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Abstract

In recent years, we have witnessed unprecedented growth of research interests
in deep learning approaches to image reconstruction. A majority of these
approaches are inspired by the well-developed variational method and associated
optimization algorithms for the inverse problem of image reconstruction. These
approaches mimic the iterative schemes of the standard optimization algorithms
but integrate learnable components to form structured deep neural networks
and employ large amount of observation data to train the networks for the
specific reconstruction tasks. They have demonstrated significantly improved
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empirical performance and require much lower computational cost compared
to the classical methods in a variety of applications. We provide the details of
the derivations, the network architectures, and the training procedures for several
typical networks in this field.

Keywords

Image reconstruction · Variational method · Deep neural network ·
Optimization

Introduction

Variational method has been one of the most mature and effective approaches for
solving inverse problems in imaging Aubert and Vese (1997), Dal Maso et al.
(1992), Koepfler et al. (1994), and Scherzer et al. (2009). In the context of image
reconstruction, the inverse problem can be formulated as an optimization in a
general form as follows:

min
u

g(u) + h(u), (1)

where u is the image to be reconstructed, h(u) is the data fidelity that measures the
discrepancy between u and the acquired data (often in the transformed domain), and
g(u) is a regularization term which imposes the prior knowledge or our preference
on the solution u.

To instantiate the variational method (1), we may consider the image recon-
struction problem with total-variation (TV) regularization for compressive sensing
magnetic resonance imaging (CS-MRI) in the discretized form: Suppose that the
gray-scale image u to be reconstructed is defined on the two-dimensional

√
n × √

n

mesh grid (thus a total of n pixels) representing its square domain [0, 1]2. Then u

can be interpreted as a vector in R
n where its ith component ui ∈ R is the integral

(or average) of the image intensity value over the ith pixel for i = 1, . . . , n. MRI
scanners can acquire the Fourier coefficients of u, from which one can recover u

simply by applying inverse Fourier transform. For fast imaging in CS-MRI, we only
acquire a fraction of Fourier coefficients b ∈ C

m with m < n, which relates to
u by b = PF u + e where F ∈ C

n×n is the discrete Fourier transform matrix,
P ∈ R

m×n is a binary selection matrix (one entry as 1 and the rest as 0 in each row)
indicating the indices of the sampled Fourier coefficients, and e ∈ C

m represents the
unknown noise in data acquisition. Then the data fidelity term h(u) in (1) can be set
to (1/2) · ‖PF u − b‖2

2. For fast imaging, m is often much smaller than n and hence
we need additional regularization g(u) in (1) to ensure robust and stable recovery of
u. TV is one of the most commonly used regularization in image reconstruction–the
simplified version of TV in the discrete setting is T V (u) = ∑n

i=1 ‖Diu‖2 where
Di ∈ R

2×n is binary and has only two nonzero entries (1 and −1) corresponding
to the forward finite difference approximations to partial derivatives along the
coordinate axes at pixel i. Hence the regularization can be set to g(u) = μT V (u)
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for some user-chosen weight parameter μ > 0 in (1). The motivation of using TV as
regularization is that images with small TV tend to have distinct constant intensity
values in different regions and sharp intensity change on the boundary between two
regions, hence displaying the included objects with clear intensity contrasts. The
minimization in (1) thus reflects the principle of the variational method for image
recovery—we want to find the minimizer u such that it is consistent to the observed
data (small value of h(u)) and meanwhile has desired regularity (small value of
g(u)). To this point, (1) becomes an optimization problem of u ∈ R

n, for which we
can apply a proper numerical optimization algorithm and solve for u from (1).

The variational method yields a concise and elegant formulation of image
reconstruction as in (1). It has achieved great success in image reconstruction thanks
to the fast developments of numerical optimization techniques in the past decades.
However, there are several main issues associated with this approach.

The first issue with (1) is the choice of regularization g(u). There are numerous
regularization terms proposed in the literature. Although many of them have proven
robust in practice, they are often overly simplified and cannot capture the fine details
in medical images which are critical in diagnosis and treatment. For example, TV
regularization is known for its “staircase” effect due to its promotion of sparse
gradients, such that the reconstructed images tend to be piecewise constant which
are not ideal approximations to the real-world images. For example, important fine
structures and minor contrast changes can be smeared in the reconstructed image
using TV regularization, which is unacceptable for applications that require high
image quality.

The second issue is the parameter tuning. To achieve desired balance between
noise reduction and faithful structural reconstruction, the parameters of a recon-
struction model (e.g., μ > 0 mentioned above) and its associated optimization
algorithm (such as step sizes) need to be carefully tuned. Unfortunately, the image
quality is often very sensitive to these parameters; and the optimal parameters are
also shown to be highly dependent on the specific acquisition settings and imaging
datasets.

Last but not least, the reconstruction time of iterative optimization algorithms
is also a major concern on their applications in real-world problems. Despite that
the efficiency of optimization algorithms is continuously being improved, these
algorithms, even for convex problems, often require hundreds of iterations or more
to converge, which result in long computational time.

The issues with the classical variational methods and optimization algorithms
mentioned above inspired a new class of deep learning-based approaches. Deep
learning Goodfellow et al. (2016) with deep neural networks (DNNs) as the core
component has achieved great success in a variety of real-world applications,
including computer vision (He et al. 2016; Krizhevsky et al. 2012; Zeiler and
Fergus 2014), natural language processing (Devlin et al. 1810; Hinton et al. 2012;
Sarikaya et al. 2014; Socher et al. 2012; Vaswani et al. 2017), medical imaging
(Hammernik et al. 2018; Schlemper et al. 2018; Sun et al. 2016), etc. DNNs have
provable representation power and can be trained with little or no knowledge about
the underlying functions. However, there are several major issues of such standard
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deep learning approaches: (i) Generic DNNs may fail to approximate the desired
functions if the training data is scarce; (ii) the training of these DNNs is prone to
overfitting, noises, and outliers; and (iii) the trained DNNs are mostly “blackboxes”
without rigorous mathematical justification and can be very difficult to interpret.

To mitigate the aforementioned issues of DNNs, a class of learnable optimization
algorithms (LOAs) has been proposed recently. In brief, the architectures of the
neural networks in LOAs mimic the iterative scheme of the optimization algo-
rithms, also known of “unrolling” the optimization algorithms. More specifically,
these reconstruction networks are composed of a small number of phases, where
each phase mimics one iteration of a classical, optimization-based reconstruction
algorithm. In most cases, the terms corresponding to the manually designed regular-
ization in the classical methods are parameterized by multilayer perceptrons whose
parameters are to be learned adaptively in the offline training process with lots of
imaging data. After training, these networks work as fast feedforward mappings
with extremely low computational cost, so that the reconstruction of new images
can be performed on the fly. These methods combine the best parts of variational
methods and deep learning for fast and adaptive image reconstruction. In the next
section, we first consider the algorithms that are designed to solve a prescribed
model in the form of (1). Section “Structured Image Reconstruction Networks” is
dedicated to the class of deep reconstruction networks that can learn the variational
model or algorithm such that the outputs are high-quality reconstructions of the
images.

Learned Algorithm for Specified Optimization Problem

Learned optimization algorithms are modifications of traditional optimization
algorithms by including trainable components, such as deep neural networks or the
layers, for fast and adaptive numerical solution. This approach is motivated by the
viewing the iterative scheme in traditional optimization algorithm (e.g., gradient
descent) as a feedforward neural network with repeated, predesigned layers. The
main structures of these algorithms largely adopt those of the original optimization
algorithms. To make these algorithms more adaptive to the given problem, learnable
components are introduced so they can improve over the original algorithms using
the available data.

