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Abstract In recent years, we have witnessed unprecedented growth of research
interests in deep learning approaches to image reconstruction. A majority of these
approaches are inspired by the well-developed variational method and associated
optimization algorithms for the inverse problem of image reconstruction. These
approaches mimic the iterative schemes of the standard optimization algorithms but
integrate learnable components to form structured deep neural networks, and employ
large amount of observation data to train the networks for the specific reconstruction
tasks. They have demonstrated significantly improved empirical performance and
requiremuch lower computational cost compared to the classical methods in a variety
of applications. We provide the details of the derivations, the network architectures
and the training procedures for several typical networks in this field.

1 Introduction

Variational method has been one of the most mature and effective approaches for
solving inverse problems in imaging [2, 11, 20, 32]. In the context of image recon-
struction, the inverse problem can be formulated as an optimization in a general form
as follows:

min
u

g(u) + h(u) , (1)
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where u is the image to be reconstructed, h(u) is the data fidelity that measures the
discrepancy between u and the acquired data (often in the transformed domain), and
g(u) is a regularization term which imposes the prior knowledge or our preference
on the solution u.

To instantiate the variational method (1), we may consider the image recon-
struction problem with total-variation (TV) regularization for compressive sensing
magnetic resonance imaging (CS-MRI) in the discretized form: Suppose that the
gray-scale image u to be reconstructed is defined on the two-dimensional

√
n ×
√

n
mesh grid (thus a total of n pixels) representing its square domain [0, 1]2. Then u can
be interpreted as a vector in Rn where its ith component ui ∈ R is the integral (or
average) of the image intensity value over the ith pixel for i = 1, . . . , n. MRI scanners
can acquire the Fourier coefficients of u, from which one can recover u simply by
applying inverse Fourier transform. For fast imaging in CS-MRI, we only acquire a
fraction of Fourier coefficients b ∈ Cm withm < n, which relates to u by b = PF u+e
where F ∈ Cn×n is the discrete Fourier transform matrix, P ∈ Rm×n is a binary
selection matrix (one entry as 1 and the rest as 0 in each row) indicating the indices
of the sampled Fourier coefficients, and e ∈ Cm represents the unknown noise in data
acquisition. Then the data fidelity term h(u) in (1) can be set to (1/2) · ‖PF u − b‖22 .
For fast imaging, m is often much smaller than n and hence we need additional
regularization g(u) in (1) to ensure robust and stable recovery of u. TV is one of the
most commonly used regularization in image reconstruction–the simplified version
of TV in the discrete setting is TV(u) =

∑n
i=1 ‖Diu‖2 where Di ∈ R

2×n is binary
and has only two nonzero entries (1 and −1) corresponding to the forward finite
difference approximations to partial derivatives along the coordinate axes at pixel i.
Hence the regularization can be set to g(u) = µTV(u) for some user-chosen weight
parameter µ > 0 in (1). The motivation of using TV as regularization is that images
with small TV tend to have distinct constant intensity values in different regions
and sharp intensity change on the boundary between two regions, hence displays the
included objects with clear intensity contrasts. The minimization in (1) thus reflects
the principle of the variational method for image recovery—we want to find the
minimizer u such that it is consistent to the observed data (small value of h(u)) and
meanwhile has desired regularity (small value of g(u)). To this point, (1) becomes
an optimization problem of u ∈ Rn, for which we can apply a proper numerical
optimization algorithm and solve for u from (1).

The variational method yields a concise and elegant formulation of image re-
construction as in (1). It has achieved great success in image reconstruction thanks
to the fast developments of numerical optimization techniques in the past decades.
However, there are several main issues associated with this approach.

The first issue with (1) is the choice of regularization g(u). There are numerous
regularization terms proposed in the literature. Although many of them have proven
robust in practice, they are often overly simplified and cannot capture the fine details
in medical images which are critical in diagnosis and treatment. For example, TV
regularization is known for its “staircase” effect due to its promotion of sparse
gradients, such that the reconstructed images tend to be piecewisely constant which
are not ideal approximations to the real-world images. For example, important fine
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structures and minor contrast changes can be smeared in the reconstructed image
using TV regularization, which is unacceptable for applications that require high
image quality.

The second issue is the parameter tuning. To achieve desired balance between
noise reduction and faithful structural reconstruction, the parameters of a reconstruc-
tion model (e.g., µ > 0 mentioned above) and its associated optimization algorithm
(such as step sizes) need to be carefully tuned. Unfortunately, the image quality is
often very sensitive to these parameters; and the optimal parameters are also shown
to be highly dependent on the specific acquisition settings and imaging datasets.

Last but not least, the reconstruction time of iterative optimization algorithms
is also a major concern on their applications in real-world problems. Despite that
the efficiency of optimization algorithms is continuously being improved, these
algorithms, even for convex problems, often require hundreds of iterations or more
to converge, which result in long computational time.

The issues with the classical variational methods and optimization algorithms
mentioned above inspired a new class of deep learning based approaches. Deep
learning [14] with deep neural networks (DNNs) as the core component has achieved
great success in a variety of real-world applications, including computer vision
[17, 21, 45], natural language processing [13, 19, 31, 36, 40], medical imaging
[16, 33, 38], etc. DNNs have provable representation power and can be trained with
little or no knowledge about the underlying functions. However, there are several
major issues of such standard deep learning approaches: (i) Generic DNNs may fail
to approximate the desired functions if the training data is scarce; (ii) The training
of these DNNs are prone to overfitting, noises, and outliers; and (iii) The trained
DNNs are mostly “blackboxes” without rigorous mathematical justification and can
be very difficult to interpret.

To mitigate the aforementioned issues of DNNs, a class of learnable optimization
algorithms (LOAs) has been proposed recently. In brief, the architectures of the
neural networks in LOAs mimic the iterative scheme of the optimization algorithms,
also known of “unrolling” the optimization algorithms. More specifically, these
reconstruction networks are composed of a small number of phases,where each phase
mimics one iteration of a classical, optimization-based reconstruction algorithm. In
most cases, the terms corresponding to the manually designed regularization in the
classical methods are parameterized by multilayer perceptrons whose parameters
are to be learned adaptively in the offline training process with lots of imaging data.
After training, these networks work as fast feedforwardmappings with extremely low
computational cost, so that the reconstruction of new images can be performed on the
fly. These methods combine the best parts of variational methods and deep learning
for fast and adaptive image reconstruction. In the next section, we first consider
the algorithms that are designed to solve a prescribed model in the form of (1).
Section 3 is dedicated to the class of deep reconstruction networks that can learn the
variational model or algorithm such that the outputs are high-quality reconstructions
of the images.
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2 Learned Algorithm for Specified Optimization Problem

Learned optimization algorithms are modifications of traditional optimization al-
gorithms by including trainable components, such as deep neural networks or the
layers, for fast and adaptive numerical solution. This approach is motivated by the
viewing the iterative scheme in traditional optimization algorithm (e.g., gradient
descent) as a feedforward neural network with repeated, pre-designed layers. The
main structures of these algorithms largely adopt those of the original optimization
algorithms. To make these algorithms more adaptive to the given problem, learnable
components are introduced so they can improve over the original algorithms using
the available data.

