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A Two-Stage Algorithm for Joint Multimodal Image Reconstruction\ast 

Yunmei Chen\dagger , Bin Li\ddagger , and Xiaojing Ye\S 

Abstract. We propose a new two-stage joint image reconstruction method by recovering edges directly from
observed data and then assembling an image using the recovered edges. More specifically, we refor-
mulate joint image reconstruction with vectorial total-variation regularization as an l1 minimization
problem of the Jacobian of the underlying multimodality or multicontrast images. We provide de-
tailed derivation of data fidelity for the Jacobian in Radon and Fourier transform domains. The
new minimization problem yields an optimal convergence rate higher than that of existing primal-
dual based reconstruction algorithms, and the per-iteration cost remains low by using closed-form
matrix-valued shrinkages. We conducted numerical tests on a number of multicontrast CT and MR
image datasets, which demonstrate that the proposed method significantly improves reconstruction
efficiency and accuracy compared to the state-of-the-art joint image reconstruction methods.
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1. Introduction. The advances of medical imaging technology have allowed simultaneous
data acquisition for multimodality images, such as PET-CT and PET-MRI, and multicon-
trast images, such as T1/T2/PD in MRI. Multimodality and multicontrast contrast imaging
integrate two or more imaging modalities/contrasts into one system to produce more compre-
hensive observations of the subject. In particular, such technology combines the strengths of
different imaging modalities or contrasts in clinical diagnostic imaging and hence can be much
more precise and effective than conventional imaging. In multimodality/contrast imaging, the
images from different modalities or contrasts complement each other, yielding high spatial
resolution and better tissue contrast. However, it is a challenging task to use the information
from different modalities effectively in image reconstruction, especially when only limited data
are available.

In multimodal/contrast image reconstruction, the image of a subject to be reconstructed
is vector-valued at every point (or pixel/voxel in the discrete case) in the image domain \Omega .
For notational simplicity, we only consider two-dimensional (2D) images in this paper and
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assume that \Omega := [0, 1]2 \subset \BbbR 2. Then for every x \in \Omega , an image of m modalities (or contrasts)
can be represented by a function u : \Omega \rightarrow \BbbR m such that u(x) = (u1(x), . . . , um(x))

\top \in \BbbR m
and uj(x) \in \BbbR is the intensity value of modality j at every point x \in \Omega . The variational
framework of joint image reconstruction is given by

min
u

\alpha R(u) + h(u), where h(u) :=

m\sum 
j=1

hj(uj),(1)

where uj : \Omega \rightarrow \BbbR is the scalar-valued, jth component (i.e., jth modality/contrast, also called
jth channel) of image u, and hj(uj) is the corresponding fidelity term that describes the data
acquisition process in the jth channel. In (1), the selection of the regularization term R(u)
is critical in joint image reconstruction. In principle, a good choice of R(u) can explore the
complementary information across different modalities or contrasts to improve reconstruction
quality.

1.1. Related work. In the past several years, there has been a significant increase of
interest in joint image reconstruction, most of which are under the framework (1) and focus
on the design of the regularization term R(u). Since a main feature often shared by images
from different channels is the location of edges, an important class of regularization is to extract
image gradients from every channel and compare them. For instance, the parallelism of the
level sets (PLS) has been proposed as a measure to compare gradients of images [17, 19, 20, 24].
In the case of m = 2 and u = (u1, u2), PLS(u1, u2) is defined in [19] as

PLS(u1, u2) :=

\int 
\Omega 
f
\Bigl( 
| du1(x)| | du2(x)|  - g(\langle du1(x),du2(x)\rangle )

\Bigr) 
dx

for some properly chosen functions f and g. Here duj(x) \in \BbbR 2 represents the gradient of
image uj at x for j = 1, 2. In particular, for f(s) = s and g(s) = s, PLS(u1, u2) places a large
penalty if du1 and du2 are in different directions [20]. For f(s) =

\surd 
1 + s and g(s) = s2 [17]

or f(s) = s and g(s) = s2 [24], minimizing PLS(u1, u2) enforces du1 and du2 to be parallel in
either the same or opposite directions. However, for images in very different intensity scales,
the PLS defined above may penalize high gradient magnitude rather than align the gradients.
To overcome this problem, in [33], the generalized Bregman distance (GBD) with respect to
the total variation (TV) is used to compare the gradients of images u1 and u2. The GBD is
defined by Dp

TV (u1, u2) = TV (u1)  - TV (u2)  - \langle p, u1  - u2\rangle for some p \in \partial TV (u2). With a
special choice of p, in discrete form the GBD can be written as

Dp
TV (u1, u2) =

\int 
\Omega 
| du1| 

\biggl( 
1 - \langle du1,du2\rangle 

| du1| | du2| 

\biggr) 
dx.

Thus it penalizes the TV of u1 weighted by the alignment of du1 and du2. Then their iterative
model computes each channel using the regularizer formulated by a weighted linear combina-
tion of the GBD to all other image channels from the previous iteration. However, minimizing
this GBD promotes gradients in the same direction and hence is not suitable in many ap-
plications. To avoid this problem, the infinitesimal convolution of Bregman distance (ICBD)
is proposed in [36] as a similarity measure. The ICBD is defined by ICBDp

TV (u1, u2) =:
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infu1=\phi +\psi D
p
TV (\phi , u2) +D - p

TV (\psi , u2). That is, it uses a local decomposition of an image into
two parts, of which one part matches the (sub)gradients of the same directions and the other
part matches the (sub)gradients of the opposite directions. As an edge indicator, ICBD is
independent of the sign of jumps. This structure similarity measure has been applied to
PET-MRI joint reconstruction [36] and dynamic MRI reconstruction with anatomical prior
and significantly reduced data [37]. In [18], a structural guided TV regularization is devel-
oped to incorporate the edge information of a given reference image with the same anatomical
structure but different contrast into the standard TV for MRI reconstruction.

Inspired by the success of TV regularization in gray-value image reconstruction, many
algorithms for joint multimodal image reconstruction extend the classical TV to vectorial TV
as the regularization [4]. This change aims at capturing the sharable edge information and
performing smoothing along the common edges across the modalities. There are numerous
ways to define a vectorial TV. For instance, a family of TV for vector-valued functions, called
collaborative TV (CTV), are proposed as generalizations of classical TV in [16]. Each of these
CTVs is a specific combination of the norms regarding the partial derivatives (gradient),
components (channels, modalities/contrasts), and points (pixels/voxels). For example, the
channel by channel TV for the vector-valued function u(x) = (u1(x), . . . , um(x)) defined as\sum m

j=1 TV (uj) in [3] takes l2 norm of the gradient duj of uj at every point x, then l1 norm over
all points, and finally l1 norm over all modalities/channels. Another CTV variation, known
as joint TV (JTV), is formulated as

\int 
\Omega (
\sum m

j=1

\sum d
l=1 | \partial luj | 2)1/2 dx and has been successfully

applied to color image reconstruction [8, 41], multicontrast MR image reconstruction [26, 32],
joint PET-MRI reconstruction [19], and geophysics [24]. It can be seen that JTV is a specific
type of CTV that takes l2 norm in terms of gradients, l2 norm across modalities, and then
finally l1 for points.

Another type of extension of classical TV, called vectorial TV (VTV), is based on the
structure tensor of vector-valued functions. It has been shown that the eigenvalues and eigen-
functions of the structure tensor J\rho = k\rho \ast dudu\top , where k\rho is a convolution kernel and u
is a scalar-valued function (e.g., gray-value image), are able to capture the first-order infor-
mation in a local neighborhood and provide a more robust measure of image variation than
classical TV [21, 23, 31, 44]. The idea of using such structure tensor is extended to joint
multi-modal/contrast image reconstruction. With a geometric interpretation of structure ten-
sor, it is suggested in [15] to associate a 2D m-vector-valued function u (e.g., image of m
modalities) with a parameterized 2D Riemannian manifold with metric J = DuDu\top , where u
is a vector-valued image and Du = [\partial luj ]l,j \in \BbbR 2\times m is formed by stacking the column vectors
duj horizontally. The eigenvector corresponding to the smaller eigenvalue gives the direction
along the vectorial edge. In [40], a family of VTVs are formed as the integral of f(\lambda +, \lambda  - )
over the manifold, where \lambda + and \lambda  - denote the larger and smaller eigenvalues of the metric J ,
respectively, and f is a properly chosen, differentiable, scalar-valued function. For example,
one choice of f is f(\lambda +, \lambda  - ) =