In this section, we showcase several learned optimization algorithms for the well-
known l1 minimization problem as follows:

min
u

μ‖u‖1 + 1

2
‖Au − b‖2 , (2)

where A ∈ R
m×n, b ∈ R

m, and the parameter μ > 0 are given. The solution of (2)
is also known as the least absolute shrinkage and selection operator (lasso) or sparse
recovery since the solution u fits the observed data b in the data fidelity term h(u) :=
(1/2) · ‖Au − b‖2 and meanwhile tends to have only a small amount of nonzero
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components (hence sparse) due to the l1 regularization g(u) := μ‖u‖1. A basic
method for solving (2) is called the iterative shrinkage-threshold algorithm (ISTA).
To solve (2), ISTA first approximates h(u) by its first-order Taylor expansion at
the previous iterate u(k) plus a quadratic penalty term with weight 1/(2α) in each
iteration k as follows:

h(u) ≈ h(u(k)) + 〈∇h(u(k)), u − u(k)〉 + 1

2α
‖u − u(k)‖2

= 1

2α
‖u − (u(k) − α∇h(u(k)))‖2 + const, (3)

where we completed the square to obtain the equality above, and the term “const”
represents a constant independent of u. As a result, ISTA generates the next iterate
u(k+1) by

u(k+1) = arg min
u

{
g(u) + 1

2α
‖u − (u(k) − α∇h(u(k)))‖2

}
, (4)

where the constant term is omitted since it does not affect the result u(k+1) in (4).
To obtain u(k+1) in (4), it is essential to find the solution of the proximity operator
proxg defined below for any given z ∈ R

n:

proxg(z) := arg min
x

{
g(x) + 1

2
‖x − z‖2

}
. (5)

With g(x) := μ‖x‖1, the proximity operator proxg has a closed form solution,
called the shrinkage operator Sμ. That is, the ith component of Sμ(z) = proxg(z) ∈
R

n is

[Sμ(z)]i = [proxg(z)]i = sign(zi) · max{|zi | − μ, 0}. (6)

Therefore, Sμ(z) “shrinks” the magnitude of each component of its argument z by μ;
if the magnitude is smaller than μ, then it becomes 0 after the shrinkage. Combining
(4), (5), and (6) yields the scheme of ISTA:

u(k+1) = Sμ/L

(
u(k) − 1

L
A	(Au(k) − b)

)
, (7)

where α is set to the optimal value 1/L in (7) and L is the largest eigenvalue of A	A

(i.e., the Lipschitz constant of ∇h(u) = A	(Au− b)). It can be shown that, starting
from any initial guess u(0), ISTA (7) generates a sequence {u(k)} that converges to a
solution of (2) at a sublinear rate of O(1/k) in function value.

However, the practical performance of ISTA is not satisfactory as it often requires
hundreds to thousands of iterations to obtain an acceptable approximation to the
solution. Although there are a variety of optimization techniques to improve the
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convergence of ISTA, the traditional variational formulation and optimization still
fall short in real-world applications due to the relatively slow convergence and
the issues mentioned in section “Introduction”. Inspired by the great success of
deep learning, for a fixed A, we may ask whether it is possible to learn the terms,
such as μ, L, and even A	, in (7) adaptively if we have many instances of b and
their corresponding solutions to (2). In Gregor and LeCun (2010), this approach is
examined and results in the learned ISTA (LISTA) formed as a K-layer feedforward
neural network:

u(k+1) = σk(W
(k)
1 b + W

(k)
2 u(k)) (8)

for k = 0, . . . , K − 1. In LISTA (8), the linear mappings W
(k)
1 ,W

(k)
2 and the

nonlinear mapping (can also be a preselected nonlinear activation function) σk

can be learned, such that the final output u(K), as a function of these parameters
� := (. . . ,W

(k)
1 ,W

(k)
2 , σk, . . . ), is close to a solution u∗ of (2) for a given b. More

specifically, given N pairs of training data {(bj , u
∗
j ) : 1 ≤ j ≤ N}, where bj ∈ R

m

is the input data of the optimization problem (2) and u∗
j ∈ R

n is the corresponding
ground truth (e.g., solution obtained by solving the minimization problem (2) with
bj using some classical optimization algorithm to high accuracy), then one can learn
the optimal network parameter �∗ by solving the minimization problem

min
�

1

N

N∑

j=1

‖u(K)(bj ;�) − u∗
j‖2

where u(K)(b;�) denotes the output of the K-phase network with parameter � and
input data b. By training the parameter � with various of b and the corresponding
u∗, LISTA can find an effective path from u(0) to u(K) using the learned �∗. If
training result is satisfactory with a small K (e.g., K = 10), then LISTA, as a
feedforward neural network, is expected to compute good approximation of u∗ given
new input b on the fly. Note that LISTA (8) reduces to ISTA (7) if the parameters
are not learned but pre-defined as W

(k)
1 = A	/L, W

(k)
2 = I −A	A/L, and σk(·) =

Sμ/L(·) for all k. It is shown that LISTA can achieve similar solution accuracy with
iteration number K 18 to 35 times fewer than that required in ISTA or FISTA for
problems with dimension 100 to 400 (Gregor and LeCun 2010).

In recent years, there have been a number of follow-up research works that
exploit the properties and variations of LISTA. In Chen et al. (2018), a simplified
version of LISTA is proposed:

u(k+1) = Sμ/L

(
u(k) − 1

L
W	(Au(k) − b)

)
, (9)

with learnable W , and the convergence of (9) for solving (2) is also established in
Chen et al. (2018) and Liu et al. (2019). In Sprechmann et al. (2015), LISTA is
extended to learnable pursuit process architectures for structured sparse and robust
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low rank models derived from proximal gradient algorithm. It is shown that such
network architecture can approximate the exact sparse or low rank representation
at a fraction of the complexity of the standard optimization methods. In Xin et al.
(2016), a learned iterative hard thresholding (IHT) algorithm where σk is replaced
by a hard thresholding operator Hk is developed, and its potential to recover minimal
l0 norm solution is shown both theoretically and empirically. The work Borgerding
et al. (2017) developed a learned approximate message passing (LAMP) algorithm
for the lasso problem (2):

v(k+1) = βkv
(k) − Au(k) + b , (10a)

u(k+1) = Sμk
(u(k) + A	v(k+1)) . (10b)

In contrast to LISTA, LAMP (10) includes a residual v(k) in each layer k, which
performs shrinkage dependent on k. By the inclusion of the “Onsager correction”
term βkv

(k) to decouple errors across layers, LAMP appears to outperform LISTA
in accuracy empirically. For example, on synthetic data with Gaussian matrix
A, LAMP takes 7 iteration numbers to obtain the normalized mean square error
(NMSE) −34dB, whereas LISTA takes 15 iterations (Borgerding et al. 2017).

The aforementioned learned optimization algorithms are for unconstrained mini-
mizations. Recently, the work in Xie et al. (1905) developed an algorithm, called the
differentiable linearized alternating direction method of multipliers (D-LADMM),
can be used to solve problems with linear equality constraints. D-LADMM is a
K-layer linearized ADMM-inspired deep neural network, which is obtained by
using learnable weights in the classical linearized ADMM and generalizing the
proximal operator to learnable activation functions. It is proved that there exist a set
of learnable parameters for D-LADMM to generate globally converged solutions.