In this section, we showcase several learned optimization algorithms for the well-
known l1 minimization problem as follows:

min
u

µ‖u‖1 +
1
2
‖Au − b‖2 , (2)

where A ∈ Rm×n, b ∈ Rm, and the parameter µ > 0 are given. The solution of
(2) is also known as the least absolute shrinkage and selection operator (lasso) or
sparse recovery since the solution u fits the observed data b in the data fidelity term
h(u) := (1/2) · ‖Au − b‖2 and meanwhile tends to have only a small amount of
nonzero components (hence sparse) due to the l1 regularization g(u) := µ‖u‖1. A
basic method for solving (2) is called the iterative shrinkage-threshold algorithm
(ISTA). To solve (2), ISTA first approximates h(u) by its first-order Taylor expansion
at the previous iterate u(k) plus a quadratic penalty term with weight 1/(2α) in each
iteration k as follows:

h(u) ≈ h(u(k)) + 〈∇h(u(k)), u − u(k)〉 +
1

2α
‖u − u(k)‖2

=
1

2α
‖u − (u(k) − α∇h(u(k)))‖2 + const, (3)

where we completed the square to obtain the equality above, and the term “const”
represents a constant independent of u. As a result, ISTA generates the next iterate
u(k+1) by

u(k+1) = arg min
u

{
g(u) +

1
2α
‖u − (u(k) − α∇h(u(k)))‖2

}
, (4)

where the constant term is omitted since it does not affect the result u(k+1) in (4). To
obtain u(k+1) in (4), it is essential to find the solution of the proximity operator proxg
defined below for any given z ∈ Rn:

proxg(z) := arg min
x

{
g(x) +

1
2
‖x − z‖2

}
. (5)
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With g(x) := µ‖x‖1, the proximity operator proxg has a closed form solution, called
the shrinkage operator Sµ. That is, the ith component of Sµ(z) = proxg(z) ∈ Rn is

[Sµ(z)]i = [proxg(z)]i = sign(zi) ·max{|zi | − µ, 0}. (6)

Therefore, Sµ(z) “shrinks” the magnitude of each component of its argument z by µ;
if the magnitude is smaller than µ then it becomes 0 after the shrinkage. Combining
(4), (5), and (6) yields the scheme of ISTA:

u(k+1) = Sµ/L
(
u(k) −

1
L

A>(Au(k) − b)
)
, (7)

where α is set to the optimal value 1/L in (7), and L is the largest eigenvalue of A>A
(i.e., the Lipschitz constant of ∇h(u) = A>(Au − b)). It can be shown that, starting
from any initial guess u(0), ISTA (7) generates a sequence {u(k)} that converges to a
solution of (2) at a sublinear rate of O(1/k) in function value.

However, the practical performance of ISTA is not satisfactory as it often requires
hundreds to thousands of iterations to obtain an acceptable approximation to the
solution. Although there are a variety of optimization techniques to improve the
convergence of ISTA, the traditional variational formulation and optimization still
fall short in real-world applications due to the relatively slow convergence and the
issues mentioned in Section 1. Inspired by the great success of deep learning, for a
fixed A, we may ask whether it is possible learn the terms, such as µ, L, and even A>,
in (7) adaptively if we have many instances of b and their corresponding solutions
to (2). In [15], this approach is examined and results in the learned ISTA (LISTA)
formed as a K-layer feedforward neural network:

u(k+1) = σk(W
(k)
1 b +W (k)2 u(k)) (8)

for k = 0, . . . ,K − 1. In LISTA (8), the linear mappings W (k)1 ,W (k)2 and the non-
linear mapping (can also be a pre-selected nonlinear activation function) σk can
be learned, such that the final output u(K), as a function of these parameters
Θ := (. . . ,W (k)1 ,W (k)2 , σk, . . . ), is close to a solution u∗ of (2) for a given b. More
specifically, given N pairs of training data {(bj, u∗j ) : 1 ≤ j ≤ N}, where bj ∈ R

m

is the input data of the optimization problem (2) and u∗j ∈ R
n is the corresponding

ground truth (e.g., solution obtained by solving the minimization problem (2) with
bj using some classical optimization algorithm to high accuracy), then one can learn
the optimal network parameter Θ∗ by solving the minimization problem

min
Θ

1
N

N∑
j=1
‖u(K)(bj ;Θ) − u∗j ‖

2

where u(K)(b;Θ) denotes the output of the K-phase network with parameter Θ and
input data b. By training the parameterΘwith various of b and the corresponding u∗,
LISTA can find an effective path from u(0) to u(K) using the learned Θ∗. If training
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result is satisfactory with a small K (e.g., K = 10), then LISTA, as a feedforward
neural network, is expected to compute good approximation of u∗ given new input
b on the fly. Note that LISTA (8) reduces to ISTA (7) if the parameters are not
learned but pre-defined as W (k)1 = A>/L, W (k)2 = I − A>A/L, and σk(·) = Sµ/L(·)
for all k. It is shown that LISTA can achieve similar solution accuracy with iteration
number K 18 to 35 times fewer than that required in ISTA or FISTA for problems
with dimension 100 to 400 [15].

In recent years, there have been a number of follow-up research works that exploit
the properties and variations of LISTA. In [7], a simplified version of LISTA is
proposed:

u(k+1) = Sµ/L
(
u(k) −

1
L

W>(Au(k) − b)
)
, (9)

with learnable W , and the convergence of (9) for solving (2) is also established
in [7, 24]. In [37], LISTA is extended to learnable pursuit process architectures
for structured sparse and robust low rank models derived from proximal gradient
algorithm. It is shown that such network architecture can approximate the exact sparse
or low rank representation at a fraction of the complexity of the standard optimization
methods. In [44], a learned iterative hard thresholding (IHT) algorithm where σk is
replaced by a hard thresholding operator Hk is developed, and its potential to recover
minimal l0 norm solution is shown both theoretically and empirically. The work [4]
developed a learned approximate message passing (LAMP) algorithm for the lasso
problem (2):

v(k+1) = βkv
(k) − Au(k) + b , (10a)

u(k+1) = Sµk (u
(k) + A>v(k+1)) . (10b)

In contrast to LISTA, LAMP (10) includes a residual v(k) in each layer k performs
shrinkage dependent on k. By the inclusion of the “Onsager correction” term βkv

(k)

to decouple errors across layers, LAMP appears to outperform LISTA in accuracy
empirically. For example, on synthetic data with Gaussian matrix A, LAMP takes
7 iteration number to obtain the normalized mean square error (NMSE) −34dB,
whereas LISTA takes 15 iterations [4].

The aforementioned learned optimization algorithms are for unconstrained mini-
mizations. Recently, thework in [43] developed an algorithm, called the differentiable
linearized alternating direction method of multipliers (D-LADMM), can be used to
solve problems with linear equality constraints. D-LADMM is a K-layer linearized
ADMM inspired deep neural network, which is obtained by using learnable weights
in the classical linearized ADMM and generalizing the proximal operator to learn-
able activation functions. It is proved that there exist a set of learnable parameters
for D-LADMM to generate globally converged solutions.

To this point, we have seen several instances of modifying the ISTA (7) to obtain
deep neural networks with trainable components to solve (2). Each iteration of ISTA
is transformed into one layer of a neural network, the parameters of which are
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then trained using available imaging data. Once properly trained, these networks
can often achieve more accurate approximations of the solution in much less time
than the traditional approaches. Global convergence results, sometimes even better
than the original optimization algorithms, have been established for several of these
methods. However, most of these methods are restricted to the variational model (1)
with l1 or l0 regularization, so that the proximity operators can yield closed-form
shrinkage as the nonlinear activation function. It remains as an open problem on
extending this type of methods to handle more general or learnable regularization.