\sqrt{} 
\lambda + + \lambda  - , and the V TV (u) becomes

V TVF (u) =

\int 
\Omega 
\| Du(x)\| F dx,(2)

where \| Du(x)\| F is the Frobenius norm of the Jacobian Du(x) \in \BbbR m\times 2 at x. This definition
of V TVF coincides with the JTV mentioned above. Another choice is f(\lambda +, \lambda  - ) =

\sqrt{} 
\lambda +, with

which V TV (u) becomes



1428 YUNMEI CHEN, BIN LI, AND XIAOJING YE

V TVJ(u) =

\int 
\Omega 
\| Du(x)\| 2 dx =

\int 
\Omega 
\sigma 1(Du(x)) dx,(3)

where \sigma 1(Du(x)) is the largest singular value of the Jacobian Du(x) at x. In [22], this
V TVJ(u) is defined in a more general sense for functions in the space of bounded variation
(hence function u does not need to be differentiable) as

V TVJ(u) := sup
(\xi ,\eta )\in K

d\sum 
k=1

\int 
\Omega 
ukdiv(\eta k\xi ) dx(4)

with K := C1
0 (\Omega ;S

m \times Sd), where Sd = \{ (z1, . . . , zd)| 
\sum d

l=1 | zl| = 1\} is the unit sphere in
\BbbR d. The dual formulation (4) is an analogue of the original formulation of classical TV. It
is shown in [22] that V TVJ performs better that V TVF for color image restoration. For the
choice f(\lambda +, \lambda  - ) =

\sqrt{} 
\lambda + +

\sqrt{} 
\lambda  - , the V TV (u) reduces to

V TVN (u) =

\int 
\Omega 
\| Du(x)\| N dx =

\int 
\Omega 
(\sigma 1(Du(x)) + \sigma 2(Du(x))) dx,(5)

where \| Du(x)\| N is the nuclear norm of the matrix Du(x), or the sum of the singular values
of Du(x), which can be interpreted as a convex relaxation of the matrix rank. Minimizing the
nuclear norm of Du promotes the linear dependence of the gradients across the modalities, i.e.,
parallel gradients. It has been applied to joint reconstruction of multispectral CT data in [38].
Furthermore, the work in [30] considers patchwise structure tensor SK(u)(x) := \rho K \ast DuDu\top ,
where \rho K(x) is a nonnegative, rotationally symmetric convolution kernel (e.g., Gaussian ker-
nel), so that it takes neighborhood information into account. Then a regularization family,
called structure tensor total variation (STV), is defined by [30]

STVp(u) =

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \sqrt{} \lambda +,\sqrt{} \lambda  - \Bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
p

dx

for p \geq 1. For p = 2, p = \infty , and p = 1, the STVp(u) coincides with V TVF (u) in (2),
V TVJ(u) in (3), and V TVN (u) in (5), respectively. Numerical results on color images in [30]
show that the STV-based model outperforms models using V TVF (u) or the second-order total
generalized variation TGV 2(u) (see the definition below) as a regularization.

For regularizations that use higher-order gradients, the total generalized variation (TGV)
is a common choice. The concept of TGV was first introduced in [7]. The discrete form of
the second-order TGV TGV 2(u) of a scalar-valued image u can be written as TGV 2(u) =
minw \| \nabla u - w\| 1 + a\| Ew\| 1 for some weight a > 0, where Ew := (1/2) \cdot (Dw +Dw\top ). It has
been successfully employed as a regularizer in gray-valued image processing in [5, 6, 7, 28].
Recently, the TGV 2(u) has been extended to vector-valued images for regularization in joint
reconstruction of PET and MR images [29] and multichannel/contrast MR images [12].

While all the aforementioned methods are based on the framework (1) but differ in the
choice of regularization R(u), the work in [2] takes a different, two-stage approach. More
specifically, it reconstructs the gradients of the underlying multicontrast MR images jointly
from their measurements in the Fourier space in the first stage, and then uses the recov-
ered gradients to reconstruct the images in the second stage. In [2], the first stage is carried
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out under a hierarchical Bayesian framework, where the joint sparsity on gradients across
multi-contrast MRI is exploited by sharing the hyperparameter in the maximum a posteriori
estimations. The experimental results in [2] show the advantage of using joint sparsity on gra-
dients over conventional sparsity. However, this Bayesian estimation--based method requires
extensive computational cost. In [25], an algorithm, which reconstructs the tangent field of
an image and then the image itself, is proposed for image denoising and inpainting. The
advantage of using a two-stage approach to improve quality is also shown in [35, 39] for gray-
valued image reconstruction with limited measurements. To the best of our knowledge, there
is no work on the two-stage approach for joint multimodal/contrast image reconstruction in
the literature yet.

1.2. Our contribution. Our contribution in this paper is in the development of a novel
two-stage variational model inspired by the successes and VTV regularizations and the edge-
based reconstruction approach. In the first stage, the edges (gradients or Jacobian) of
multi-modal/contrast images are reconstructed jointly by minimizing the data fidelity of the
gradients, rather than that of the image itself, together with the regularization of the gradi-
ents derived from VTV. In the second stage, the image is reconstructed easily using the edges
obtained in the previous stage.

The main advantage of the proposed method is that it yields an l1-type minimization of
the edge in the first stage and a simple smooth minimization in the second stage. While the
smooth minimization in the second stage is easy to solve and often has closed-form solution, the
l1-type minimization in the first stage can be solved by accelerated proximal gradient methods
with an optimal, unimprovable convergence rate of O(1/k2), where k is the iteration number
for general convex problems such as those considered in medical image reconstruction. This
is in sharp contrast to TV-based reconstruction methods, for which the best known primal-
dual based algorithms, such as alternating direction method of multipliers (ADMM) and the
primal-dual hybrid gradient (PDHG) method, only converge at O(1/k) for general convex
problems as in (1). Therefore, the proposed method can significantly improve the overall
effectiveness of joint image reconstruction.

To formulate the objective function of the gradients with l1-type regularization in the first
stage, we establish the mathematical relation between the edge of an underlying image and
the observed imaging data (section 2.2). Moreover, we provide for the first time how the noise
of imaging data affects data fidelity for the edges (i.e., image gradients) in MRI. In addition,
we show that the subproblem of the l1-type minimization only involves matrix norms, rather
than TVs, and can be solved by closed-form matrix-valued shrinkage.

We also conduct extensive numerical tests on synthetic and in vivo multicontrast MRI and
multienergy CT datasets in this paper. To show the effectiveness of the proposed method,
we compare the performance against the state-of-the-art primal-dual methods for (1) using
different VTVs. The experimental results show the very promising performance improvement
by the proposed method.

1.3. Organization. The remainder of this paper is organized as follows. We first present
the proposed framework and address a number of important questions regarding this new
framework in section 2. In section 3, we conduct a series of numerical tests on a variety of
multicontrast MR and multienergy CT image reconstruction problems. Section 4 provides
some concluding remarks.
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2. Proposed method. In this section, we propose our two-stage joint image reconstruction
method. In the first stage, we recover the multimodal image edges (i.e., gradients or Jacobian
of the image) jointly from undersampled Fourier or Radon data. In the second stage, the final
image is reconstructed using the edges obtained in the first stage.

Throughout the remainder of this paper, we focus on the discrete setting and denote an
m-modal image by u = [(uj)i] \in \BbbR n\times m such that uj \in \BbbR n is the image of the jth modality,
and (uj)i \in \BbbR is the intensity value of image uj at pixel i, where n is the number of pixels in
the image. Here uj is treated interchangeably as the 2D array of n entries to represent the
2D scalar-valued image and the n-dimensional vector by stacking its columns vertically.

2.1. Preliminaries on vectorial total-variation regularization. The standard TV regular-
ized inverse problem for image reconstruction can be formulated as a minimization problem
as follows:

min
u

\alpha TV (u) + h(u),(6)

where h represents the data fidelity function, e.g., h(u) = (1/2) \cdot \| Au  - f\| 2, for some given
data sensing matrix A and observed partial/noisy/blurry data f . For example, in the basic
compressive sensing MRI model, A = P\scrF , where \scrF is the Fourier transform, and P represents
an undersampling trajectory. In the discrete setting, \scrF \in \BbbC n\times n is the discrete Fourier matrix,
and P \in \BbbR p\times n is a binary matrix formed by the p rows of the identity matrix corresponding
to the indices of sampled Fourier coefficients. Then f \in \BbbC p is the undersampled Fourier
data. By solving (6), we obtain a solution u which minimizes the sum of TV regularization
term and data fidelity term in (6) with a weighting parameter \alpha > 0 that balances the two
terms. It is shown that the TV regularization can effectively recover high-quality images with
well-preserved boundaries of the objects from limited and/or noisy data.