To this point, we have seen several instances of modifying the ISTA (7) to obtain
deep neural networks with trainable components to solve (2). Each iteration of ISTA
is transformed into one layer of a neural network, the parameters of which are
then trained using available imaging data. Once properly trained, these networks
can often achieve more accurate approximations of the solution in much less time
than the traditional approaches. Global convergence results, sometimes even better
than the original optimization algorithms, have been established for several of these
methods. However, most of these methods are restricted to the variational model (1)
with l1 or l0 regularization, so that the proximity operators can yield closed-form
shrinkage as the nonlinear activation function. It remains as an open problem on
extending this type of methods to handle more general or learnable regularization.

Structured Image Reconstruction Networks

In this section, we introduce several deep neural networks inspired by classical
optimization algorithms for image reconstruction. Unlike the learned algorithms
discussed in section “Learned Algorithm for Specified Optimization Problem”,
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these networks aim at solving the given reconstruction problem demonstrated by
training dataset (often includes ground truth images), rather than any prescribed
optimization problem such as the lasso (2). As a result, they do not require manually
designed regularization and specified objective function but can implicitly learn an
adaptive regularization using the training data. This class of methods has become the
mainstream for deep learning-based image reconstruction research in recent years.

The optimization-inspired reconstruction networks in this section also share the
same main feature: each phase of these networks corresponds to one iteration of the
classical optimization. More specifically, the data fidelity term h in (1) that describes
the relation between image and acquired data is largely preserved as in optimiza-
tion algorithms. However, unlike the methods in section “Learned Algorithm for
Specified Optimization Problem”, the regularization term g is unknown but can be
replaced by neural networks whose parameters are learned adaptively from data.

In the remainder of this section, we introduce several reconstruction neural
networks developed along this line. Most of these networks can be applied to a wide
range of image reconstruction problems as they are customized to learn from the
training data directly rather than for any specific imaging application or modality.
The training process can be time-consuming but is performed offline. Once trained
properly, however, they serve as fast feedforward mappings that reconstruct high-
quality images of the same type as those in the training dataset.

Proximal Point Network

A group of deep neural networks inspired by variational methods and optimization
algorithms directly leverage the popular deep neural network structures into the
optimization schemes. Considering the variational model (1) with general g and
h, we can rewrite its proximal point algorithm (4) as an equivalent two-step scheme
by introducing an auxiliary variable r(k) = u(k−1) − α∇h(u(k−1)) and using the
definition of the proximity operator in (5):

r(k) = u(k−1) − α∇h(u(k−1)) , (11a)

u(k) = proxαg(r
(k)) . (11b)

As the data fidelity h is formulated based on the definitive relation between image
and acquired data, such as h(u) = (1/2) · ‖PF u − b‖2 in CS-MRI as shown in
section “Introduction”, it is often kept unmodified in (11a). Moroever, the step size
α can be set to αk which is not manually chosen but learned during the training
process. On the other hand, the proximal term in (11b) is due to the regularization g

and performs as an image “denoiser” that modifies inputs r(k) to obtain an improved
image u(k). Instead of choosing regularization g manually and solving (11b) in each
iteration, we can directly parametrize its proximity operator proxαg as a learnable
denoiser parametrized as convolutional neural network (CNN) (Goodfellow et al.
2016). Moreover, we can use the residual network (ResNet) structure proposed in
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Fig. 1 Architecture of the proximal point network (11a) and (12). The kth phase updates r(k) and
u(k). The dependencies of each variable on other variables are shown as incoming arrows, and the
network parameters used for update are labeled next to the corresponding arrows

He et al. (2016) for the CNN which proves to be more effective for reducing training
error in imaging applications. Namely, we replace the proximity operator proxαg in
(11b) by a denoising network (Zhang et al. 2017):

u(k) = r(k) + φk(r
(k)) (12)

where φk is a standard multiplayer CNN that maps r(k) to the residual between u(k)

and r(k). The architecture of the proximal point network given by (11a) and (12)
is illustrated in Fig. 1, where each arrow indicates a mapping from its input to the
output with the required network parameters labeled next to it.

Let � denote the collection of learnable parameters in φk (e.g., the convolutional
kernels and the biases) and algorithm parameters (e.g., αk > 0) for all k = 1, . . . , K ,
and then the output after K cycles (phases) of (11a) and (12) is a function of � for
any given imaging data b. Denote this output by u(K)(b;�), which is the output
of any given image data b passing through this network with parameter �; we can
form the loss function of � by regression as:

L(�; b, u∗) = 1

2
‖u(K)(b;�) − u∗‖2, (13)

where u∗ is the ground truth image corresponding to the (possibly noisy and
incomplete) imaging data b, both given in the training data. By feeding in a large
amount of instances of form (b, u∗), we can solve for the minimizer �∗ of the sum
of L as in (13) over all of these instances. Then the deep reconstruction network
with K phases, each consisting of (11a) and (12), is a feedforward neural network
with parameters �∗ for fast image reconstruction given any new coming data b.

The proximal point network can be applied to a variety of imaging applications,
including image denoising, image deblurring, and image super-resolution by replac-
ing the proximal operator by a denoiser network in regularization subproblem of
half-quadratic splitting algorithm (Zhang et al. 2017). In Zhang et al. (2017), φk

is designed to contain 7 dilated convolutions with 64 feature maps in each middle
layer, where ReLU activation function is used after the first convolution, and both
batch normalization (BN) and ReLU are used in every convolution thereafter. The
training data is composed of 256 × 4000 image patches of size 35 × 35 cropped
from the BSD400 (Martin et al. 2001), 400 images from ImageNet validation set
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(Deng et al. 2009), and 4,744 Waterloo Exploration images (Ma et al. 2016). They
evaluate their results on BSD68 (Roth and Black 2009), Set5, and Set14 (Timofte
et al. 2014), respectively. In Zhang and Ghanem (2018), IRCNN is compared with
several other methods on Set11 (Kulkarni et al. 2016) with various sampling ratios,
and the results will be presented later in this section.

The work developed in Cheng et al. (2019), Chun et al. (2019), Meinhardt
et al. (2017), Rick Chang et al. (2017), Wang et al. (2016), and Zhang et al.
(2017) can all be considered as variations of the method described above. For
instance, CNN denoiser has been placed in the proximal gradient descent algorithm
in Meinhardt et al. (2017), subproblem in half-quadratic splitting in Zhang et al.
(2017), subproblem in ADMM in Meinhardt et al. (2017) and Rick Chang et al.
(2017), and subproblems in primal-dual algorithm in Cheng et al. (2019), Meinhardt
et al. (2017), and Wang et al. (2016).

ISTA-Net

ISTA-Net Zhang and Ghanem (2018) is a deep neural network architecture for
image reconstruction inspired by ISTA as given in (7). Recall that ISTA is originally
derived to solve the l1 minimization problem (2), i.e., (1) with g(u) = μ‖u‖1 and
h(u) = (1/2)·‖Au−b‖2, as we showed in section “Learned Algorithm for Specified
Optimization Problem”. For image reconstruction, the sole l1 norm is not a suitable
regularization since almost all natural images are not sparse themselves. Instead,
they are often sparse in certain transform domains. Let � ∈ R

n×n be a sparsifying
operator (e.g., wavelet transform) that transforms u into a sparse vector �u. Then,
we can modify lasso (2) and obtain a similar form as:

min
u

g(�u) + h(u) . (14)

Although (14) does not exactly match the ISTA (2) due to the presence of �, this
can be easily resolved by using an orthogonal sparsifying operator � and setting
x = �u as the unknown for (2). For example, if we set � to an orthogonal 2D
wavelet transform. In this case, we just need to solve x from the exact form of (2)
with g(x) = μ‖x‖1 and h̃(x) := h(�	x) as the data fidelity, and recover u = �	x

using the output x of ISTA. Integrating this change of variables into the scheme
(11), we obtain a slightly modified version of ISTA as follows:

r(k) = u(k−1) − α∇h(u(k−1)), (15a)

u(k) = �	proxαg(�r(k)) = �	Sθ (�r(k)), (15b)

where θ = αμ combines the two parameters, and (15b) involves shrinkage due to
the choice of g(x) = μ‖x‖1. The gradient ∇h in (15a) is due to the data fidelity h

in (14). Therefore, we do not need to “learn” this part in the reconstruction. On the
other hand, the use of the sparsifying transform � and 	1 regularization is rather
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heuristic. If there is sufficient amount of training data, it is likely that we can learn
a better representation of this regularization using a deep learning technique.