3 Structured Image Reconstruction Networks

In this section, we introduce several deep neural networks inspired by classical
optimization algorithms for image reconstruction. Unlike the learned algorithms
discussed in Section 2, these networks aim at solving the given reconstruction prob-
lem demonstrated by training dataset (often includes ground truth images), rather
than any prescribed optimization problem such as the lasso (2). As a result, they do
not require manually designed regularization and specified objective function, but
can implicitly learn an adaptive regularization using the training data. This class of
methods have become the mainstream for deep learning based image reconstruction
research in recent years.

The optimization-inspired reconstruction networks in this section also share the
same main feature: each phase of these network corresponds to one iteration of the
classical optimization. More specifically, the data fidelity term h in (1) that describes
the relation between image and acquired data is largely preserved as in optimization
algorithms. However, unlike the methods in Section 2, the regularization term g is
unknown, but can be replaced by neural networks whose parameters are learned
adaptively from data.

In the remainder of this section, we introduce several reconstruction neural net-
works developed along this line. Most of these networks can be applied to a wide
range of image reconstruction problems as they are customized to learn from the
training data directly rather than for any specific imaging application or modality.
The training process can be time-consuming but is performed off-line. Once trained
properly, however, they serve as fast feedforward mappings that reconstruct high
quality images of the same type as those in the training dataset.

3.1 Proximal Point Network

A group of deep neural networks inspired by variational methods and optimization
algorithms directly leverage the popular deep neural network structures into the
optimization schemes. Consider the variational model (1) with general g and h, we
can rewrite its proximal point algorithm (4) as an equivalent two-step scheme by
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r (k) u(k)
Id + φk

r (k+1)u(k−1)
αk

kth phase

· · · · · ·

Fig. 1 Architecture of the proximal point network (11a) and (12). The kth phase updates r (k) and
u(k). The dependencies of each variable on other variables are shown as incoming arrows, and the
network parameters used for update are labeled next to the corresponding arrows.

introducing an auxiliary variable r (k) = u(k−1)−α∇h(u(k−1)) and using the definition
of the proximity operator in (5):

r (k) = u(k−1) − α∇h(u(k−1)) , (11a)

u(k) = proxαg(r (k)) . (11b)

As the data fidelity h is formulated based on the definitive relation between image
and acquired data, such as h(u) = (1/2) · ‖PF u − b‖2 in CS-MRI as shown in
Section 1, it is often kept unmodified in (11a). Moroever, the step size α can be set
to αk which is not manually chosen but learned during the training process. On the
other hand, the proximal term in (11b) is due to the regularization g and performs
as an image “denoiser” that modifies inputs r (k) to obtain an improved image u(k).
Instead of choosing regularization g manually and solve (11b) in each iteration,
we can directly parametrize its proximity operator proxαg as a learnable denoiser
parametrized as convolutional neural network (CNN) [14]. Moreover, we can use
the residual network (ResNet) structure proposed in [17] for the CNN which proves
to be more effective for reducing training error in imaging applications. Namely, we
replace the proximity operator proxαg in (11b) by a denoising network [48]:

u(k) = r (k) + φk(r (k)) (12)

where φk is a standard multiplayer CNN that maps r (k) to the residual between u(k)

and r (k). The architecture of the proximal point network given by (11a) and (12) is
illustrated in Figure 1, where each arrow indicates a mapping from its input to the
output with the required network parameters labeled next to it.

Let Θ denote the collection of learnable parameters in φk (e.g., the convolutional
kernels and the biases) and algorithm parameters (e.g., αk > 0) for all k = 1, . . . ,K ,
then the output after K cycles (phases) of (11a) and (12) is a function of Θ for any
given imaging data b. Denote this output by u(K)(b;Θ), which is the output of any
given image data b passing through this network with parameter Θ, we can form the
loss function of Θ by regression as:

L(Θ; b, u∗) =
1
2
‖u(K)(b;Θ) − u∗‖2, (13)
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where u∗ is the ground truth image corresponding to the (possibly noisy and incom-
plete) imaging data b, both given in the training data. By feeding in a large amount
of instances of form (b, u∗), we can solve for the minimizer Θ∗ of the sum of L as in
(13) over all of these instances. Then the deep reconstruction network with K phases,
each consisting of (11a) and (12), is a feedforward neural network with parameters
Θ∗ for fast image reconstruction given any new coming data b.

The proximal point network can be applied to a variety of imaging applications,
including image denoising, image deblurring and image super-resolution by replac-
ing the proximal operator by a denoiser network in regularization-subproblem of
half quadratic splitting algorithm [48]. In [48], φk is designed to contain 7 dilated
convolutions with 64 feature maps in each middle layer, where ReLU activation
function is used after the first convolution, and both Batch Normalization (BN) and
ReLU are used in every convolution thereafter. The training data is composed of
256 × 4000 image patches of size 35 × 35 cropped from the BSD400 [26], 400
images from ImageNet validation set [12] and 4,744 Waterloo Exploration images
[25]. They evaluate their results on BSD68 [30], Set5 and Set14 [39] respectively.
In [46], IRCNN is compared with several other methods on Set11 [22] with various
sampling ratios, and the results will be presented later in this section.

The work developed in [9, 10, 27, 29, 42, 48] can all be considered as variations
of the method described above. For instance, CNN denoiser has been placed in the
proximal gradient descent algorithm in [27], subproblem in half quadratic splitting
in [48], subproblem in ADMM in [27, 29] and subproblems in primal-dual algorithm
in [9, 27, 42].

3.2 ISTA-Net

ISTA-Net [47] is a deep neural network architecture for image reconstruction inspired
by ISTA as given in (7). Recall that ISTA is originally derived to solve the l1
minimization problem (2), i.e., (1) with g(u) = µ‖u‖1 and h(u) = (1/2) · ‖Au − b‖2,
as we showed in Section 2. For image reconstruction, the sole l1 norm is not a
suitable regularization since almost all natural images are not sparse themselves.
Instead, they are often sparse in certain transform domains. Let Ψ ∈ Rn×n be a
sparsifying operator (e.g., wavelet transform) that transforms u into a sparse vector
Ψu. Then, we can modify lasso (2) and obtain a similar form as:

min
u

g(Ψu) + h(u) . (14)

Although (14) does not exactly match the ISTA (2) due to the presence of Ψ, this
can be easily resolved by using an orthogonal sparsifying operator Ψ and setting
x = Ψu as the unknown for (2). For example, if we set Ψ to an orthogonal 2D
wavelet transform. In this case, we just need to solve x from the exact form of (2)
with g(x) = µ‖x‖1 and h̃(x) := h(Ψ>x) as the data fidelity, and recover u = Ψ>x
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using the output x of ISTA. Integrating this change of variables into the scheme (11),
we obtain a slightly modified version of ISTA as follows:

r (k) = u(k−1) − α∇h(u(k−1)), (15a)

u(k) = Ψ>proxαg(Ψr (k)) = Ψ>Sθ (Ψr (k)), (15b)

where θ = αµ combines the two parameters, and (15b) involves shrinkage due to the
choice of g(x) = µ‖x‖1. The gradient ∇h in (15a) is due to the data fidelity h in (14).
Therefore, we do not need to “learn” this part in the reconstruction. On the other
hand, the use of the sparsifying transform Ψ and `1 regularization is rather heuristic.
If there are sufficient amount of training data, it is likely that we can learn a better
representation of this regularization using a deep learning technique.