In joint multimodality image reconstruction, the edges of images from different modalities
are highly correlated. To take this property into consideration, the standard TV regularized
image reconstruction (6) can be replaced by its VTV regularized version:

min
u

\alpha V TV (u) + h(u),(7)

where V TV (u) is a VTV of u. In the discrete setting, the VTV is a direct extension of
standard TV as an ``l1 of gradient"" as

V TV (u) := \| Du\|  \star ,1 =
n\sum 
i=1

\bigm\| \bigm\| \bigm\| D(i)u
\bigm\| \bigm\| \bigm\| 
 \star ,

(8)

where D(i)u \in \BbbR 2\times m and its jth column (D(i)u)\cdot j \in \BbbR 2 represents the gradient of uj at pixel i,
and  \star indicates some specific matrix norm. Therefore, D can be considered as the discretized
Jacobian operator on the multimodal image u. Examples of the  \star -norm include those in (2),
(3), and (5). There are many other choices for VTV due to the availability of different matrix
norms. However, in this paper, we only focus on the three norms above as they are mostly
used in VTV regularized image reconstructions in the literature and appear to have good
performance. Recall that for a d-by-m matrix Q = [qlj ], these matrix norms are defined as
follows:
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\bullet Frobenius norm: \| Q\| F = (
\sum 

i,j | qlj | 2)1/2. This essentially treats Q as an (dm)-vector.
\bullet Induced 2-norm: \| Q\| 2 = \sigma 1, where \sigma 1 is the largest singular value of Q. This norm is
advocated in [15, 22, 40] with a geometric interpretation when used to define VTV.

\bullet Nuclear norm: \| Q\| N =
\sum \mathrm{m}\mathrm{i}\mathrm{n}\{ d,m\} 

l=1 \sigma i, where \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq 0 are the singular values
of Q. This is a convex relaxation of matrix rank and advocated in [38].

The VTV norm (8) with matrix norm \| \cdot \|  \star can also be defined by

V TV (u) = max

\Biggl\{ 
n\sum 
i=1

\langle D(i)u, \xi i\rangle | \xi i \in \BbbR 2\times m, \| \xi i\| \bullet \leq 1

\Biggr\} 
,(9)

where \langle X,Y \rangle = tr(X\top Y ) is the standard inner product between two matrices X and Y of
same size, and \| \cdot \| \bullet is the dual norm of \| \cdot \|  \star . In particular, we remark here that the Frobenius
norm is dual to itself, and the induced 2-norm is dual to the nuclear norm (and vice versa).
Although we would not always make use of the original VTV definition (9) in a discrete
setting, we show that they can be helpful in the derivation of closed-form soft-shrinkage with
respect to the corresponding matrix  \star -norm as in Appendix B.

2.2. Joint edge reconstruction. From (8), we can see the two main features of VTV: the
matrix  \star -norm used to evaluate the Jacobian D(i)u(x) at each pixel i, and the l1 norm that
integrates \| D(i)u\|  \star over all i. The former is used to explore edge information in D(i)u at
pixel i from different modalities, and the latter imposes sparsity of \| D(i)u\|  \star across the image
domain by summing over i to suppress noises and artifacts. However, minimizing an objec-
tive function consisting of nonsmooth VTV regularization demands for primal-dual methods
(such as ADMM) and yields only O(1/k) convergence rate in general without strong convexity
condition. On the other hand, we realize that such a low convergence rate is due to the combi-
nation of the Jacobian operatorD and the nonsmooth l1 norm which introduces constraint and
requires updates of primal and dual variables. Since it is D(i)u, the Jacobian, that really takes
effect in VTV, this motivates us to consider reconstructing a vector field that approximates the
Jacobian Du first rather than the image u directly. By this, we do not need to deal with the
constraint involving the Jacobian operator D from variable splitting but can directly work on
the l1-type minimization which can be solved much more efficiently. Then we can reconstruct
the image such that its gradient field (Jacobian) is close to the vector field obtained earlier.

Therefore, the main idea of the two-stage reconstruction algorithm proposed in this paper
is to reconstruct edges (e.g., gradients/Jacobian) of multimodality images jointly, and then as-
semble the final image using the reconstructed edges. To this end, we let v denote the Jacobian
of u. For example, assuming there are three modalities (m = 3) and ui = (u1,i, u2,i, u3,i) \in \BbbR 3

at every pixel i, then vi is a matrix

vi = D(i)u =

\Biggl( 
v11,i v12,i v13,i
v21,i v22,i v23,i

\Biggr) 
\in \BbbR 2\times m,(10)

where v\cdot j,i \in \BbbR 2, the jth column of vi, is the gradient (implemented as finite forward differ-
ences) of uj at pixel i for j = 1, . . . ,m and i = 1, . . . , n. As a result, the VTV of u in (8)
simplifies to

\sum n
i=1 \| vi\|  \star .
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Assume that we can derive the relation of the Jacobian v and the original observed data f
and form a data fidelity H(v) of v, as an analogue of data fidelity h(u) of image u (justification
of this assumption will be presented in section 2.3). Then we can reformulate the VTV
regularized image reconstruction problem (7) about u into a matrix  \star -norm regularized inverse
problem about v as follows:

min
v

\alpha \| v\|  \star ,1 +H(v),(11)

where \| v\|  \star ,1 :=
\sum n

i=1 \| vi\|  \star . Now we try reconstructing v from (11), instead of u in (7), in
the first stage of our algorithm; then we assemble u using the reconstructed v in the second
stage (more details will be provided in section 2.6 later). This reformulation (11) has two
significant advantages compared to the original formulation (7):

\bullet The formulation (11) is an l1-type minimization which can be solved effectively by
accelerated proximal gradient method. For example, using the fast iterative shrink-
age/thresholding algorithm [1], we can attain an optimal convergence rate of O(1/k2)
to solve (11) even if it is not strongly convex, where k is the iteration number. More
details will be given in section 2.4. This is in sharp contrast to the best known
O(1/k) rate of primal-dual based methods (including the recent, successful PDHG
and ADMM) for solving (7) where the problem is mostly ill-posed due to the severe
undersampling of data.

\bullet The per-iteration complexity of the l1-type minimization (11) is very low. In particular,
we can derive closed-form solution of v in the iterations of (11) as a matrix  \star -norm
variant of soft-shrinkage. More details will be given in section 2.5.

In the remainder of this section, we will answer the following four questions that are
critical in the proposed joint image reconstruction method based on (11):

1. How to design the fidelity H(v) for the Jacobian v from the relation between an image
u and its measurement data in Radon and Fourier transform domains (section 2.3).

2. How to solve (11) efficiently with O(1/k2) convergence rate (section 2.4).
3. How to obtain the closed-form solution of v-subproblem for matrix  \star -norms when

solving (11) (section 2.5).
4. How to reconstruct image u using Jacobian v obtained in (11) (section 2.6).

2.3. Formulating fidelity of Jacobian \bfitv . In many imaging technologies, especially med-
ical imaging, the image data are acquired in transform domains. Among those common
transforms, the Fourier transform and the Radon transform are the two most widely used
in medical imaging. In what follows, we show that the relation between an image u and its
(undersampled) data f can be converted to that between the Jacobian matrix v and f in
both transform domains. This allows us to derive the data fidelity H(v) of Jacobian v and
reconstruct v from measured CT and MR data using (11). However, we also point out that
this conversion may be quite involved and sometimes intractable if the relation between u and
f is very complicated in certain medical imaging problems.