Bearing this idea, ISTA-Net is proposed to replace the transform � and �	 in
(15) by multilayer convolutional neural networks (CNN), while keeping the proxαg ,
i.e., the shrinkage due to the 	1 norm, as it seems robust in suppressing noises. To
this end, ISTA-Net follows the scheme of ISTA (15) and constructs a deep neural
network of a prescribed K phases as in section “Proximal Point Network”.

Unlike LISTA and its variations in section “Learned Algorithm for Specified
Optimization Problem”, the kth phase of ISTA-Net is to mimic the two steps in the
kth iteration of ISTA in (15). Given the output u(k−1) of the previous phase, the
update of r(k) follows (15a) directly since h is known to accurately describe the data
formation. Therefore, only the parameter α in (15a), which behaves as the step size
in ISTA, is set to αk and is to be learned during the training process in ISTA-Net.
After r(k) is updated, it is passed to (15b) with � and �	 replaced by two multilayer
CNNs H(k) and H̃ (k), respectively, and the shrinkage parameter θ is replaced by θk ,
which is to be learned as well. Namely, u(k) is updated by

u(k) = H̃ (k)
(
Sθk

(
H(k)(r(k))

))
. (16)

In ISTA-Net Zhang and Ghanem (2018), H(k) and H̃ (k) are set to simple two-layer
CNNs as follows:

H(k)(r) = w
(k)
2 ∗ σ(w

(k)
1 ∗ r(k)) and H̃ (k)(r̃) = w̃

(k)
2 ∗ σ(w̃

(k)
1 ∗ r̃ (k)) (17)

where w
(k)
1 , w

(k)
2 , w̃

(k)
1 , and w̃

(k)
2 are convolutional kernels in the kth phase to be

learned, and σ is a component-wise activation function such as ReLU, i.e., σ(x) =
max(x, 0) component wisely. In the numerical implementation of ISTA-Net Zhang
and Ghanem (2018), w1 and w̃2 are convolutions with d kernels of size 3 × 3; w2
and w̃1 are convolutions with d kernels of size 3 × 3 × d with d set to 32.

To this point, we can see that ISTA-Net is a deep neural network with a prescribed
number of K phases. Each phase of ISTA-Net mimics one iteration (15) of ISTA and
is formed as: r(k) and u(k) by

r(k) = u(k−1) − αk∇h(u(k−1)), (18a)

u(k) = H̃ (k)Sθk
(H (k)r(k)), (18b)

where we have omitted excessive parentheses for notation simplicity, i.e., H(k)r(k)

stands for H(k)(r(k)), etc. The K phases are concatenated in order, where the kth
phase accepts the output u(k−1) of the previous phase, updates r(k) using (18a) with
αk , and finally outputs u(k) using (18b). Hence, the parameters to be learned are αk ,
θk , and w

(k)
1 , w(k)

2 in H(k) and w̃
(k)
1 and w̃

(k)
2 in H̃ (k) for k = 1, 2, . . . , K . In the first

phase, the input is the initial guess u(0), which can be set to A	b. The output of the
last phase, u(K), is used in the loss function that measures its squared discrepancy



12 Y. Chen et al.

Fig. 2 Architecture of ISTA-Net (18). The kth phase updates r(k) and u(k). The dependencies of
each variable on other variables are shown as incoming arrows, and the network parameters used
for update are labeled next to the corresponding arrows

to the corresponding ground truth, high-quality image u∗:

Ldis(�; b, u∗) = 1

2
‖u(K)(b;�) − u∗‖2 (19)

where (b, u∗) is a training pair as in the proximal point network in section “Proximal
Point Network”, and � := {αk, θk, w

(k)
1 , w

(k)
2 , w̃

(k)
1 , w̃

(k)
2 | k = 1, . . . , K}. The

structure of the ISTA-Net can be visualized in Fig. 2. For more details of the network
structure and its relation to the back-propagation procedure, we refer to Wang et al.
(2019).

In addition, since H(k) and H̃ (k) in (17) are replacing � and �	, respectively,
they are expected to satisfy H̃ (k)H (k) = I , the identity mapping. To make this
constraint approximately satisfied, the mismatch between H̃ (k)(H (k)(u∗)) and u∗
can be integrated into the following loss function, despite that it is much weaker
than H̃ (k)H (k) = I :

Lid(�; u∗) = 1

2

K∑

k=1

‖H̃ (k)(H (k)(u∗)) − u∗‖2. (20)

The loss function for a particular training pair (b, u∗) is thus the sum of the losses
in (19) and (20) with a balancing parameter γ > 0:

L(�; b, u∗) = Ldis(�; b, u∗) + γ Lid(�; u∗), (21)

and the total loss function during training is the sum of L(�; b, u∗) in (21) over all
training pairs of form (b, u∗) in the training dataset.

The optimal parameter �∗ can be obtained by minimizing the loss function (21),
which can be accomplished using the stochastic gradient descent (SGD) method.
The key in the implementation of SGD is the computation of the gradient of (21)
with respect to each network parameter, i.e., αk, θk, w

(k)
1 , w

(k)
2 , w̃

(k)
1 , w̃

(k)
2 for k =

1, . . . , K . More specifically, we first need to compute the gradient of L defined in
(21) with respect to the main variables u(k) and r(k). Then we compute the gradients
of u(k) with respect to its parameters, i.e., θk, w

(k)
1 , w

(k)
2 , w̃

(k)
1 , w̃

(k)
2 , and the gradient

of r(k) with respect to α(k). Finally, the gradients of L with respect to these network
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Fig. 3 Qualitative reconstruction results of ISTA-Net+ (Zhang and Ghanem 2018) applied to the
Butterfly image in Set11 (Kulkarni et al. 2016) with various sampling ratios. The numbers in the
captions of (b)-(d) are the corresponding sampling ratios, and PSNR are shown in the parentheses.
Results are generated by the code available at https://github.com/jianzhangcs/ISTA-Net. (a) True
(b) 10% (25.91) (c) 25% (33.52) (d) 50% (40.18)

parameters can be built by multiplying the involved partial derivatives according
to the chain rule. The derivations are fairly straightforward. For completeness, we
provided the details of this back-propagation in the Appendix.

ISTA-Net (Zhang and Ghanem 2018) evaluated the reconstruction results on
datasets BSD68 (Martin et al. 2001) and Set11 (Kulkarni et al. 2016), respectively.
The training set contains N = 88, 912 pairs (b, u∗), where u∗ is 33 × 33 image
patch randomly cropped from the images in 91Images dataset (Kulkarni et al. 2016)
and b is the corresponding CS measurement. In Table 1, the reconstructed results are
shown and compared with a traditional variational method TVAL3 (Li et al. 2013)
and a non-iterative network IRCNN (Zhang et al. 2017), where the ISTA-Net+ is
the residual shortcut enhanced version ISTA-Net; for the detailed implementation of
ISTA-Net+, please refer to Zhang and Ghanem (2018). Some reconstructed images
of Butterfly in Set11 (Kulkarni et al. 2016) by ISTA-Net+ with various sampling
ratios are displayed in Fig. 3.

