values. For instance, even if teleportation first takes one to node
3, it may move to node 12 in the next step as shown in Fig. 3. Therefore, all the five
methods perform very inefficiently and their success rates drop to only 1% or lower as
shown in Fig. 6. To sum up, if the local potential descent information lean too much to
local minima, and the valley of global minimum does not exhibit enough attraction to
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Fig. 5 Results of global minimum search on 6-regular graph (Test 2 in Table 2, |V | = 106) using different
β values. Success rates in 5,000 runs, each at the cost of 104 node potential evaluations, of the five meth-
ods: Metropolis–Hastings (MH), global Metropolis–Hastings (GMH), random walk only (RW ), random
teleportation (RT ) only, combination of random walk and teleportation (RWT )
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Fig. 6 Results of global minimum search on complete binary tree graph (Test 3 in Table 2, |V | = 220−1 ≈
1.05 × 106) using different β values. Success rates in 5,000 runs, each at the cost of 104 node potential
evaluations, of the five methods: Metropolis–Hastings (MH), global Metropolis–Hastings (GMH), random
walk only (RW ), random teleportation (RT ) only, combination of random walk and teleportation (RWT ).
Note that all methods succeeded ≤1%

maintain descent search, then the proposed method may perform badly. Nevertheless,
we show later in this section that the intermittent diffusion strategy can significantly
improve the performance of the proposed RWT algorithm to overcome this problem.
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Fig. 7 Effects of intermittent diffusion (ID) to random walk (RW) and combination of random walk and
teleportation (RWT) on the 6-regular graph and binary tree graph (Tests 2 and 3 in Table 2 respectively,
|V | ≈ 106). The results are named RW2, RWT2, and RW3, RWT3, respectively. Bar heights are the success
rates in percentage (%) in 5,000 runs of global minimum search by RW and RWT without and with ID at
the same cost of 104 node potential evaluations

5.3 Improvement using intermittent diffusion

We have introduced the concept of intermittent diffusion in Sect. 4 and illustrated its
strategy in Fig. 1. To demonstrate its effect, we select the random walk only (RW)
and the combination of random walk and teleportation (RWT), implement them using
intermittent diffusion and test on the same 6-regular graph and binary tree graph as in
Tests 2 and 3 in Table 2. More specifically, we let RW and RWT proceed 10 cycles
of search, each using 103 node potential evaluations with β values randomly drawn
from [10−4, 10−2] followed by a greedy search as illustrated in Fig. 1, instead of a
search that uses up 104 evaluations straightly. Therefore, the cost of using intermittent
diffusion remains almost the same (the difference is a marginal increase of cost in
greedy search step which in total is only few percents of the overall cost). We compare
the best success rates obtained by RW and RWT in Tests 2 and 3 above with their
new success rates using intermittent diffusion strategy (marked “+ID”), and present
the results in Fig. 7.

For the 6-regular graph, both the RWandRWTmethods obtain significant improve-
ments on search efficiency by using intermittent diffusion as shown in Fig. 7. In par-
ticular, RW used to have only 1.20% success rate but now it is bumped to 60.18%
at the same cost. RWT can also locate the global minimum in almost every run after
intermittent diffusion is implemented. The reason is that, although the potential values
exhibit multiscale structure and multiple local minima, the valley of global optimum
is still detectable by both methods and more significant than valleys of other local
minima. Hence, both RW and RWT have large chance to visit the valley when β

is switched on, and the follow up greedy search in each cycle can locate the global
minimum effectively.
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Fig. 8 Ranking of top five nodes in 2D lattice graph (Test 1 in Table 2, |V | = 106) by the comparison
algorithms. Horizontal axes show the node indices from 1 to |V |. Marker heights correspond to the rank-
ings of the nodes (higher marker indicates higher ranking). From top to bottom, the six plots show the
rankings given by potential values, and the five comparison algorithms: Metropolis–Hastings (MH), global
Metropolis–Hastings (GMH), random walk only (RW), random teleportation (RT) only, combination of
random walk and teleportation (RWT)

The effect of intermittent diffusion becomes subtle in the tree graph (Test 3 in
Table 2).According to the graph structure shown inFig. 3 and the potential distribution,
the greedy search works only at the nodes on the right most branch. For the random
walk only (RW) approach, once it started from some node at the lower left part of
the tree, it is very difficult to climb back step by step (every step is a potential ascend
direction and hence consecutive successes have very low probability) to upper levels
and reach a node on the right most branch. Therefore, the performance of RW does
not improve even with intermittent diffusion. On the other hand, for the combination
of random walk and teleportation (RWT) algorithm, there is good chance to reach
some node on the right most branch due to the teleportation procedure, but difficult to
remain on that branch for long time. Therefore, the periodic greedy search prevents
jumping away from that branch and hence RWT avoids consistently missing the global
minimum as before. This is justified by the significant improvement on success rate
using intermittent diffusion as shown in Fig. 7.