2.3.1. Radon case. CT is a widely used medical imaging technology in clinical practice.
CT data is acquired in the Radon transform domain of the image. Under ideal, noiseless
conditions, the CT measurement can be modeled by a line integral through the continuous
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object function. For ease of presentation, we consider a 2D Radon transform of a gray-level
(scalar-valued) image u as follows. Let \{ \theta k : 0 \leq \theta 1 < \theta 2 < \cdot \cdot \cdot < \theta p < \pi , k = 1, . . . , p\} be the
p projection angles, and let x\prime \in \BbbR be the position of a detector on the detector array. Then
the line integral of u along direction \theta k with offset x\prime from the center of the detector array is
formulated by

\scrR \theta k [u](x
\prime ) :=

\int \infty 

 - \infty 
u(x\prime cos \theta k  - y\prime sin \theta k, x

\prime sin \theta k + y\prime cos \theta k) dy
\prime .(12)

Here \^u(\theta , x\prime ) = \scrR \theta [u](x
\prime ) is the Radon transform of u, where (x\prime , y\prime ) is the new orthogonal

coordinate by rotating (x, y) counterclockwise by angle \theta , where x\prime (y\prime ) is parallel (perpendic-
ular) to the detector array. Let fk(x

\prime ) be the measured Radon data \scrR \theta k [u](x
\prime ) collected by the

detectors on the detector array; then the data fidelity h of u in (7) for CT can be formulated
as follows:

h(u) =
1

2

p\sum 
k=1

\| \scrR \theta k [u] - fk\| 2.(13)

On the other hand, by taking a derivative with respect to x\prime on both sides of (12), we
obtain

(\scrR \theta k [u])
\prime (x\prime ) =

\int \infty 

 - \infty 
(cos \theta kv1 + sin \theta kv2) dy

\prime = cos \theta k\scrR \theta k [v1] + sin \theta k\scrR \theta k [v2],(14)

where vl = vl(x
\prime cos \theta k  - y\prime sin \theta k, x

\prime sin \theta k + y\prime cos \theta k) = \partial lu(x
\prime cos \theta k  - y\prime sin \theta k, x

\prime sin \theta k +
y\prime cos \theta k) for l = 1, 2. Therefore, the gradient v = du = (v1, v2) of image u is related to the
derivative of the Radon data \scrR \theta k [u], i.e., f

\prime 
k(x

\prime ), and the data fidelity of v can be formulated
by

H(v) =
1

2

p\sum 
k=1

\| cos \theta k\scrR \theta k [v1] + sin \theta k\scrR \theta k [v2] - f \prime k\| 2.(15)

Noise transformation. We obtained the data fidelity term H(v) of v in (15) assuming
that the Radon measurements f is noiseless. If f contains noises that can be approximately
modeled by weighted Gaussian random variables, then we can modify H(v) accordingly to
incorporate the correlation between measurements. To this end, the observed data fk relates
to the image u as

fk = \scrR \theta k [u] + ek \in \BbbR q(16)

for each projection angle \theta k, where q is the number of detectors on the detector array.
Here ek \sim N(0,\Sigma k) is Gaussian distributed with mean 0 and covariance \Sigma k \in \BbbR q\times q. Let
\=D \in \BbbR (q - 1)\times q denote the full-rank 1D forward finite difference operator along the axis of x\prime 

(detectors) in the sinogram. Then from (16), we readily obtain that

\=Dfk  - cos \theta k\scrR \theta k [v1] - sin \theta k\scrR \theta k [v2] =
\=Dkek \sim N

\Bigl( 
0, \=DS \=D\top 

\Bigr) 
,(17)

where \=DS \=D\top \in \BbbR (q - 1)\times (q - 1) is nonsingular. Here \=Dfk \in \BbbR q - 1, and vi has the same size as
the partial derivatives of u obtained by forward finite differences such that \scrR \theta k [vi] \in \BbbR q - 1 for
i = 1, 2.
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By the maximum a posteriori principle, the data fidelity term H(v) in minimization can
be obtained by the negative log-likelihood of v using (17):

H(v) =
1

2

p\sum 
k=1

\| cos \theta k\scrR \theta k [v1] + sin \theta k\scrR \theta k [v2] - \=Dfk\| 2( \=DS \=D\top ) - 1 .(18)

Note that q is relatively much smaller than n as it is the number of detectors on the detector
array. Hence the inverse ( \=DS \=D\top ) - 1 can be computed easily in advance, and the computational
cost of H(v) and \nabla H(v) in (18) will only incur a very minor increase compared to that in
(15). In particular, if \Sigma k is diagonal, then ( \=DS \=D\top ) - 1 is tridiagonal for which the inverse
is also easy to compute by Crout factorization [9]. If \Sigma k = \sigma 2kI for \sigma k > 0 as in the white
Gaussian noise case, the inverse ( \=DS \=D\top ) - 1 has explicit expression.

For certain CT applications, such as low-dose CT, the measurement noises need to be
modeled by Poisson random variables for improved accuracy. In this case, the measurements
fk are Poisson random variables with (multiple of) \scrR \theta k [u] as the mean. Then \=Dfk has Skellam
distribution [27, 42] whose parameter involves \scrR \theta k [u]. The derivation of likelihood and H(v)
can be carried out in a similar way; however, the computation is more involved compared to
the Gaussian noise case.

We point out that the evaluations of H and \nabla H require twice as many Radon transforms
than that for h(u) since there are two unknowns v1 and v2 in solving (11) rather than one u in
(7). However, the significantly improved convergence rate O(1/k2) of (11) over O(1/k) of (7)
can well compensate the increased per-iteration computational cost. This is also demonstrated
by the numerical results in section 3, where we use relative error versus actual CPU time (with
single core computation). In these numerical results, we show that the proposed method based
on (11) is more efficient than existing ones based on (7) as the relative error of the former
decays much faster in time. In practice, such improvement may be more significant since the
computations of related to v1 and v2 in H and \nabla H in the proposed method are separable and
can be carried out in parallel.

The reformulation above is based on parallel beam CT scans, where the projections are
parallel for each angle. For fan/cone beam CT scans, one can derive the reformulation simi-
larly, or convert fan/cone beam CT data to parallel beam data and apply the reformulation
above.

To summarize, given the measured Radon data fk for k = 1, . . . , p, we can formulate the
data fidelity H(v) in (15) of the gradient/Jacobian v, instead of h(u) in (13) of the image u.
Then we can directly solve v from (11).

2.3.2. Fourier case. Imaging technologies, such as MRI and radar imaging, are based on
Fourier transform of images. The image data are the Fourier coefficients of image acquired
in the Fourier domain (also known as the k-space in MRI). The inverse problem of image
reconstruction in such technologies often refers to recovering an image from partial (i.e.,
undersampled) Fourier data.

In the discrete setting, let u \in \BbbR n denote a 2D gray-level (scalar-valued) MR image to be
reconstructed, \scrF \in \BbbR n\times n the (discrete) Fourier transform matrix (hence a unitary matrix),
P \in \BbbR p\times n the undersampling matrix with binary values (0 or 1) formed by rows of the identity
matrix to represent the undersampling pattern (also called mask in k-space), and f \in \BbbR p the
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undersampled Fourier data. Therefore, the relation between the underlying image u and
observed partial data f is given by P\scrF u = f . Consequently, the data fidelity term of u can
be formed as

h(u) = (1/2) \cdot \| P\scrF u - f\| 2.(19)

The gradient (partial derivatives) of an image can be regarded as a convolution. The
Fourier transform, on the other hand, is well known to convert a convolution to simple point-
wise multiplication in the transform domain. In discrete settings, this simply means that \^Dl :=
\scrF Dl\scrF \top is a diagonal matrix where Dl \in \BbbR n\times n is the discrete partial derivative (e.g., forward
finite difference) operator along the xl direction (l = 1, 2). This amounts to a straightforward
formulation for the data fidelity of v as follows. Let vl be the partial derivative of u in the xl
direction, i.e., vl = Dlu, which is the discretized \partial lu; then we have

P\scrF vl = P\scrF Dlu = P\scrF Dl\scrF \top \scrF u = P \^Dl\scrF u,(20)

where we used the fact that \scrF is orthogonal and hence \scrF \top \scrF = In, the n\times n identity matrix.
Furthermore, we know that P\top P \in \BbbR n\times n is a diagonal binary matrix and PP\top = Ip. Hence,
by multiplying PP\top on both sides, we obtain that

P\scrF vl = (PP\top )P \^Dl\scrF u = P (P\top P ) \^Dl\scrF u = P \^DlP
\top P\scrF u = P \^DlP

\top f,(21)

where we used the facts that (P\top P ) \^Dl = \^Dl(P
\top P ) in the third equality since both P\top P and

\^Dl are diagonal, and P\scrF u = f in the last equality. Therefore, the data fidelity term H(v) in
(11) can be formulated as

H(v) =
1

2

\Bigl( 
\| P\scrF v1  - P \^D1P

\top f\| 2 + \| P\scrF v2  - P \^D2P
\top f\| 2

\Bigr) 
.(22)

Now we can convert the measured Fourier data f for image u to Fourier data P \^DlP
\top f for

vl. In numerical implementation, this is done simply by multiplying \^Dl(\omega ) \in \BbbC , which can be
easily precomputed, to f(\omega ) \in \BbbC for each of the p sampled Fourier frequency \omega .