Bearing this idea, ISTA-Net is proposed to replace the transform Ψ and Ψ> in
(15) by multilayer convolutional neural networks (CNN), while keeping the proxαg,
i.e., the shrinkage due to the `1 norm, as it seems robust in suppressing noises. To
this end, ISTA-Net follows the scheme of ISTA (15), and construct a deep neural
network of a prescribed K phases as in Section 3.1.

Unlike LISTA and its variations in Section 2, the kth phase of ISTA-Net is to
mimic the two steps in the kth iteration of ISTA in (15). Given the output u(k−1)

of the previous phase, the update of r (k) follows (15a) directly since h is known to
accurately describe the data formation. Therefore, only the parameter α in (15a),
which behaves as the step size in ISTA, is set to αk and is to be learned during the
training process in ISTA-Net. After r (k) is updated, it is passed to (15b) with Ψ and
Ψ> replaced by two multilayer CNNs H(k) and H̃(k) respectively, and the shrinkage
parameter θ is replaced by θk , which is to be learned as well. Namely, u(k) is updated
by

u(k) = H̃(k)
(
Sθk

(
H(k)(r (k))

) )
. (16)

In ISTA-Net [47], H(k) and H̃(k) are set to simple two-layer CNNs as follows:

H(k)(r) = w
(k)
2 ∗ σ(w

(k)
1 ∗ r (k)) and H̃(k)(r̃) = w̃

(k)
2 ∗ σ(w̃

(k)
1 ∗ r̃ (k)) (17)

where w
(k)
1 , w(k)2 , w̃(k)1 , and w̃

(k)
2 are convolutional kernels in the kth phase to be

learned, and σ is a component-wise activation function such as ReLU, i.e., σ(x) =
max(x, 0) componentwisely. In the numerical implementation of ISTA-Net [46], w1
and w̃2 are convolutions with d kernels of size 3 × 3; w2 and w̃1 are convolutions
with d kernels of size 3 × 3 × d with d set to 32.

To this point, we can see that ISTA-Net is a deep neural network with a prescribed
number of K phases. Each phase of ISTA-Net mimics one iteration (15) of ISTA and
is formed as: r (k) and u(k) by

r (k) = u(k−1) − αk∇h(u(k−1)), (18a)

u(k) = H̃(k)Sθk (H
(k)r (k)), (18b)
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r (k) u(k)
θk, H

(k), H̃ (k)

r (k+1)u(k−1)
αk

kth phase

· · · · · ·

Fig. 2 Architecture of ISTA-Net (18). The kth phase updates r (k) and u(k). The dependencies of
each variable on other variables are shown as incoming arrows, and the network parameters used
for update are labeled next to the corresponding arrows.

where we have omitted excessive parentheses for notation simplicity, i.e., H(k)r (k)

stands for H(k)(r (k)) etc. The K phases are concatenated in order, where the kth
phase accepts the output u(k−1) of the previous phase, updates r (k) using (18a) with
αk , and finally outputs u(k) using (18b). Hence, the parameters to be learned are: αk ,
θk , and w

(k)
1 , w(k)2 in H(k) and w̃

(k)
1 and w̃

(k)
2 in H̃(k) for k = 1, 2, . . . ,K . In the first

phase, the input is the initial guess u(0), which can be set to A>b. The output of the
last phase, u(K), is used in the loss function that measures its squared discrepancy to
the corresponding ground truth, high quality image u∗:

Ldis(Θ; b, u∗) =
1
2
‖u(K)(b;Θ) − u∗‖2 (19)

where (b, u∗) is a training pair as in the proximal point network in Section 3.1, and
Θ := {αk, θk,w(k)1 ,w

(k)
2 , w̃

(k)
1 , w̃

(k)
2 | k = 1, . . . ,K}. The structure of the ISTA-Net can

be visualized in Figure 2. For more details of the network structure and its relation
to the back-propagation procedure, we refer to [41].

In addition, since H(k) and H̃(k) in (17) are replacing Ψ and Ψ> respectively,
they are expected to satisfy H̃(k)H(k) = I, the identity mapping. To make this
constraint approximately satisfied, the mismatch between H̃(k)(H(k)(u∗)) and u∗ can
be integrated into the following loss function, despite that it is much weaker than
H̃(k)H(k) = I:

Lid(Θ; u∗) =
1
2

K∑
k=1
‖H̃(k)(H(k)(u∗)) − u∗‖2. (20)

The loss function for a particular training pair (b, u∗) is thus the sum of the losses in
(19) and (20) with a balancing parameter γ > 0:

L(Θ; b, u∗) = Ldis(Θ; b, u∗) + γ Lid(Θ; u∗), (21)

and the total loss function during training is the sum of L(Θ; b, u∗) in (21) over all
training pairs of form (b, u∗) in the training dataset.

The optimal parameter Θ∗ can be obtained by minimizing the loss function (21),
which can be accomplished using the stochastic gradient descent (SGD)method. The
key in the implementation of SGD is the computation of the gradient of (21) with
respect to each network parameter, i.e., αk, θk,w(k)1 ,w

(k)
2 , w̃

(k)
1 , w̃

(k)
2 for k = 1, . . . ,K .

More specifically, we first need to compute the gradient of L defined in (21) with
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respect to themain variables u(k) and r (k). Thenwe compute the gradients of u(k) with
respect to its parameters, i.e., θk,w(k)1 ,w

(k)
2 , w̃

(k)
1 , w̃

(k)
2 , and the gradient of r (k) with

respect to α(k). Finally, the gradients of L with respect to these network parameters
can be built by multiplying the involved partial derivatives according to the chain
rule. The derivations are fairly straightforward. For completeness, we provided the
details of this back-propagation in the Appendix.

ISTA-Net [46] evaluated the reconstruction results on datasets BSD68 [26] and
Set11 [22] respectively. The training set contains N = 88, 912 pairs (b, u∗), where u∗

is 33 × 33 image patch randomly cropped from the images in 91Images dataset [22]
and b is the corresponding CS measurement. In Table 1, the reconstructed results
are shown and compared with a traditional variational method TVAL3 [23] and a
non-iterative network IRCNN [48], where the ISTA-Net+ is the residual shortcut
enhanced version ISTA-Net, for the detailed implementation of ISTA-Net+ please
refer to [46]. Some reconstructed images of Butterfly in Set11 [22] by ISTA-Net+
with various sampling ratios are displayed in Figure 3.

(a) True (b) 10% (25.91) (c) 25% (33.52) (d) 50% (40.18)

Fig. 3 Qualitative reconstruction results of ISTA-Net+ [46] applied to the Butterfly image in Set11
[22] with various sampling ratios. The numbers in the captions of (b)-(d) are the corresponding
sampling ratios and PSNR are shown in the parentheses. Results are generated by the code available
at https://github.com/jianzhangcs/ISTA-Net.

3.3 ADMM-Net

ADMM-Net [38] is one of the earliest attempts to unroll a known optimization
algorithm into a deep neural network. ADMM-Net is originated from the alternating
minimization method of multipliers, or ADMM for short, which is a numerical
algorithmparticularly effective for convex optimization problemswith linear equality
constraints. Combined with the variable splitting technique, ADMM has been very
popular and successful in solving variety of nonsmooth and/or constrained problems.