5.4 Node ranking

An important problem in exploring large graphs is to provide rankings of nodes base
on limited samplings. In this test, we show how the comparison algorithms rank the
nodes in the graphs with given potential values. For each of the 5,000 runs, we list
the ranking of nodes based on the times that they are visited during each run. Let
n(1)
x ∈ {0, 1, · · · , 5000} be the number of runs where node x is ranked number 1,

then we define x∗ = argmaxx∈V n(1)
x as the node of overall rank 1. Similarly, we

can define n(2)
x and determine the node of overall rank number 2, etc. We show the

overall ranking results by the five comparison algorithms for the 2D lattice graph and
6-regular graph in Figs. 8 and 9, respectively. For reference, we also provide the node
rankings according to potential values on the top of each figure. Note that the gaps
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Fig. 9 Ranking of top five nodes in 6-regular (Test 2 in Table 2, |V | = 106) by the comparison algorithms.
Horizontal axes show the node indices from 1 to |V |. Marker heights correspond to the rankings of the
nodes (higher marker indicates higher ranking). From top to bottom, the six plots show the rankings given
by potential values, and the five comparison algorithms: Metropolis–Hastings (MH), global Metropolis–
Hastings (GMH), random walk only (RW), random teleportation (RT) only, combination of random walk
and teleportation (RWT)

in some ranking results are due to inappropriate display of plot. For instance, the gap
between the first and third nodes in the last ranking (bottom one) in Fig. 8 implies that
the node ranked number 3 is also ranked as the second, i.e. it is also the node that are
most frequently ranked as number 2. Similarly, in the last two rankings in Fig. 9, the
missing top 1 nodes imply that the nodes ranked the second are also ranked the first,
i.e. they are also the nodes ranked as top 1 most frequently by the two algorithms.

As we can see, based on very limited samplings on the graph, the proposed algo-
rithms can generatemoderately accurate rankings of the nodes related to their potential
values (as compared to the references in the first row of Figs. 8, 9). In particular, the
results by global Metropolis–Hastings algorithm (GMH) and the random teleportation
only algorithm (RT) are very similar to that of reference ranking. This is because that
these two methods only take the potential value into account, but not graph structures.
In contrast, the other methods also consider the neighbor information (local graph
structure and potentials of neighbor nodes) and hence their ranking results do not
follow ranking of potentials exactly.

6 Concluding remarks

We designed a new potential induced random walk and teleportation algorithm on
finite graphs. The algorithm can be used to search for nodes with extreme potentials,
and provide ranking of nodes according to their potentials efficiently. In each step,
the algorithm chooses a subset of nodes, including the neighbors of the current node
and some non-neighbor teleportation nodes on the graph, and moves to one of them
according to transition probability determined by the gaps between potential values
of neighbor/teleportation nodes and the current node. The algorithmintegrates the
structure of the graph with the merit of gradient descent methods so that nodes with
lower potential have higher probability to be reached, and hence to obtain the nearby
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optimummore efficiently.Meanwhile, the algorithm also allows teleportation to nodes
far away to avoid getting stuck at local minima. Convergence rate to the steady state of
the proposed random teleportation is derived. For very difficult searching problems,we
introduce an intermittent diffusion strategy which can significant improve the random
teleportation algorithm. Theoretical and numerical studies are carried out to justify
the performance of the proposed algorithm.

The proposed algorithm is aimed to solve generic optimization problem defined on
graph. Therefore, it has the potential to solve a large number of applications, such as
problems of in RNA folding or information propagation on large scale social media
networks, where the possible states or variables are discrete and can be described
as nodes on a graph. Although the graphs formed in these applications often have
extensively large sizes, the proposed algorithm provides an effective way to reach the
optimum node with high probability.
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