Similar to the CT case, the evaluations of H and \nabla H require twice as many Fourier
transforms than that for h(u). However, the significantly improved convergence rate of the
proposed method can well compensate its increased per-iteration computational cost, as also
shown by our numerical results using error versus CPU time comparisons in section 3.

In clinical MRI scans, it is also common that the Fourier data are not acquired on Cartesian
grids, such as those using radial and spiral sampling trajectories. In this case, a preprocessing
step called gridding can be applied to the data to interpolate values on Cartesian grids of the
k-space to obtain f for (22).

Noise transformation. The derivation of data fidelity H(v) in (22) assumes noiseless
Fourier measurements f . If f is contaminated by Gaussian noise, then we can derive the data
fidelity H(v) to take the noise distribution into consideration. Suppose there are Gaussian
noises in the data acquisition such that

f(\omega ) = P\scrF [u](\omega ) + e(\omega )(23)
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for each frequency value \omega in Fourier domain. Here \scrF [u] is the Fourier transform of image u,
and e(\omega ) = a(\omega ) + ib(\omega ) is the noise at frequency \omega , where a(\omega ) and b(\omega ) are the real and
imaginary parts of e(\omega ), repsectively. By multiplying \^Dl(\omega ) on both sides of (23), we see that
this fidelity of vl (l = 1, 2 indicates the axes in \BbbR 2) satisfies

\^Dl(\omega )f(\omega ) = P\scrF [vl](\omega ) + \^Dl(\omega )e(\omega ) .

Suppose that \^Dl(\omega ) = Al(\omega )+iBl(\omega ), where Al(\omega ) \in \BbbR and Bl(\omega ) \in \BbbR are real and imaginary
parts of \^Dl(\omega ), respectively, and the noise e(\omega ) satisfies that a(\omega ) \sim N(0, \sigma 2a) and b(\omega ) \sim 
N(0, \sigma 2b ) are independent for all frequency \omega . Then we know that the transformed noise
\^Dl(\omega )e(\omega ) is independent for different \omega and distributed as bivariate Gaussian\Biggl( 

real( \^Dl(\omega )e(\omega ))

imag( \^Dl(\omega )e(\omega ))

\Biggr) 
\sim N

\Bigl( 
0, Cl(\omega )\Sigma C

\top 
l (\omega )

\Bigr) 
,(24)

where Cl(\omega ) = [Al(\omega ), - Bl(\omega );Bl(\omega ), Al(\omega )] \in \BbbR 2\times 2 and \Sigma = diag(\sigma 2a, \sigma 
2
b ) \in \BbbR 2\times 2. Therefore,

we can readily obtain the maximum likelihood of \^Dl(\omega )e(\omega ) and hence the fidelity of vl. In
particular, if \sigma a = \sigma b = \sigma , then real( \^Dl(\omega )e(\omega )) and imag( \^Dl(\omega )e(\omega )) are two independent
and identically distributed. N(0, \sigma 2(A2

l (\omega ) + B2
l (\omega ))), i.e., N(0, \sigma 2| \^Dl(\omega )| 2). In this case,

we denote \Psi l = diag(1/| \^Dl(\omega )| 2); then data fidelity (i.e., negative log-likelihood) of v simply
becomes

H(v) =
1

2

\Bigl( 
\| P\scrF v1  - P \^D1P

\top f\| 2\Psi 1
+ \| P\scrF v2  - P \^D2P

\top f\| 2\Psi 2

\Bigr) 
,(25)

which is the same as (22) but with a proper weight \Psi l for the data fidelity of vl. In the
remainder of this paper, we assume that the standard deviation of both real and imaginary
parts is \sigma . Furthermore, in numerical experiments, we can precompute | \^Dl(\omega )| 2 and only
perform an additional pointwise division by | \^Dl(\omega )| 2 after computing P\scrF vl  - P \^DlP

\top f in
each iteration.

The derivations are for scalar-valued, single-modal image u so far for the Fourier case. For
multichannel MR images, the results apply channel by channel directly.

2.4. Edge reconstruction scheme and computation complexity. As we have obtained
the expression of H(v), the minimization problem (11) is formulated and can be solved by
accelerated proximal gradient methods with optimal convergence rate of O(1/k2). To this end,
we employ the idea of accelerated gradient descent in [34] and obtain the following iterative
scheme to solve (11):

v(k+1) = argmin
v

\biggl\{ 
\alpha \| v\|  \star ,1 +

1

2\tau 
\| v  - (w(k)  - \tau \nabla H(w(k)))\| 2

\biggr\} 
,(26)

w(k+1) = v(k+1) + \alpha k+1

\Bigl( 
\alpha  - 1
k  - 1

\Bigr) \Bigl( 
v(k+1)  - v(k)

\Bigr) 
(27)

with arbitrary initialization v(0) and w(0) = v(0) and step size \tau \in (0, 1/L], where L is the
Lipschitz constant of \nabla H. The subproblem (26) can be solved by a closed-form formula called
matrix-valued shrinkage, for which the details will be given in section 2.5.
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Now the scheme (26)--(27) can generate a sequence of iterates \{ v(k)\} k=0,1,... which yields
the optimal convergence rate O(1/k2) in objective function among all first-order gradient-
based methods applied to (11). For completeness, we summarize this convergence result in
the following theorem, and a concise proof closely following [43] is provided in Appendix A.

Theorem 2.1. Let \{ v(k)\} be the iterates generated by (26)--(27) with any initial v(0), and
let \alpha k be chosen such that (1  - \alpha k+1)/\alpha 

2
k+1 \leq 1/\alpha 2

k, 0 < \alpha k \leq 1 for all k \geq 0 and \alpha 0 = 1.
Suppose H(v) is convex and its gradient is L-Lipschitz continuous. Let v\ast be any optimal
solution of minv\{ \phi (v) := \alpha \| v\|  \star ,1+H(v)\} in (11) and \phi \ast = \phi (v\ast ); then there is, for all k \geq 1,
that

\phi (v(k)) - \phi \ast \leq 
\alpha 2
k

\bigm\| \bigm\| \bigm\| v\ast  - v(0)
\bigm\| \bigm\| \bigm\| 2

2\tau (1 - \alpha k)
= O

\biggl( 
1

k2

\biggr) 
.(28)

2.5. Closed form solution of matrix-valued shrinkage. As we can see, the algorithm step
(26) calls for solution of the type

min
X\in \BbbR 2\times m

\alpha \| X\|  \star +
1

2
\| X  - B\| 2F(29)

for specific matrix norm \| \cdot \|  \star and given matrix B \in \BbbR 2\times m. In what follows, we provide
the closed-form solutions of (29) when the matrix  \star -norm is Frobenius, induced 2-norm, or
nuclear norm, as mentioned in section 2.1. The closed-form solution of (29) is denoted by
shrink \star (B,\alpha ). The derivations are provided in Appendix B.

\bullet Frobenius norm. This is the simplest case since \| X\| F treats X as a vector in \BbbR 2m in
(29), for which the shrinkage has closed-form solution. More specifically, the solution
of (29) is

X\ast = max(\| B\| F  - \alpha , 0)
B

\| B\| F
.(30)

\bullet Induced 2-norm. This is advocated the vectorial TV [22], but now we can provide a
closed-form solution of (29) as

X\ast = B  - \alpha U diag(\Pi \blacktriangle (\sigma /\alpha ))V
\top ,(31)

where B = U diag(\sigma )V \top is the (reduced) SVD of B, and \sigma \in \BbbR 2 is the vector of
singular values of B. Here \Pi \blacktriangle is the projection onto \blacktriangle := \{ z \in \BbbR 2 | 0 \leq z \leq 1, 1\top z \leq 
1\} . Therefore, if \sigma /\alpha \in \blacktriangle , i.e., 1\top \sigma \leq \alpha , then X\ast = 0; otherwise we compute the
projection of \sigma /\alpha onto the standard simplex \bigtriangleup := \{ z \in \BbbR 2 | 0 \leq z \leq 1, 1\top z = 1\} in
\BbbR 2, denoted by s(\sigma /\alpha ), and then set X\ast = B  - \alpha U diag(s(\sigma /\alpha ))V \top .