In its standard form, ADMM can solve constrained convex problems where the
primal variable (i.e., the variable to be solved in the optimization problem) consists
of two blocks related by a linear equality constraint. In addition, there is a dual
variable, i.e., the Lagrangian multiplier, associated with the equality constraint. In



Variational Model Based Deep Neural Networks for Image Reconstruction 13

each iteration, ADMM updates the two blocks of the primal variables in order, one
at each time with the other one fixed, and then the dual variable using the updated
primal variable. ADMM yields more complex iterations due to the multiple-variable
structure than ISTA.

We first recall the variable splitting and the original ADMM for image recon-
struction problem, which is formulated as the one in ISTA as (14):

min
u

g(Ψu) +
1
2
‖Au − b‖2 , (22)

but with more specific data fidelity h(u) = (1/2) · ‖Au − b‖2. Here, we write the
regularization in (22) as a composite function where g is simple (i.e., the proximity
operator proxg has closed form or is easy to compute) and Ψ as a linear operator.
A typical example is the total variation regularization we mentioned in Section 1:
g(Ψu) := µ

∑n
i=1 ‖Diu‖2 with weight parameter µ > 0. That is, Ψ is the discrete

gradient operator (finite forward differences) D, and g is a slight variation of l1 norm
which takes sum of the l2 norms of the gradients at all pixels. For ADMM to work
efficiently, there is also requirement on the matrices Ψ and A, which we will specify
later. To apply ADMM, we first use variable splitting by introducing an auxiliary
variable w such that w = Du, and rewrite (22) as the following equivalent problem:

min
w,u

{
g(w) +

1
2
‖Au − b‖2

}
, subject to w = Du. (23)

Then, we formulate its associated augmented Lagrangian:

L(u,w; λ) = g(w) +
1
2
‖Au − b‖2 + 〈λ,w − Du〉 +

ρ

2
‖w − Du‖2, (24)

with Lagrangian multiplier λ. ADMM is then applied to solve (23) with the aug-
mented Lagrangian (24). In each iteration of ADMM, the primal variables w and u
are updated in order, and then the dual variable λ is updated. In the case of CS-MRI
with A = PF mentioned in Section 1, the subproblems are given as follows:

w(k) = Sθ (Du(k−1) − λ(k−1)), (25a)

u(k) = (ρD>D + A>A)−1(A>b + ρD>w(k) − D>λ(k−1)), (25b)

λ(k) = λ(k−1) + ρ(w(k) − Du(k)), (25c)

where θ = µ/ρ. Given an initial guess (w(0), u(0), λ(0)), ADMM repeats the cycle of
the three steps (25) for iteration k = 1, 2, . . . , until a stopping criterion is satisfied.
As we can see, for ADMM to work efficiently, the inverse of D>D + ρA>A in (25b)
must be easy to compute. In certain imaging applications, this is possible since both
D>D and A>A can be diagonalized by fast transforms (such as Fourier), with which
the update u(k) (25b) requires very low computational cost.
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ADMM-Net [38] is a deep reconstruction network architecture that mimics the
ADMM scheme (25). Similar to the case of ISTA-Net, each phase of ADMM-Net
mimics one iteration of ADMM (25). More specifically, ADMM-Net sets a fixed
iteration number K . The kth phase of ADMM-Net mimics the kth iteration of
ADMM (25), but ADMM-Net replaces the gradient operator D by a parameterized
filter (convolution) H(k) and the fixed parameters θ and ρ by θk and ρk to be learned
through training. The original ADMM-Net [38] is designed to solve the single-coil
CS-MRI problem with A = PF , for which the kth phase of ADMM-Net reduces to:

w(k) = Sθk (H
(k)u(k−1) − λ(k−1)), (26a)

u(k) = F >(P>P + ρkFH(k)
>

H(k)F >)−1(P>b + ρkFH(k)
>
(w(k) + λ(k−1))), (26b)

λ(k) = λ(k−1) + (w(k) − H(k)u(k)), (26c)

where Sθ is the shrinkage by θ > 0 as in (18b).
In ADMM-Net [38], H(k) is set to a linear combination of a set of given filters {Bl}

with coefficients γ(k) = (· · · , γ(k)
l
, · · · ) ∈ R | {Bl } | , i.e., H(k) =

∑
l γ
(k)
l

Bl . Therefore,
H(k) is completely determined by the coefficients γ(k) in the kth phase. Moreover,
the shrinkage in (25a) is replaced by a piece-wise linear function (PLF) determined
by a set of control points and the associated function values. More specifically, let
{p0, . . . , pNc } be a set of Nc + 1 control points on R. In [38], these control points are
simply chosen as uniform mesh grid points on the interval [−1, 1], i.e., p0 = −1 and
pNc = 1, and pl − pl−1 = 2/Nc for l = 1, . . . , Nc . Then, the PLF S(h; {pl, q(k)l

}) in
[−1, 1] is completely determined by the values {q(k)

l
} at the corresponding control

points {pl}. Outside the interval [−1, 1], the PLF S(h; {pl, q(k)l
}) is set to have slope 1

and concatenates with its part in [−1, 1] at p0 and pNc to form a continuous function.
Then, instead of learning θk in the shrinkage operation Sθk in (25a), the original
ADMM-Net learns the values {q(k)

l
} as a part of the network parameters. The output

u(K) is a function of the input b and network parameters Θ = {θk, ρk, γ(k) | k =
1, . . . ,K}. The architecture of ADMM-Net is shown in Figure 4. As usual, the loss
function can be set to the squared error of u(K) from the ground truth, reference
image u∗ corresponding to data b:

L(Θ; b, u∗) =
1
2
‖u(K)(b;Θ) − u∗‖2. (27)

The total loss function is the sum of the loss in (27) above over all training pairs (b, u∗)
in the given training dataset. Then, the total loss function is minimized using the
(stochastic) gradient descent method, and the minimizer Θ∗ is the learned network
parameters. More details about the derivation of the back-propagation and its relation
to the network structure in Figure 4 are provided in [41]. In [38], ADMM-Net is
applied to brain and chest MR image reconstruction, where the training and testing
datasets are 100 and 50 images respectively randomly picked from MRI dataset [3].
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w(k) u(k)
ρk, H

(k)

λ(k)

H (k)

w(k+1)u(k−1)
θk, H

(k)

λ(k−1)

θ
k

ρ
k , H (k)

kth phase

· · ·

· · ·

· · ·

Fig. 4 Architecture of ADMM-Net (26). The kth phase updatesw(k), u(k) and λ(k). The dependen-
cies of each variable on other variables are shown as incoming arrows, and the network parameters
used for update are labeled next to the corresponding arrows.

Fig. 5 Brain MR image reconstruction by ADMM-Net [38] with sampling ratio 20%. Left: ground
truth; Middle: image reconstructed by zero filling; Right: reconstructed image by ADMM-Net.
Results are generated by the code available at https://github.com/yangyan92/Deep-ADMM-Net.

The qualitative results of a selected brain MR images reconstructed by ADMM-Net
with CS ratio 20% are presented in Figure 5.