ADMM-Net

ADMM-Net (Sun et al. 2016) is one of the earliest attempts to unroll a known
optimization algorithm into a deep neural network. ADMM-Net is originated from
the alternating minimization method of multipliers, or ADMM for short, which
is a numerical algorithm particularly effective for convex optimization problems
with linear equality constraints. Combined with the variable splitting technique,
ADMM has been very popular and successful in solving variety of nonsmooth
and/or constrained problems.

In its standard form, ADMM can solve constrained convex problems where the
primal variable (i.e., the variable to be solved in the optimization problem) consists
of two blocks related by a linear equality constraint. In addition, there is a dual
variable, i.e., the Lagrangian multiplier, associated with the equality constraint. In
each iteration, ADMM updates the two blocks of the primal variables in order, one

https://github.com/jianzhangcs/ISTA-Net
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at each time with the other one fixed and then the dual variable using the updated
primal variable. ADMM yields more complex iterations due to the multiple-variable
structure than ISTA.

We first recall the variable splitting and the original ADMM for image recon-
struction problem, which is formulated as the one in ISTA as (14):

min
u

g(�u) + 1

2
‖Au − b‖2 , (22)

but with more specific data fidelity h(u) = (1/2) · ‖Au − b‖2. Here, we write
the regularization in (22) as a composite function where g is simple (i.e., the
proximity operator proxg has closed form or is easy to compute) and � as a linear
operator. A typical example is the total variation regularization we mentioned in
section “Introduction”: g(�u) := μ

∑n
i=1 ‖Diu‖2 with weight parameter μ > 0.

That is, � is the discrete gradient operator (finite forward differences) D, and g is
a slight variation of l1 norm which takes sum of the l2 norms of the gradients at all
pixels. For ADMM to work efficiently, there is also requirement on the matrices �

and A, which we will specify later. To apply ADMM, we first use variable splitting
by introducing an auxiliary variable w such that w = Du and rewrite (22) as the
following equivalent problem:

min
w,u

{
g(w) + 1

2
‖Au − b‖2

}
, subject to w = Du. (23)

Then, we formulate its associated augmented Lagrangian:

L(u,w; λ) = g(w) + 1

2
‖Au − b‖2 + 〈λ,w − Du〉 + ρ

2
‖w − Du‖2, (24)

with Lagrangian multiplier λ. ADMM is then applied to solve (23) with the
augmented Lagrangian (24). In each iteration of ADMM, the primal variables w

and u are updated in order, and then the dual variable λ is updated. In the case of
CS-MRI with A = PF mentioned in section “Introduction”, the subproblems are
given as follows:

w(k) = Sθ (Du(k−1) − λ(k−1)), (25a)

u(k) = (ρD	D + A	A)−1(A	b + ρD	w(k) − D	λ(k−1)), (25b)

λ(k) = λ(k−1) + ρ(w(k) − Du(k)), (25c)

where θ = μ/ρ. Given an initial guess (w(0), u(0), λ(0)), ADMM repeats the cycle
of the three steps (25) for iteration k = 1, 2, . . . , until a stopping criterion is
satisfied. As we can see, for ADMM to work efficiently, the inverse of D	D +
ρA	A in (25b) must be easy to compute. In certain imaging applications, this is
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possible since both D	D and A	A can be diagonalized by fast transforms (such as
Fourier), with which the update u(k) (25b) requires very low computational cost.

ADMM-Net (Sun et al. 2016) is a deep reconstruction network architecture that
mimics the ADMM scheme (25). Similar to the case of ISTA-Net, each phase of
ADMM-Net mimics one iteration of ADMM (25). More specifically, ADMM-Net
sets a fixed iteration number K . The kth phase of ADMM-Net mimics the kth
iteration of ADMM (25), but ADMM-Net replaces the gradient operator D by a
parameterized filter (convolution) H(k) and the fixed parameters θ and ρ by θk and
ρk to be learned through training. The original ADMM-Net (Sun et al. 2016) is
designed to solve the single-coil CS-MRI problem with A = PF , for which the kth
phase of ADMM-Net reduces to:

w(k) = Sθk
(H (k)u(k−1) − λ(k−1)), (26a)

u(k) = F 	(P 	P + ρkFH(k)	H(k)F 	)−1(P 	b + ρkFH(k)	(w(k) + λ(k−1))),

(26b)

λ(k) = λ(k−1) + (w(k) − H(k)u(k)), (26c)

where Sθ is the shrinkage by θ > 0 as in (18b).
In ADMM-Net (Sun et al. 2016), H(k) is set to a linear combination of a set of

given filters {Bl} with coefficients γ (k) = (· · · , γ
(k)
l , · · · ) ∈ R

|{Bl}|, i.e., H(k) =
∑

l γ
(k)
l Bl . Therefore, H(k) is completely determined by the coefficients γ (k) in

the kth phase. Moreover, the shrinkage in (25a) is replaced by a piecewise linear
function (PLF) determined by a set of control points and the associated function
values. More specifically, let {p0, . . . , pNc } be a set of Nc + 1 control points on R.
In Sun et al. (2016), these control points are simply chosen as uniform mesh grid
points on the interval [−1, 1], i.e., p0 = −1 and pNc = 1, and pl −pl−1 = 2/Nc for

l = 1, . . . , Nc. Then, the PLF S(h; {pl, q
(k)
l }) in [−1, 1] is completely determined

by the values {q(k)
l } at the corresponding control points {pl}. Outside the interval

[−1, 1], the PLF S(h; {pl, q
(k)
l }) is set to have slope 1 and concatenates with its part

in [−1, 1] at p0 and pNc to form a continuous function. Then, instead of learning θk

in the shrinkage operation Sθk
in (25a), the original ADMM-Net learns the values

{q(k)
l } as a part of the network parameters. The output u(K) is a function of the input

b and network parameters � = {θk, ρk, γ
(k) | k = 1, . . . , K}. The architecture of

ADMM-Net is shown in Fig. 4. As usual, the loss function can be set to the squared
error of u(K) from the ground truth, reference image u∗ corresponding to data b:

L(�; b, u∗) = 1

2
‖u(K)(b;�) − u∗‖2. (27)

The total loss function is the sum of the loss in (27) above over all training pairs
(b, u∗) in the given training dataset. Then, the total loss function is minimized
using the (stochastic) gradient descent method, and the minimizer �∗ is the learned
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Fig. 4 Architecture of ADMM-Net (26). The kth phase updates w(k), u(k), and λ(k). The
dependencies of each variable on other variables are shown as incoming arrows, and the network
parameters used for update are labeled next to the corresponding arrows

Fig. 5 Brain MR image reconstruction by ADMM-Net (Sun et al. 2016) with sampling ratio 20%.
Left: ground truth. Middle: image reconstructed by zero filling. Right: reconstructed image by
ADMM-Net. Results are generated by the code available at https://github.com/yangyan92/Deep-
ADMM-Net

network parameters. More details about the derivation of the back-propagation
and its relation to the network structure in Fig. 4 are provided in Wang et al.
(2019). In Sun et al. (2016), ADMM-Net is applied to brain and chest MR image
reconstruction, where the training and testing datasets are 100 and 50 images,
respectively, randomly picked from MRI dataset (Bennett 2013). The qualitative
results of a selected brain MR images reconstructed by ADMM-Net with CS ratio
20% are presented in Fig. 5.