\bullet Nuclear norm. This norm promotes low rank and yields a closed-form solution of (29)
as

X\ast = U max(\Sigma  - \alpha , 0)V \top ,(32)

where (U,\Sigma , V ) is the reduced SVD of B.
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The computation of (30) is essential shrinkage of vector and hence very cheap. The compu-
tations of (31) and (32) involve (reduced) SVD; however, an explicit formula also exists as
the matrices have a tiny size of 2-by-m (3-by-m if images are 3D), where m is the number of
image channels/modalities.

Remark. It is worth noting that the computation of (29) is carried out at every pixel
independently of others in each iteration. This allows straightforward parallel computing
which can further reduce real-world computation time.

2.6. Reconstruct image from gradients. Once the Jacobian v is reconstructed from data,
the final step is to assemble the image u using v. Since this step is performed for each modality,
the problem reduces to reconstruction of a scalar-valued image u from its gradient v = (v1, v2).
Since v is reconstructed as a vector field in the previous step, our goal here is to find u such
that its gradient Du matches v as closely.

In [35, 39], the image u is reconstructed by solving the Poisson equation \Delta u = div(v) =
 - (D\top 

1 v1+D
\top 
2 v2) since v1 = D1u and v2 = D2u are the partial derivatives of u. The boundary

condition of this Poisson equation can be either Dirichlet or Neumann depending on the
property of imaging modality. In medical imaging applications, such as MRI, CT, and PET,
the boundary condition is simply 0 since it often is just background near image boundary \partial \Omega .

Numerically, it is more straightforward to recover u by solving the minimization

min
u

\| D1u - v1\| 2 + \| D2u - v2\| 2 + \beta h(u)(33)

with some parameter \beta > 0 to weight the data fidelity h(u) of u. The solution is easy to
compute since the objective is smooth and highly efficient algorithms such as BFGS and the
conjugate gradient method can be applied. Moreover, it is also common that a closed-form
solution may exist. For example, in the MRI case where h(u) = 1

2\| P\scrF u  - f\| 2, the solution
of (33) is given by

u = \scrF \top 
\biggl[ \Bigl( 

\^D\top 
1
\^D1 + \^D\top 

2
\^D2 + \beta P\top P

\Bigr)  - 1 \Bigl( 
\^D\top 
1 \scrF v1 + \^D\top 

2 \scrF v2 + \beta P\top f
\Bigr) \biggr] 
,(34)

where \^D\top 
1
\^D1+ \^D\top 

2
\^D2+\beta P

\top P is diagonal and hence trivial to invert. The main computations
are just a few Fourier transforms.

In practice, we can simply reconstruct u from v in a similar way as (34) if we know the sum
of intensity values in u, i.e., c = 1\top u. The value c is often readily available, for example, the DC
atom (i.e., the Fourier coefficient of frequency 0) is always sampled during data acquisition. On
the other hand, we see that minimizing \| D1u - v1\| 2+\| D2u - v2\| 2 determines u up to shifting of
all its intensity values by the same constant, since Null(D1) \cap Null(D2) = \{ \mu 1 \in \BbbR n : \mu \in \BbbR \} .
Therefore, we can first rewrite 1\top u = 1\top \scrF \top \scrF u = (\scrF 1)\top \scrF u = (n, 0, . . . , 0)\top \scrF u = c, i.e.,
P\scrF u = f , where P = (1, 0, . . . , 0)\top \in \BbbR n and f = c/n. Then we formulate an artificial data
fidelity h(u) = (1/2) \cdot | P\scrF u - f | 2 for (33), and obtain the reconstructed image u using (34).
Note that \{ \mu 1\} \cap Null(P ) = \varnothing and hence the inverse in (34) exists.

2.7. Summary of algorithm steps. To summarize, we propose the two-stage Algorithm 1,
EdgeRec, which first recovers image edge v and then assembles image u. Each step in Al-
gorithm 1 is executed only once. Step 0 requires formation of H(\cdot ), which are given by (15)
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and (22) for the Radon and Fourier cases, respectively. Step 1 itself requires iterations which
converge very quickly with rate O(1/k2), where k is iteration number. In Step 1, \epsilon > 0
is a prescribed error tolerance to determine stopping criterion, and \tau \in (0, 1/L] is a fixed
step size where L is the Lipschitz constant of \nabla H. The numerical sequence \{ \alpha k\} k\geq 1 satisfies
(1 - \alpha k+1)/\alpha 

2
k+1 \leq 1/\alpha 2

k and 0 < \alpha k \leq 1 for all k \geq 1 and \alpha 0 = 1. For example, \alpha k = 2/(k+2)

for all k \geq 0, or \alpha 0 = \alpha 1 = 1 and \alpha k+1 = ((\alpha 4
k + 4\alpha 2

k)
1/2  - \alpha 2

k)/2 for k \geq 1, etc. The shrink \star 
denotes the matrix-valued shrinkage operator corresponding to  \star -norm as discussed in section
2.5. Step 2 can be solved quickly by many smooth optimization methods such as BFGS or
conjugate gradient. Moreover, it may just be solved using formula (34) as discussed earlier.

Algorithm 1. Two-stage edge-based joint image reconstruction (EdgeRec)

Input: Imaging data f = \{ fj\} j=1,...,m of m modalities. Set initial guess u and \alpha > 0.
Step 0: Compute Jacobian v(0) = Du and form fidelity H(\cdot ). Set w(0) = v(0).
Step 1: Iterate (35)--(36) below for k = 0, 1, . . . until \| v(k+1)  - v(k)\| /\| v(k+1)\| < \epsilon :

v
(k+1)
i = shrink \star 

\Biggl( 
w

(k)
i  - \tau 

\biggl[ 
\nabla H

\Bigl( 
w(k)

\Bigr) \biggr] 
i

, \alpha \tau 

\Biggr) 
for i = 1, . . . , n,(35)

w(k+1) = v(k+1) + \alpha k+1

\Bigl( 
\alpha  - 1
k  - 1

\Bigr) \Bigl( 
v(k+1)  - v(k)

\Bigr) 
.(36)

Step 2: Reconstruct image uj by (33) using output vj from Step 1 and fj for j = 1, . . . ,m.
Output: Multimodal image u = \{ uj\} j=1,...,m.

3. Numerical results. To examine the performance of the proposed Algorithm 1 (called
EdgeRec), we conduct a series of numerical experiments on synthetic and in vivo multicontrast
MRI data and multienergy CT data using this algorithm and compare it with the following
state-of-the-art methods:

\bullet The model (7), where the \| Du\| \ast norm is Frobenius, induced 2-norm, and nuclear
norm, respectively, solved by Chambolle-Pock's primal-dual algorithm presented in
[11]. This method is called Primal Dual.

\bullet The model (7), where the term V TV (u) is defined in (4), solved by a primal-dual
coordinate update algorithm [22] that performs coordinate updates of the primal and
two dual variables iteratively to approximate its solution. This method is called VTV2.

\bullet The methods presented in [38] for multienergy CT image reconstruction. In [38] the
joint image reconstruction problem is modeled as a constrained minimization problem:

min
u
V TVS(u) (or V TVN (u)) subject to \| Au - f\| W \leq \epsilon ,(37)

where V TVS =
\sum m

j=1 TV (uj), V TVN =
\int 
\Omega \| Du(x)\| N dx, and W is the covariance

matrix for data with Gaussian noise. By using the dual forms of all three terms
\| Au  - f\| W , V TVS(u), and V TVN (u), the original problem (37) is reformulated as a
min-max problem. Then the min-max problem is solved using the Chambolle--Pock
primal-dual algorithm [11]. Their methods are called VTVS and VTVN, respectively.

All comparison algorithms are implemented and tested in MATLAB computing environment
version R2014a under Windows OS on a laptop computer equipped with Intel Core i7 2.7GHz
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(only 1 core is used in computation) and 16GB of memory. In addition, we extensively test
and tune the parameters, including the weight of regularization, step size(s), and \epsilon (for VTVS
and VTVN), for each algorithm to its near optimal performance in terms of efficiency. The
parameters we used to generate the results are included in the descriptions of experiments
below.

3.1. Multienergy CT image reconstruction. To test the performance of the proposed
method, we first conduct joint image reconstruction of two dual-energy CT datasets.