3.4 Variational Network

As we have seen above, the proximal point network, ISTA-Net and ADMM-Net all
aim to solve the variational model of form:

min
u

f (u), where f (u) := g(Du) + λh(u), (28)

where g, D, and even h can be learned from the training data adaptively. If we
apply the well-known gradient descent method in numerical optimization to (28),
we obtain:

u(k) = u(k−1) − αk(D>∇g(Du(k−1)) + λ∇h(u(k−1))) (29)
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where αk is the step size in iteration k. Note that above we adopted a slight abuse
of notation ∇g, since in image reconstruction g often represents the `1 norm or
alike which is not differentiable. Hence, it is more rigorous to interpret ∇g as a
subgradient of g, and the updating rule (29) is the subgradient descent. Nevertheless,
this term will be replaced by a parameterized function to be learned in training, and
thus its differentiability is not an important issue in the following derivation of the
variational reconstruction network.

The variational network [16] was inspired by this concise updating rule (29). In
[16], the variational network as a fixed number of K phases, and each phase mimics
one iteration of (29). The kth phase of variational network is built as

u(k) = u(k−1) − H(k)
>
φk(H(k)u(k−1)) − λk∇h(u(k−1)), (30)

Here λk , H(k), and φk are all to be learned from data. The step size αk is omitted
since it is absorbed by the learnable terms. In particular, H(k) is a convolution to
replace the manually chosen linear operator D (e.g., gradient in traditional image
reconstruction) in (29), and φk is a parameterized function to replace ∇g.

In [16], φk in (30) is represented as a linear combination of Gaussian functions.
First of all, φk is to be applied to H(k)u(k−1) ∈ Rn componentwisely, and hence it is
sufficient to describe the componentwise operation of φk using a univariate function.
To this end, we first determine a set of Nc + 1 control points {pl : l = 0, . . . , Nc}

uniformly spaced on a prescribed interval [−I, I] such that −I = p0 < p1 < · · · <
pNc = I and pl − pl−1 = 2I/Nc for l = 1, . . . , Nc . For each point pl , the Gaussian
function with a prescribed standard deviation σ is given by

Bl(x) = e−(x−pl )
2/(2σ2). (31)

Then, φk is set to a linear combination of Bl(x)with coefficients γ(k)
l

to be determined:

φk(x) =
Nc∑
l=0

γ
(k)
l

Bl(x). (32)

One can also design other basis functions, instead of (31) or even parametrize φk as
a generic neural network. For H(k), it is a convolution operation applied to u(k−1),
and hence it suffices to determine the convolution kernel. This is a very simplified
case of convolution layers of CNNs, and we omit the details here.

Now we can see that the variational network consists of K phases, where each
phase operates as (30). In particular, the first phase accepts u(0) as the input such as
A>b. The last, Kth phase outputs u(K), which is used in the loss function to compare
with the reference image u∗:

L(Θ; b, u∗) =
1
2
‖u(K)(b;Θ) − u∗‖2. (33)
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u(k−1) u(k)
αk, γ

(k), H (k)

u(k+1)

kth phase

· · · · · ·

Fig. 6 Architecture of the variational network (30). The kth phase updates u(k). The dependencies
of each variable on other variables are shown as incoming arrows, and the network parameters used
for update are labeled next to the corresponding arrows.

where the network parameter Θ := {αk, γ(k),H(k) | k = 1, . . . ,K}. The total loss
function is then the sum of (33) over all training pairs of form (b, u∗). The architecture
of variational network is presented in Figure 6. More details about the derivation of
the back-propagation and its relation to the network structure in Figure 6 are provided
in [41]. Similar to the proximal point network and ISTA-Net introduced above, the
variational network can be applied to problems where the data fidelity term h is
differentiable with Lipschitz continuous gradient.

In [16], the variatinoal network considered above is applied to Parallel Imag-
ing MR image reconstruction. In their experiment, H(k) is implemented as 48
real/imaginary filter pairs and Nc is prescribed to be 31. The network is trained
on the dataset which contains 20 image slices from 10 patients and tested on recon-
structing the whole image volume for 10 clinical patients that is non-overlapping
with training set. The qualitative illustration of a reconstructed scan of Variational
Network is visualized in Figure 7.

(a) Mask (b) Reference (c) VN (d) Error

Fig. 7 The reconstruction result of an exemplifiedMR image byVariational Network [16] with sam-
pling ratio 31.60. Results are generated by the code available at https://github.com/VLOGroup/mri-
variationalnetwork.

3.5 Primal-Dual Network

Primal-dual network (PD-Net) is a deep neural network architecture for image re-
construction inspired by the primal-dual hybrid gradient algorithm [5]. There have
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been a number of work that developed PD-Nets and applied to image reconstruction
[1, 9, 18, 27].

Aswe discussed above, in the image reconstruction context, the variationalmodels
(1) are often represented with g(u) as a regularization function and h̃(u) = h(Au) :=
(1/2) · ‖Au− b‖2. In this case, we can rewrite (1) as an equivalent min-max problem
by Fenchel transformation:

min
u

max
z,y
〈Au, z〉 − h∗(z) + 〈u, y〉 − g∗(y) (34)

where h∗(z) and g∗(y) are the conjugates (Fenchel dual) of h(Au) and g(u), respec-
tively. Due to the Moreau’s decomposition theorem:

proxτ f ∗ (b) = b − τproxτ−1 f (b/τ) (35)

for any b ∈ Rn, τ > 0, and convex function f , one can obtain the following iterative
scheme by applying the primal-dual gradient algorithm to (34):

z(k+1) = arg min
z

{
−〈Auk, z〉 + h∗(z) +

1
2γ
‖z − zk ‖2

}
= proxγh∗ (zk + γAuk

) = zk + γAuk
− γproxγ−1h(

1
γ

zk + Auk
) (36a)

y(k+1) = arg min
y

{
−〈uk, y〉 + g∗(y) +

1
2γ
‖y − yk ‖2

}
= proxγg∗ (yk + γuk

) = yk + γuk
− γproxγ−1g(

1
γ
yk + uk

) (36b)

u(k+1) = arg min
u

{
〈Au, z(k+1)〉 + 〈u, y(k+1)〉 +

1
2τ
‖u − u(k)‖2

}
= uk − τA>z(k+1) − τy(k+1) (36c)

u(k+1) = u(k+1) + θ(u(k+1) − u(k)) (36d)

Similar to the deep reconstruction networks introduced above, PD-Net also mim-
ics the primal-dual algorithm above to construct K phases such that the kth phase in
PD-Net corresponds to the kth iteration in (37). Then the proximity operator proxγ−1h

and proxγ−1g in the updates (36a) and (36b) are replaced by CNN denoisers as in
Section 3.1. The PD-nets have been applied to natural image reconstruction in [27]
and MRI compressive sensing in [1, 9], which demonstrate promising performance
in these applications.

Depending on which components are designed to be learnable, three variants
of the PD-Net architecture are provided in [9]. The primal dual hybrid gradient
CS network (PDHG-CSNet) substitutes proxτg with a learned CNN denoiser in
Chambolle-Pock algorithm [6] which solves the (1) with h̃(u) = h(Au) := (1/2) ·
‖Au − b‖2 by iterating
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6 

to PD-net with a small training size. On the other hand, as the training size increases, 
PD-net achieves better quality than others. The performance of a method with more 
relaxed constraints changes more with increased training data, which is indicated by 
the variations of quantitative metrics. 