Variational Network

As we have seen above, the proximal point network, ISTA-Net, and ADMM-Net all
aim to solve the variational model of form:

https://github.com/yangyan92/Deep-ADMM-Net
https://github.com/yangyan92/Deep-ADMM-Net
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min
u

f (u), where f (u) := g(Du) + λh(u), (28)

where g, D, and even h can be learned from the training data adaptively. If we
apply the well-known gradient descent method in numerical optimization to (28),
we obtain:

u(k) = u(k−1) − αk(D
	∇g(Du(k−1)) + λ∇h(u(k−1))) (29)

where αk is the step size in iteration k. Note that above we adopted a slight abuse
of notation ∇g, since in image reconstruction g often represents the 	1 norm or
alike which is not differentiable. Hence, it is more rigorous to interpret ∇g as a
subgradient of g, and the updating rule (29) is the subgradient descent. Nevertheless,
this term will be replaced by a parameterized function to be learned in training, and
thus its differentiability is not an important issue in the following derivation of the
variational reconstruction network.

The variational network (Hammernik et al. 2018) was inspired by this concise
updating rule (29). In Hammernik et al. (2018), the variational network is a fixed
number of K phases, and each phase mimics one iteration of (29). The kth phase of
variational network is built as

u(k) = u(k−1) − H(k)	φk(H
(k)u(k−1)) − λk∇h(u(k−1)), (30)

Here λk , H(k), and φk are all to be learned from data. The step size αk is omitted
since it is absorbed by the learnable terms. In particular, H(k) is a convolution to
replace the manually chosen linear operator D (e.g., gradient in traditional image
reconstruction) in (29), and φk is a parameterized function to replace ∇g.

In Hammernik et al. (2018), φk in (30) is represented as a linear combination of
Gaussian functions. First of all, φk is to be applied to H(k)u(k−1) ∈ R

n component
wisely, and hence it is sufficient to describe the component-wise operation of φk

using a univariate function. To this end, we first determine a set of Nc + 1 control
points {pl : l = 0, . . . , Nc} uniformly spaced on a prescribed interval [−I, I ] such
that −I = p0 < p1 < · · · < pNc = I and pl − pl−1 = 2I/Nc for l = 1, . . . , Nc.
For each point pl , the Gaussian function with a prescribed standard deviation σ is
given by

Bl(x) = e−(x−pl)
2/(2σ 2). (31)

Then, φk is set to a linear combination of Bl(x) with coefficients γ
(k)
l to be

determined:

φk(x) =
Nc∑

l=0

γ
(k)
l Bl(x). (32)

One can also design other basis functions, instead of (31) or even parametrize φk as
a generic neural network. For H(k), it is a convolution operation applied to u(k−1),
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Fig. 6 Architecture of the variational network (30). The kth phase updates u(k). The dependencies
of each variable on other variables are shown as incoming arrows, and the network parameters used
for update are labeled next to the corresponding arrows

and hence it suffices to determine the convolution kernel. This is a very simplified
case of convolution layers of CNNs, and we omit the details here.

Now we can see that the variational network consists of K phases, where each
phase operates as (30). In particular, the first phase accepts u(0) as the input such as
A	b. The last Kth phase outputs u(K), which is used in the loss function to compare
with the reference image u∗:

L(�; b, u∗) = 1

2
‖u(K)(b;�) − u∗‖2. (33)

where the network parameter � := {αk, γ
(k), H (k) | k = 1, . . . , K}. The total

loss function is then the sum of (33) over all training pairs of form (b, u∗). The
architecture of variational network is presented in Fig. 6. More details about the
derivation of the back-propagation and its relation to the network structure in Fig. 6
are provided in Wang et al. (2019). Similar to the proximal point network and ISTA-
Net introduced above, the variational network can be applied to problems where the
data fidelity term h is differentiable with Lipschitz continuous gradient.

In Hammernik et al. (2018), the variational network considered above is applied
to parallel imaging MR image reconstruction. In their experiment, H(k) is imple-
mented as 48 real/imaginary filter pairs and Nc is prescribed to be 31. The network
is trained on the dataset which contains 20 image slices from 10 patients and tested
on reconstructing the whole image volume for 10 clinical patients that is non-
overlapping with training set. The qualitative illustration of a reconstructed scan
of variational network is visualized in Fig. 7.

Primal-Dual Network

Primal-dual network (PD-Net) is a deep neural network architecture for image
reconstruction inspired by the primal-dual hybrid gradient algorithm (Chambolle
and Pock 2011). There have been a number of work that developed PD-Nets and
applied to image reconstruction (Adler and Öktem 2018; Cheng et al. 2019; Heide
et al. 2014; Meinhardt et al. 2017).
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Fig. 7 The reconstruction result of an exemplified MR image by variational network (Hammernik
et al. 2018) with sampling ratio 31.60. Results are generated by the code available at https://github.
com/VLOGroup/mri-variationalnetwork. (a) Mask (b) Reference (c) VN (d) Error

As we discussed above, in the image reconstruction context, the variational
models (1) are often represented with g(u) as a regularization function and h̃(u) =
h(Au) := (1/2) · ‖Au − b‖2. In this case, we can rewrite (1) as an equivalent
min-max problem by Fenchel transformation:

min
u

max
z,y

〈Au, z〉 − h∗(z) + 〈u, y〉 − g∗(y) (34)

where h∗(z) and g∗(y) are the conjugates (Fenchel dual) of h(Au) and g(u),
respectively. Due to the Moreau’s decomposition theorem:

proxτf ∗(b) = b − τproxτ−1f (b/τ) (35)

for any b ∈ R
n, τ > 0, and convex function f , one can obtain the following iterative

scheme by applying the primal-dual gradient algorithm to (34):

z(k+1) = arg min
z

{
−〈Auk, z〉 + h∗(z) + 1

2γ
‖z − zk‖2

}

= proxγ h∗(zk + γAuk) = zk + γAuk − γ proxγ −1h(
1

γ
zk + Auk) (36a)

y(k+1) = arg min
y

{
−〈uk, y〉 + g∗(y) + 1

2γ
‖y − yk‖2

}

= proxγg∗(yk + γ uk) = yk + γ uk − γ proxγ −1g(
1

γ
yk + uk) (36b)

u(k+1) = arg min
u

{
〈Au, z(k+1)〉 + 〈u, y(k+1)〉 + 1

2τ
‖u − u(k)‖2

}

= uk − τA	z(k+1) − τy(k+1) (36c)

u(k+1) = u(k+1) + θ(u(k+1) − u(k)) (36d)

https://github.com/VLOGroup/mri-variationalnetwork
https://github.com/VLOGroup/mri-variationalnetwork
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Similar to the deep reconstruction networks introduced above, PD-Net also
mimics the primal-dual algorithm above to construct K phases such that the kth
phase in PD-Net corresponds to the kth iteration in (36). Then the proximity
operator proxγ −1h and proxγ −1g in the updates (36a) and (36b) are replaced by CNN
denoisers as in section “Proximal Point Network”. The PD-Nets have been applied
to natural image reconstruction in Meinhardt et al. (2017) and MRI compressive
sensing in Adler and Öktem (2018); Cheng et al. (2019), which demonstrate
promising performance in these applications.