The first dataset is a synthetic shoulder CT image (denoted Shoulder (CT1)) of size
256 \times 256 in two energy levels at 140 kVp (hev) and 80 kVp (lev) extracted from Figure 1
in [38]. The sinogram data is obtained by the MATLAB built-in Radon transform radon

which maps the image to a vector data of length 367 (i.e., detector number) using a parallel
beam. We use projections of 30 equally spaced angles between 0 and 178 degrees (i.e., degrees
0, 6, 12, . . . , 178) as the undersampled sinogram data for the 140 kVp image and projections
of another 30 equally spaced angles between 3 and 180 degrees (i.e., degrees 3, 9, 15, . . . , 180)
for the 80 kVp image. This data simulation pattern mimics the clinical energy-switching CT
scan. The goal is to reconstruct the two images of different energy levels jointly. The original
images are used as the ground truth (leftmost column of Figure 1).

As we showed earlier, there are many matrix norms that can be used to define VTV.
Therefore, our first test is to assess the difference of these norms when used on joint image
reconstruction of multienergy CT images. In particular, we use three norms, i.e., the Frobenius
norm, the induced 2-norm (spectral norm), and the nuclear norm, in the definition of VTV
for EdgeRec. For comparison purposes, the state-of-the-art Primal Dual [11] is also applied to
the one-stage VTV regularized minimization (7) with the same three norms. For Primal Dual,
the weight of the VTV term is set to 5\times 10 - 3, and the primal and dual step sizes are set to
5\times 10 - 3 and (1/8)/(5\times 10 - 3), respectively. For EdgeRec, the weight of l1 is set to 2.5\times 10 - 4

and the step size is set to 5\times 10 - 3. For both methods, the weight of data fidelity is 1.2 for the
high energy level part and 1 for the low energy level part, and the stopping criterion is that

either the relative change
\sum 2

j=1 \| u
(k)
j  - u

(k - 1)
j \| /\| u(k)j \| is lower than \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 8 or maximum

iteration reaches k\mathrm{m}\mathrm{a}\mathrm{x} = 100, after which both methods only make negligible improvement but
at the cost of many iterations. The relative reconstruction errors \| uj  - u\ast j\| /\| u\ast j\| , where uj is
the final reconstruction and u\ast j is the ground truth image, are shown in the row of Shoulder
(CT1) in Table 1, from which we can see that EdgeRec outperforms Primal Dual most of the
time for each norm type, and the nuclear norm appears to yield lower reconstruction error
than the other two norms in general.

For the Frobenius norm, both Primal Dual and EdgeRec only require a 2m-vector shrink-
age at each pixel and hence are very fast. For the 2-norm and the nuclear norm, a reduced
SVD of 2\times m matrix is needed at each pixel. More precisely, the 2-norm requires the largest
singular value and its corresponding left and right singular vectors to compute the shrinkage,
while the nuclear norm requires a complete SVD, as shown in section 2.5. Therefore, the
computational costs for these two norms are much higher than that of the Frobenius norm in
each iteration. In our numerical implementation, we used the SVD function built into MAT-
LAB for these two norms, although there are faster implementations available (especially for
the 2 \times m case, where SVD has closed form). In the top two rows of Figure 1, from left to
right, we show the ground truth, and reconstructed images using Primal Dual (with Frobe-
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Table 1
Relative reconstruction errors of the Primal Dual and EdgeRec algorithms using Frobenius, spectral, and

nuclear norms on the test datasets.

Primal Dual EdgeRec

Frobenius Spectral Nuclear Frobenius Spectral Nuclear

Chest (CT1)

hev 0.1104 0.1151 0.1058 0.0650 0.0793 0.0623

lev 0.1420 0.1451 0.1375 0.0945 0.1033 0.0896

Knee (CT2)

hev 0.1113 0.1139 0.1079 0.0722 0.0768 0.0708

lev 0.1184 0.1210 0.1151 0.0828 0.0861 0.0819

Brain (MR1)

T1 0.0411 0.0649 0.0343 0.0388 0.0611 0.0313

T2 0.0889 0.1179 0.0907 0.0811 0.0984 0.0675

PD 0.0380 0.0535 0.0376 0.0346 0.0465 0.0281

Brain (MR2)

T1 0.0477 0.0466 0.0553 0.0253 0.0311 0.0282

T2 0.0582 0.0592 0.0609 0.0355 0.0398 0.0371

Figure 1. Comparison of reconstruction results obtained by Primal Dual and EdgeRec using three different
norms for the definition of VTV on a synthetic shoulder CT image of two energy levels 140 kVp and 80 kVp.
Top two rows are the reconstructed 140 kVp (first row) and 80 kVp (second row) images. From left to right:
ground truth, Primal Dual with Frobenius norm, 2-norm, and nuclear norm, EdgeRec with Frobenius norm,
2-norm, and nuclear norm. Bottom two rows show their corresponding absolute error to the ground truth image.
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Figure 2. Zoom-ins of the corresponding images in Figure 1.

nius, 2-norm, and nuclear norm) and EdgeRec (same order of norms). The absolute error
of reconstructions to the ground truth images are shown in the bottom two rows of Figure
1, where brighter colors mean larger errors. To show the reconstruction details better, the
zoom-in images of the central 128 \times 128 of those in Figure 1 are shown in Figure 2. As we
can see, with each of these three norms, EdgeRec consistently produces images with lower
absolute error, which is consistent to the quantitative errors where all methods reach rela-
tive change of error 10 - 6 (for which they are considered ``convergent"" empirically since no
significant improvements will be observed within a reasonable amount of time) as reported
in Table 1. The reconstruction efficiency can also be measured quantitatively as shown in

Figure 3. In the top row of Figure 3, we show the relative reconstruction error \| u(k)j  - u\ast j\| /\| u\ast j\| 
(j = 1, 2) of Primal Dual and EdgeRec versus iteration number k for the images of two energy
levels, where u\ast is the ground truth. Since EdgeRec does not reconstruct u until the recon-
struction of v is finished, we excluded the time of generating u(k) for the intermediate v(k) in
Step 1 but added the time of reconstructing u from v in Step 2 of Algorithm 1 to every plot of
EdgeRec for a fair comparison. From these two plots, we observe that the three norms yield
similar reconstruction errors with slight differences as iteration progresses, while EdgeRec is
much more efficient than Primal Dual in terms of iteration complexity as the error decays a
lot faster. This is due to the O(1/k2) convergence rate of EdgeRec in contrast to the O(1/k)
rate of primal dual algorithm on nonstrongly convex functional. However, as mentioned in
section 2.3.2, the number of Fourier transforms in each iteration of EdgeRec is different from
Primal Dual and hence the former has slightly higher per-iteration computational cost. In
addition, the three norms used in Primal Dual and EdgeRec also require different computa-
tional costs. Therefore, we plot the relative errors versus CPU time (in seconds) of Primal
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Figure 3. Relative error to ground truth versus iteration number (top row) and CPU time in seconds
(bottom row) using Primal Dual and EdgeRec with different norms for VTV using the synthetic shoulder CT
image of 140 kVp (left column) and 80 kVp (right column).

Dual and EdgeRec using single-core computation in MATLAB to compare their performance
in practice. The comparison is shown in the bottom row of Figure 3. From these two plots,
it is clearly evident that EdgeRec is more efficient than the one-stage Primal Dual algorithm
(which is considered one of the most effective methods for solving (7)) in this joint reconstruc-
tion problem, since the relative error of EdgeRec decays much faster than that of Primal Dual.
Moreover, these plots also show that the Frobenius norm appears to be the most cost-effective
among the three norms used due to its low computational cost.

As the main and first step of the proposed EdgeRec algorithm is the reconstruction of
the gradients instead of the image directly, we show the result of reconstructed gradients in
Figure 4, where the first two rows show the partial derivatives along the vertical direction for
the image of two energy levels, and the bottom two show those along the horizontal direction.
As we can see, the reconstructed gradients are close to the ground truth ones, which ensures
the high-quality reconstruction of images in the second step.

As we found that both Primal Dual and EdgeRec are the most cost-effective in terms of
relative error when the Frobenius norm is used in the definition of VTV, we compare them to
VTVS, VTVN, and VTV2 using the same dataset. For VTVS/VTVN, the two \epsilon 's used in the
reformulated min-max problem are both set to 100 [38]. The W weight is set to 106, the step
size is set to 5 \times 103, and the stopping criteria is \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 8 or k\mathrm{m}\mathrm{a}\mathrm{x} = 120. For VTV2, the
weight of the VTV term is set to 5\times 10 - 3, and the primal and dual step sizes are set to 5\times 10 - 3

and 1, respectively. The parameters for stopping criteria are set to \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 6 and k\mathrm{m}\mathrm{a}\mathrm{x} = 150.
The parameters for Primal Dual and EdgeRec are set the same as above. The reconstruction
results are given in Figure 5, where in the top two rows from left to right are the ground truth,
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Figure 4. Reconstructed v of the synthetic shoulder CT image using EdgeRec. Top two rows show v along
the vertical direction for the images of two energy levels 140 kVp and 80 kVp, and the bottom two rows show the
horizontal direction. From left to right: partial derivatives of the ground truth, EdgeRec with Frobenius norm,
2-norm, and nuclear norm, and their absolute differences from the ground truth.