 
Fig. 2. Reconstruction results and the corresponding error maps when gradually relaxing con-
straints. A 6X Poisson disk sampling mask was used on an axial data from the UIH scanner. 

 
Fig.3. The reconstructed zoom-in images of the enclosed part with 6X Poisson disk sampling on 
a sagittal data from the Siemens scanner. The results with a small training size (100 for training 
and 50 for validation) are located in the first row and the second row shows the results with more 
training data (1400 for training and 200 for validation). The quantitative metrics of the results 
with more training data and the variations on the two datasets are also provided. 

We also compared the proposed networks with other reconstruction methods: 1) 
Rec_PF [15], traditional CSMR reconstruction method to solve problem (1); 2) generic-

Fig. 8 Images reconstructed by primal dual hybrid gradient CS network (PDHG-CSNet),
Chambolle-Pock algorithm inspired network (CP-Net) and primal dual net (PD-Net).The data
was undersampled with a 6X Poisson disk mask.

z(k+1) =
z(k) + σ(Au(k) − b)

1 + σ
, (37a)

u(k+1) = proxτg(u(k) − τA∗z(k+1)), (37b)

u(k+1) = u(k+1) + θ(u(k+1) − u(k)), (37c)

where σ, τ and θ are algorithm parameters. The Chambolle-Pock network (CP-
Net) learns a generalized Chambolle-Pock algorithm with the data fidelity term
(1/2) · ‖Au − b‖2 relaxed to h(Au). Then the updating scheme of z(k+1) becomes
z(k+1) = proxσh∗ (z

(k) + σAu(k)) and CP-Net learns both proxτg and proxσh∗ with
CNN denoisers. By breaking the linear combination parts in above iterates for z(k+1),
u(k+1) and u(k+1) in CP-Net, primal dual net (PD-Net) further increases the network
flexibility by freely learning those combinations in addition to the learnable proximal
operators. In [9], the primal or dual proximal operators are substituted by learned
CNN denoisers with 3 convolutional layers and 32 channels in each hidden layer.
All these networks are trained and tested on 1400 and 200 images of size 256 × 256
and the corresponding k-space data undersampled by Poisson disk sampling mask.
The qualitative reconstruction results of these three variations of the network on
MR images are shown in Figure 8, which are obtained from [9] with the authors’
permission.
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3.6 Learnable Descent Algorithm

The LOAs conducted in the supervised learning framework can be described by a
disciplined bi-level optimization problem as follows:

min
Θ

1
N

N∑
j=1
L(u(bj ;Θ), u∗j ) + R(Θ), (38a)

s.t. u(bj ;Θ) = arg min
u∈U

{ f (u; bj,Θ) := g(u;Θ) + h(u; bj,Θ)} (38b)

where h is the data fidelity term to ensure that the reconstructed image u is faithful
to the given data b, and g is the regularization that may incorporate proper prior
information of u. The regularization g(·;Θ) (and possibly h also) is realized as a
DNN with parameter Θ to be learned. The loss function L(u, u∗) is to measure the
difference between a reconstruction u and the corresponding ground truth image u∗

from the training data. The optimal parameter Θ of g (and h) is then obtained by
solving the bi-level optimization (38).

If the actual minimizer u(b;Θ) is replaced by the direct output of an LOA-based
DNN (such as ISTA-Net etc. in the previous subsection) which mimics an iterative
optimization scheme for solving the lower-level minimization in the constraint of
(38), then (38) reduces to the unrolling methods introduced in the previous subsec-
tions. However, the unrolled networks do not have any convergence guarantee, and
the learned components do not represent g in (38) and can be difficult to interpret.

To obtain convergence guarantee with interpretable network structures, Chen
et.al. [8] proposed a novel learnable descent algorithm (LDA). Consider the case
where the data fidelity term h(u) := (1/2) · ‖Au − b‖2 (or any smooth but possibly
nonconvex function) and g(u) is a nonsmooth nonconvex regularization function
which is design to be g(u) = ‖r(u)‖2,1 =

∑m
i=1 ‖ri(u)‖. Here r = (r1, . . . , rm) is a

smooth but nonconvex mapping realized by a deep neural network whose parameters
are learned from training data, and ri(u) ∈ Rd stands for a d-dimensional feature
vector for i = 1, . . . ,m. To overcome the nondifferentiability issue of g(u), a smooth
approximation of g by applying Nesterov’s smoothing technique [28] is employed:
gε(u) =

∑
i∈I0

1
2ε ‖ri(u)‖

2 +
∑

i∈I1

(
‖ri(u)‖ − ε

2

)
, where the index set I0 and its

complement I1 at u for the given r and ε are defined by I0 = {i ∈ [m] | ‖ri(u)‖ ≤
ε}, I1 = [m] \ I0. Denote fε(u) = h(u) + gε(u) (we omit Θ for notation simplicity).
Then LDA iterates

zk+1 = uk − αk∇h(uk), (39a)
wk+1 = zk+1 − τk∇gεk (zk+1), (39b)
vk+1 = zk+1 − αk∇gεk (uk), (39c)
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where in each iteration uk+1 = wk+1 if fεk (wk+1) ≤ fεk (vk+1) and vk+1 otherwise;
and εk+1 = λεk if ‖∇ fεk (uk+1)‖ < σεk and εk+1 = εk otherwise, where λ ∈ (0, 1)
is a prescribed hyperparameter. It is shown that εk will monotonically decrease to
0 such that fεk approximates the original nonsmooth nonconvex function f , and
any accumulation points of a particular subsequence of {uk} is a Clarke stationary
point (analouge to the critical points of differentiable functions) of the nonsmooth
nonconvex function f [8].

Since LDA follows the algorithm exactly, the convergence of the LDA network
can be guaranteed. Moreover, the practical performance of LDA is very promising
in a wide range of image reconstruction applications. For example, Table 1 shows
the PSNR of the reconstructions obtained by LDA (with r parameterized by a
simple generic 4-layer CNN and K = 15 total phases) on the dataset Set11 [22]
with a prefixed sampling matrix. Compared to the classical TV-based reconstruction
method and several unrolling methods, LDA achieves the best reconstruction quality
with highest PSNR. In addition, LDA uses much fewer parameters than the other
networks as Θ is shared by all its phases. In Figure 9, the qualitative reconstruction
result of LDA are shown and compared with several state-of-the-art reconstruction
networks. A more intriguing property of LDA is that the feature map r is explicitly
learned and can be interpreted. In Figure 10, the 2-norm of the learned feature map
r at all pixels is shown and compared to the norm of gradient (forward differences
at each pixel) used by the classical TV-based method. It can be seen that important
details, such as the antennae of the butterfly, the lip of Lena, and the bill of the parrot,
are faithfully recovered by LDA.

Table 1 Average PSNR (dB) of reconstructions obtained by the some methods on Set11 dataset
with various CS ratios and the number of learnable network parameters (#Param), where the PSNR
data is quoted from [46] and [8].