Depending on which terms are designed to be learnable, three variants of the
PD-Net architecture are provided in Cheng et al. (2019), which are PDHG-CSNet,
CP-Net and PD-Net as follows. (i) The primal-dual hybrid gradient CS network
(PDHG-CSNet) substitutes proxτg with a learned CNN denoiser in Chambolle-Pock

algorithm (Chambolle and Pock 2011) which solves the (1) with h̃(u) = h(Au) :=
(1/2) · ‖Au − b‖2 by iterating

z(k+1) = z(k) + σ(Au(k) − b)

1 + σ
, (37a)

u(k+1) = proxτg(u
(k) − τA∗z(k+1)), (37b)

u(k+1) = u(k+1) + θ(u(k+1) − u(k)), (37c)

where σ , τ , and θ are algorithm parameters. (ii) The Chambolle-Pock network (CP-
Net) learns a generalized Chambolle-Pock algorithm with the data fidelity term
(1/2) · ‖Au − b‖2 relaxed to h(Au). Then the updating scheme of z(k+1) becomes
z(k+1) = proxσh∗(z(k) + σAu(k)) and CP-Net learns both proxτg and proxσh∗ with
CNN denoisers. (iii) By breaking the linear combination parts in above iterates for
z(k+1), u(k+1), and u(k+1) in CP-Net, primal-dual net (PD-Net) further increases the
network flexibility by freely learning those combinations in addition to the learnable
proximal operators. In Cheng et al. (2019), the primal or dual proximal operators are
substituted by learned CNN denoisers with 3 convolutional layers and 32 channels in
each hidden layer. All these networks are trained and tested on 1400 and 200 images
of size 256×256 and the corresponding k-space data undersampled by Poisson disk
sampling mask. The qualitative reconstruction results of these three variations of the
network on MR images are shown in Fig. 8, which are obtained from (Cheng et al.
2019).

Learnable Descent Algorithm

The LOAs conducted in the supervised learning framework are motivated by a
disciplined bilevel optimization problem as follows:



Variational Model-Based Deep Neural Networks for Image Reconstruction 21

Fig. 8 Images reconstructed by primal-dual hybrid gradient CS network (PDHG-CSNet),
Chambolle-Pock algorithm-inspired network (CP-Net), and primal dual net (PD-Net). The data
was undersampled with a 6X Poisson disk mask

min
�

1

N

N∑

j=1

L(u(bj ;�), u∗
j ) + R(�), (38a)

s.t. u(bj ;�) = arg min
u∈U

{f (u; bj ,�) := g(u;�) + h(u; bj ,�)} (38b)

where h is the data fidelity term to ensure that the reconstructed image u is faithful
to the given data b, and g is the regularization that may incorporate proper prior
information of u. The regularization g(·;�) (and possibly h also) is realized as a
DNN with parameter � to be learned. The loss function L(u, u∗) is to measure the
difference between a reconstruction u and the corresponding ground truth image u∗
from the training data. The optimal parameter � of g (and h) is then obtained by
solving the upper-level optimization (38a).

If the actual minimizer u(b;�) is replaced by the direct output of an LOA-
based DNN (such as ISTA-Net etc. in the previous subsection) which mimics
an iterative optimization scheme for solving the lower-level minimization in the
constraint of (38) and then (38) reduces to the unrolling methods introduced in the
previous subsections. However, the unrolled networks do not have any convergence
guarantee, and the learned components do not represent g in (38) and can be difficult
to interpret.

To obtain convergence guarantee with interpretable network structures, (Chen
et al. 2020) proposed a novel learnable descent algorithm (LDA). Consider the case
where the data fidelity term h(u) := (1/2) · ‖Au − b‖2 (or any smooth but possibly
nonconvex function) and g(u) is a nonsmooth nonconvex regularization function
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which is design to be g(u) = ‖r(u)‖2,1 = ∑m
i=1 ‖ri(u)‖. Here r = (r1, . . . , rm) is

a smooth but nonconvex mapping realized by a deep neural network whose param-
eters are learned from training data, and ri(u) ∈ R

d stands for a d-dimensional
feature vector for i = 1, . . . , m. To overcome the nondifferentiability issue of
g(u), a smooth approximation of g by applying Nesterov’s smoothing technique

(Nesterov 2005) is employed: gε(u) = ∑
i∈I0

1
2ε

‖ri(u)‖2 + ∑
i∈I1

(
‖ri(u)‖ − ε

2

)
,

where the index set I0 and its complement I1 at u for the given r and ε are defined
by I0 = {i ∈ [m] | ‖ri(u)‖ ≤ ε}, I1 = [m] \ I0. Denote fε(u) = h(u) + gε(u) (we
omit � for notation simplicity). Then LDA iterates

zk+1 = uk − αk∇h(uk), (39a)

wk+1 = zk+1 − τk∇gεk
(zk+1), (39b)

vk+1 = zk+1 − αk∇gεk
(uk), (39c)

where in each iteration uk+1 = wk+1 if fεk
(wk+1) ≤ fεk

(vk+1) and vk+1 otherwise;
and εk+1 = λεk if ‖∇fεk

(uk+1)‖ < σεk and εk+1 = εk otherwise, where λ ∈ (0, 1)

is a prescribed hyperparameter. It is shown that εk will monotonically decrease to
0 such that fεk

approximates the original nonsmooth nonconvex function f , and
any accumulation points of a particular subsequence of {uk} is a Clarke stationary
point (analouge to the critical points of differentiable functions) of the nonsmooth
nonconvex function f (Chen et al. 2020).

Since LDA follows the algorithm exactly, the convergence of the LDA network
can be guaranteed. Moreover, the practical performance of LDA is very promising
in a wide range of image reconstruction applications. For example, Table 1 shows
the PSNR of the reconstructions obtained by LDA (with r parameterized by a
simple generic 4-layer CNN and K = 15 total phases) on the dataset Set11
(Kulkarni et al. 2016) with a prefixed sampling matrix. Compared to the classical
TV-based reconstruction method and several unrolling methods, LDA achieves the
best reconstruction quality with highest PSNR. In addition, LDA uses much fewer
parameters than the other networks as � is shared by all its phases. In Fig. 9, the
qualitative reconstruction result of LDA is shown and compared with several state-
of-the-art reconstruction networks. A more intriguing property of LDA is that the
feature map r is explicitly learned and can be interpreted. In Fig. 10, the 2-norm
of the learned feature map r at all pixels is shown and compared to the norm of
gradient (forward differences at each pixel) used by the classical TV-based method.
It can be seen that important details, such as the antennae of the butterfly, the lip of
Lena, and the bill of the parrot, are faithfully recovered by LDA.
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Fig. 9 Reconstruction of parrot image in Set11 (Kulkarni et al. 2016) with CS ratio 10% obtained
by CS-Net (Shi et al. 2017), SCS-Net (Shi et al. 2019) and LDA (Chen et al. 2020). Images in the
bottom row zoom in the corresponding ones in the top row. PSNR are shown in the parentheses.
(a)Reference (b) CS-Net (28.00) (c) SCS-Net (28.10) (d) LDA (29.54)

Concluding Remarks

We reviewed several typical deep neural networks inspired by the variational
method and associated numerical optimization algorithms for the inverse problem
of image reconstruction. These neural networks have architectures that mimic the
well-known efficient optimization algorithms, such that each phase of a network
corresponds to one iteration in the original numerical scheme. The algorithm
parameters and other manually selected terms, such as the regularization, in the
variational model and optimization algorithm are replaced by learnable components
in the deep reconstruction network. The network output is thus a function of these
parameters and learnable components. Given the ground truth or high-quality image