Method 10% 25% 50% #Param

TVAL3 [23] 22.99 27.92 33.55 NA
IRCNN [48] 24.02 30.07 36.23 185,472
ISTA-Net [46] 25.80 31.53 37.43 171,090
ISTA-Net+ [46] 26.64 32.57 38.07 336,978
LDA [8] 27.42 32.92 38.50 27,967

4 Concluding Remarks

We reviewed several typical deep neural networks inspired by the variational method
and associated numerical optimization algorithms for the inverse problem of image
reconstruction. These neural networks have architectures that mimic the well known
efficient optimization algorithms, such that each phase of a network corresponds
to one iteration in the original numerical scheme. The algorithm parameters and
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(a) Reference (b) CS-Net (28.00) (c) SCS-Net (28.10) (d) LDA (29.54)

Fig. 9 Reconstruction of parrot image in Set11 [22] with CS ratio 10% obtained by CS-Net [35],
SCS-Net [34] and LDA [8]. Images in the bottom row zoom in the corresponding ones in the top
row. PSNR are shown in the parentheses.

Fig. 10 The norm of the gradient at every pixel in TV based image reconstruction (top row) and the
norm of the feature map r at every pixel learned in LDA (bottom row), where important details, such
as the antennae of the butterfly, the lip of Lena, and the bill of the parrot, are faithfully recovered
by LDA. Images are obtained from [8].

other manually selected terms, such as the regularization, in the variational model
and optimization algorithm are replaced by learnable components in the deep re-
construction network. The network output is thus a function of these parameters and
learnable components. Given the ground truth or high quality image data, we can
form the loss function which measures the discrepancy between the network output
and the ground truth, and apply back-propagation and stochastic gradient descent



Variational Model Based Deep Neural Networks for Image Reconstruction 23

method to optimize the parameters such that the loss function is minimized during
the training procedure. After training, these networks with optimal parameters serve
as fast feedforward networks that can reconstruct high quality images on the fly.
These methods have demonstrated significantly improved empirical performance
and require much lower computational cost compared to the classical methods in a
variety of applications.

Appendix: Back-propagation in ISTA-Net

For completeness, we provide the details of derivations to obtain gradients of the loss
function L in (21) with respect to the network parameters Θ for ISTA-Net. For more
details of the network structure and its relation to the back-propagation procedure
for ISTA-Net and ADMM-Net introduced in Section 3, we refer to [41].

The process of back-propagation is essentially applying chain rule repeatedly,
also called the “back-propagation” in deep learning. To obtain the gradient of the
loss function L with respect to the parameters, it is helpful to consult the network
structure for the dependency between the parameters, and the inputs and outputs of
nodes.

We first check the gradients of L defined in (21) with respect to u(k) and r (k). Note
that L takes u(k) and r (k), which are vectors in Rn, and output scalars, we know the
gradients of L with respect to u(k) and r (k) are both vectors in Rn as well. We use
partial derivatives to indicate spatial dependencies and compute the gradients here.
First of all, we have

∂L
∂r (k)

=
∂L
∂u(k)

∂u(k)

∂r (k)
, (40)

due to that u(k) is a function of r (k) as shown in Figure 2. The gradient ∂u(k)/∂r (k) in
(40) is straightforward to compute due to the relation between r (k) and u(k) in (18b)
and the chain rule:

∂u(k)

∂r (k)
= ∇H̃(k)(sk) · S′θk (hk) · ∇H(k)(r (k)), (41)

where the notations are simplified using the following definitions,

hk := H(k)r (k) and sk := Sθk (hk). (42)

Substituting (41) into (40), we see that ∂L/∂r (k) can be obtained once we have
∂L/∂u(k). The gradient ∂L/∂u(k) can also be computed by the chain rule:

∂L
∂u(k)

=
∂L

∂r (k+1)
∂r (k+1)

∂u(k)
, (43)

where ∂r (k+1)/∂u(k) is obtained by (18a) for k ← k + 1 as
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∂r (k+1)

∂u(k)
= I − αk+1∇

2h(u(k)). (44)

Hence, we can get ∂L/∂u(k) once ∂L/∂r (k+1) is computed. Therefore, we can com-
pute the gradients of L with respect to u(k) and r (k) for all k in the order from left to
right using (40), (41), (43), and (44), starting from ∂L/∂u(K) = u(K)−u∗, as follows:

∂L
∂u(K)

→
∂L
∂r (K)

→ · · · →
∂L

∂r (k+1) →
∂L
∂u(k)

→
∂L
∂r (k)

→ · · · →
∂L
∂u(0)

(45)

That is, we first compute ∂L/∂u(K) = u(K) − u∗ according to the definition of L in
(21), use it to compute ∂L/∂r (K) according to (40) and (41), and then ∂L/∂u(K−1)

according to (43) and (44), and so on. This is the effect of back-propagation.
Now we compute the gradients of r (k) and u(k) with respect to the network

parameters used in (18a) and (18b), respectively. The derivative of r (k) with respect
to αk is straightforward due to (18a):

∂r (k)

∂αk
= −∇h(u(k)). (46)

The gradient of u(k) with respect to w
(k)
j in the jth layer of the CNN H(k) defined in

(17) can be obtained by applying the chain rule to (18b):

∂u(k)

∂w
(k)
j

= ∇H̃(k)(sk) · S′θk (hk) ·
∂hk
∂w
(k)
j

(47)

for j = 1, 2, where hk the output of H(k) given the input r (k), and sk is the output of
Sθk given the input hk defined in (42). The partial derivative ∂hk/∂w

(k)
j is standard

as in the back-propagation of CNN, which we omit the details here. Similarly, the
gradient of u(k) with respect to w̃

(k)
j in the jth layer of the CNN H̃(k) defined in (17)

can be obtained since u(k) and sk are the output and input of H̃(k), respectively. The
gradient of u(k) with respect to θk is slightly different:

∂u(k)

∂θk
= ∇H̃(k)(sk) ·

∂Sθk (hk)
∂θk

. (48)

In this case, we will need to treat Sθk (hk) ∈ R
n as a function of θk for given hk , i.e.,

S·(hk) : θk 7→ Sθk (hk) defined by

[Sθk (hk)]i =


−θk + [hk]i if 0 < θk < hk,
θk − [hk]i if 0 < θk < −hk,
0 otherwise.

(49)

Hence, the derivative of Sθk (hk) with respect θk is
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[ ∂Sθk (hk)
∂θk

]
i
=


−1 if 0 < θk < hk,
1 if 0 < θk < −hk,
0 otherwise.

(50)

With all the partial derivatives obtained above, we can apply the chain rule to
compute the gradient of L with respect to each of the network parameters. For
example,

∂L
∂αk

=
∂L
∂r (k)

∂r (k)

∂αk
, (51)

where ∂L/∂r (k) is obtained by (40) and (41) following the back-propagation process,
and ∂r (k)/∂αk is obtained by (46). The partial derivatives with respect to the other
parameters can be similarly computed as follows:

∂L
∂θk
=

∂L
∂u(k)

∂u(k)

∂θk
,

∂L

∂w
(k)
j

=
∂L
∂u(k)

∂u(k)

∂w
(k)
j

,
∂L

∂w̃
(k)
j

=
∂L
∂u(k)

∂u(k)

∂w̃
(k)
j

(52)

where ∂L/∂u(k) is obtained by (43) and (44), and the partial derivatives of u(k) with
respect to θk , w(k)j and w̃

(k)
j are obtained similarly as explained above.

With these gradients of L with respect to the network parameters, we can employ
a stochastic gradient descent (SGD) method and find the optimal parameters Θ∗ that
minimizes (21) over the entire training dataset.With the optimalΘ∗, ISTA-Net works
as a feedforward mapping, which takes imaging data b and outputs a reconstructed
image u(K). This feedforwardmapping can be computed very fast since all operations
in (18) are explicit given Θ∗.
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