Table 1 Average PSNR (dB) of reconstructions obtained by the some methods on Set11 dataset
with various CS ratios and the number of learnable network parameters (#Param), where the PSNR
data is quoted from Zhang and Ghanem (2018) and Chen et al. (2020)

Method 10% 25% 50% #Param

TVAL3 Li et al. (2013) 22.99 27.92 33.55 NA

IRCNN Zhang et al. (2017) 24.02 30.07 36.23 185,472

ISTA-Net Zhang and Ghanem (2018) 25.80 31.53 37.43 171,090

ISTA-Net+ Zhang and Ghanem (2018) 26.64 32.57 38.07 336,978

LDA Chen et al. (2020) 27.42 32.92 38.50 27,967
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Fig. 10 The norm of the gradient at every pixel in TV based image reconstruction (top row)
and the norm of the feature map r at every pixel learned in LDA (bottom row), where important
details, such as the antennae of the butterfly, the lip of Lena, and the bill of the parrot, are faithfully
recovered by LDA. (Images are obtained from Chen et al. 2020)

data, we can form the loss function which measures the discrepancy between the
network output and the ground truth and apply back-propagation and stochastic
gradient descent method to optimize the parameters such that the loss function
is minimized during the training procedure. After training, these networks with
optimal parameters serve as fast feedforward networks that can reconstruct high-
quality images on the fly. These methods have demonstrated significantly improved
empirical performance and require much lower computational cost compared to the
classical methods in a variety of applications.

Appendix: Back-Propagation in ISTA-Net

For completeness, we provide the details of derivations to obtain gradients of the
loss function L in (21) with respect to the network parameters � for ISTA-Net.
For more details of the network structure and its relation to the back-propagation
procedure for ISTA-Net and ADMM-Net introduced in section “Structured Image
Reconstruction Networks”, we refer to Wang et al. (2019).

The process of back-propagation is essentially applying chain rule repeatedly,
also called the “back-propagation” in deep learning. To obtain the gradient of the
loss function L with respect to the parameters, it is helpful to consult the network
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structure for the dependency between the parameters and the inputs and outputs of
nodes.

We first check the gradients of L defined in (21) with respect to u(k) and r(k). Note
that L takes u(k) and r(k), which are vectors in R

n, and output scalars, we know the
gradients of L with respect to u(k) and r(k) are both vectors in R

n as well. We use
partial derivatives to indicate spatial dependencies and compute the gradients here.
First of all, we have

∂L

∂r(k)
= ∂L

∂u(k)

∂u(k)

∂r(k)
, (40)

due to that u(k) is a function of r(k) as shown in Fig. 2. The gradient ∂u(k)/∂r(k) in
(40) is straightforward to compute due to the relation between r(k) and u(k) in (18b)
and the chain rule:

∂u(k)

∂r(k)
= ∇H̃ (k)(sk) · S′

θk
(hk) · ∇H(k)(r(k)), (41)

where the notations are simplified using the following definitions,

hk := H(k)r(k) and sk := Sθk
(hk). (42)

Substituting (41) into (40), we see that ∂L/∂r(k) can be obtained once we have
∂L/∂u(k). The gradient ∂L/∂u(k) can also be computed by the chain rule:

∂L

∂u(k)
= ∂L

∂r(k+1)

∂ r(k+1)

∂u(k)
, (43)

where ∂r(k+1)/∂u(k) is obtained by (18a) for k ← k + 1 as

∂ r(k+1)

∂u(k)
= I − αk+1∇2h(u(k)). (44)

Hence, we can get ∂L/∂u(k) once ∂L/∂r(k+1) is computed. Therefore, we can
compute the gradients of L with respect to u(k) and r(k) for all k in the order from
left to right using (40), (41), (43), and (44), starting from ∂L/∂u(K) = u(K) − u∗,
as follows:

∂L

∂u(K)
→ ∂L

∂r(K)
→ · · · → ∂L

∂r(k+1)
→ ∂L

∂u(k)
→ ∂L

∂r(k)
→ · · · → ∂L

∂u(0)
(45)

That is, we first compute ∂L/∂u(K) = u(K) − u∗ according to the definition of L in
(21), use it to compute ∂L/∂r(K) according to (40) and (41), and then ∂L/∂u(K−1)

according to (43) and (44), and so on. This is the effect of back-propagation.
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Now we compute the gradients of r(k) and u(k) with respect to the network
parameters used in (18a) and (18b), respectively. The derivative of r(k) with respect
to αk is straightforward due to (18a):

∂ r(k)

∂αk

= −∇h(u(k)). (46)

The gradient of u(k) with respect to w
(k)
j in the j th layer of the CNN H(k) defined

in (17) can be obtained by applying the chain rule to (18b):

∂u(k)

∂w
(k)
j

= ∇H̃ (k)(sk) · S′
θk

(hk) · ∂hk

∂w
(k)
j

(47)

for j = 1, 2, where hk is the output of H(k) given the input r(k) and sk is the output
of Sθk

given the input hk defined in (42). The partial derivative ∂hk/∂w
(k)
j is standard

as in the back-propagation of CNN, which we omit the details here. Similarly, the
gradient of u(k) with respect to w̃

(k)
j in the j th layer of the CNN H̃ (k) defined in (17)

can be obtained since u(k) and sk are the output and input of H̃ (k), respectively. The
gradient of u(k) with respect to θk is slightly different:

∂u(k)

∂θk

= ∇H̃ (k)(sk) · ∂Sθk
(hk)

∂θk

. (48)

In this case, we will need to treat Sθk
(hk) ∈ R

n as a function of θk for given hk , i.e.,
S·(hk) : θk �→ Sθk

(hk) defined by

[Sθk
(hk)]i =

⎧
⎪⎪⎨

⎪⎪⎩

−θk + [hk]i if 0 < θk < hk,

θk − [hk]i if 0 < θk < −hk,

0 otherwise.

(49)

Hence, the derivative of Sθk
(hk) with respect to θk is

[∂Sθk
(hk)

∂θk

]

i

=

⎧
⎪⎪⎨

⎪⎪⎩

−1 if 0 < θk < hk,

1 if 0 < θk < −hk,

0 otherwise.

(50)

With all the partial derivatives obtained above, we can apply the chain rule to
compute the gradient of L with respect to each of the network parameters. For
example,
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∂L

∂αk

= ∂L

∂r(k)

∂r(k)

∂αk

, (51)

where ∂L/∂r(k) is obtained by (40) and (41) following the back-propagation process
and ∂r(k)/∂αk is obtained by (46). The partial derivatives with respect to the other
parameters can be similarly computed as follows:

∂L

∂θk

= ∂L

∂u(k)

∂u(k)

∂θk

,
∂L

∂w
(k)
j

= ∂L

∂u(k)

∂u(k)

∂w
(k)
j

,
∂L

∂w̃
(k)
j

= ∂L

∂u(k)

∂u(k)

∂w̃
(k)
j

(52)

where ∂L/∂u(k) is obtained by (43) and (44) and the partial derivatives of u(k) with
respect to θk , w

(k)
j , and w̃

(k)
j are obtained similarly as explained above.

With these gradients of L with respect to the network parameters, we can employ
a stochastic gradient descent (SGD) method and find the optimal parameters �∗
that minimizes (21) over the entire training dataset. With the optimal �∗, ISTA-
Net works as a feedforward mapping, which takes imaging data b and outputs a
reconstructed image u(K). This feedforward mapping can be computed very fast
since all operations in (18) are explicit given �∗.
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