VTVS, VTVN, VTV2, Primal Dual (Frobenius), and EdgeRec (Frobenius). We also show the
absolute errors of these reconstructions from the ground truth in the bottom two rows of
Figure 5. The final reconstruction errors of these methods when using the stopping criterion
of relative change \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 6 solely are shown in the row of Shoulder (CT1) in Table 2. As we
can see, the proposed EdgeRec produces better image quality with the smallest error among
all comparison methods. The comparison plots of relative reconstruction error versus CPU
time in Figure 6 also confirm that the proposed EdgeRec is more efficient than others.

The second Radon dataset is an in vivo knee CT image (denoted Knee (CT2)) also with
two energy levels: 140 kVp and 80 kVp. The pixel spacing of this CT dataset is 0.48828mm
for both directions and the detector has 1216 elements of total width 38.4mm. We then resize
the image to the resolution of 256 \times 256 as the ground truth. The sinogram data is again
artificially downsampled as in the first experiment for reconstruction. For this dataset, we
conduct the same comparison of the different matrix norms for VTV using Primal Dual and
EdgeRec. For Primal Dual, the weight of VTV term is 0.05. For EdgeRec, the weight of l1
term is 10 - 4. The weight of data fidelity is again 1.2 and 1 for the high energy and low energy
levels, respectively. The parameter k\mathrm{m}\mathrm{a}\mathrm{x} = 120 for both methods, and all other parameters are
set as above. The reconstructed images and errors are shown in Figure 7, the corresponding
zoom-in images of the central 128 \times 128 part are shown in Figure 8 and the relative errors
versus iteration numbers and CPU time are shown in Figure 9, and the final reconstruction
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Figure 5. Comparison of reconstruction results by different methods using the synthetic shoulder CT image
of two energy levels. Top two rows are the reconstructed 140 kVp (first row) and 80 kVp (second row) images.
From left to right: ground truth, VTVS, VTVN, VTV2, Primal Dual (Frobenius), and EdgeRec (Frobenius).
Bottom two rows show the absolute error to the ground truth image.

Table 2
Relative reconstruction errors of the comparison algorithms (Primal Dual and EdgeRec with Frobenius

norm) on the two dual-energy CT datasets.

VTV2 VTVS VTVN Primal Dual EdgeRec

Chest (CT1)

hev 0.1537 0.1754 0.1758 0.0928 0.0650

lev 0.1855 0.2053 0.2053 0.1242 0.0945

Knee (CT2)

hev 0.1828 0.2409 0.2411 0.1002 0.0722

lev 0.1899 0.2505 0.2508 0.1079 0.0828

errors are reported in the row of Knee (CT2) in Table 1, from which we again observe that
EdgeRec produces better reconstruction quality with lower error. This figure also suggests
that Frobenius norm is the most cost-effective norm in VTV in terms of relative error when
used in Primal Dual and EdgeRec. The reconstructed gradients and the absolute errors to the
ground truth gradients are shown in Figure 10, which also confirms the improved efficiency
with EdgeRec over Primal Dual. In addition, we compare Primal Dual and EdgeRec to VTVS,
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Figure 6. Comparisons of relative error to ground truth versus CPU time in seconds by different methods
on the synthetic shoulder CT image of 140 kVp (left) and 80 kVp (right).

Figure 7. Comparison of reconstruction results obtained by Primal Dual and EdgeRec using three different
norms for the definition of VTV on an in vivo knee CT image of two energy levels. Top two rows are the
reconstructed 140 kVp (first row) and 80 kVp (second row) images. From left to right: ground truth, Primal
Dual with Frobenius norm, 2-norm, and nuclear norm, EdgeRec with Frobenius norm, 2-norm, and nuclear
norm. Bottom two rows show their corresponding absolute error to the ground truth image.

VTVN, and VTV2. The parameters for these three methods are set the same as in the first
dataset. The reconstructed images and their absolute errors are shown in Figure 11. The
quantitative comparison using relative error versus CPU time is shown in Figure 12. The final
reconstruction errors of these methods are shown in the Knee (CT2) row in Table 2. From
both figures and the table, we can see that EdgeRec has significantly improved efficiency
compared to the existing methods.
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Figure 8. Zoom-ins of the corresponding images in Figure 7.
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Figure 9. Relative error to ground truth versus iteration number (top row) and CPU time in seconds
(bottom row) using Primal Dual and EdgeRec with different norms for VTV using the in vivo knee CT image
of 140 kVp (left column) and 80 kVp (right column).
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Figure 10. Reconstructed v of the in vivo knee CT image using EdgeRec. Top two rows show v along the
vertical direction for the images of two energy levels 140 kVp and 80 kVp, and the bottom two rows show the
horizontal direction. From left to right: partial derivatives of the ground truth, EdgeRec with Frobenius norm,
2-norm, and nuclear norm, and their absolute differences from the ground truth.

3.2. Multicontrast MR image reconstruction. To test the performance of EdgeRec for
image reconstruction with partial Fourier data, we also conduct numerical experiments on two
multicontrast MR image datasets.

The first dataset is obtained from BrainWeb website [14] and cropped into the size of 218\times 
218 (denoted by Brain (MR1)), where T1, T2, and PD k-space are artificially downsampled to
11.9\% of full k-space data using a radial mask of 32 spokes. As for CT images, we first apply
Primal Dual and EdgeRec using the three different matrix norms in VTV on the undersampled
data. For Primal Dual, the weight of VTV is set to 10 - 3, and the primal and dual step sizes
are 1/8 and 1, respectively. For EdgeRec, the weight of the l1 term is 10 - 4 and the step size
is 1/8. For both methods, the termination parameters are set to \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 8 and k\mathrm{m}\mathrm{a}\mathrm{x} = 1000.
The results are shown in Figure 13 and the corresponding zoom-in images of the central
128 \times 128 in Figure 14, and the final reconstruction errors are reported in the Brain (MR1)
row in Table 1, from which we again observe lower reconstruction error by EdgeRec. The
quantitative comparison using relative error versus iteration number (top row) and CPU time
in seconds (bottom row) are plotted in Figure 15. This figure indicates improved convergence
rate and efficiency of EdgeRec. In addition, it again suggests the Frobenius norm for VTV in
Primal Dual and EdgeRec as it is more cost-effective. The reconstructed gradients and the
absolute errors using EdgeRec are shown in Figure 16, which shows that the gradients are
close to the ground truth ones.



TWO-STAGE JOINT MULTIMODAL IMAGE RECONSTRUCTION 1449

Figure 11. Comparison of reconstruction results by different methods using the in vivo knee CT image.
Top two rows are the reconstructed 140 kVp image (first row) and 80 kVp image (second row). From left to
right: ground truth, VTVS, VTVN, VTV 2, Primal Dual (Frobenius), and EdgeRec (Frobenius). Bottom two
rows show the corresponding absolute error to the ground truth image.
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Figure 12. Comparisons of relative reconstruction error versus CPU time in seconds by different methods
on the in vivo knee CT image of 140 kVp (left) and 80 kVp (right).

We also compare Primal Dual and EdgeRec with Frobenius norm to VTVS, VTVN, and
VTV2. In particular, we manually add complex-valued Gaussian noise of standard deviation
\sigma = 4 and \sigma = 8 to the (unnormalized) undersampled Fourier data and apply the comparison
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Figure 13. Reconstruction results by Primal Dual and EdgeRec on a BrainWeb MR image of T1, T2,
and PD contrasts. Top three rows are the reconstructed T1 (first row), T2 (second row), and PD (third row)
images. From left to right: ground truth, direct inverse Fourier, Primal Dual with Frobenius norm, 2-norm,
and nuclear norm, EdgeRec with Frobenius norm, 2-norm, and nuclear norm. Bottom two rows show their
absolute error to the ground truth image.

methods to this noisy data. For all noise levels, W is set to 106, the step size is 0.15, and the
three \epsilon 's are set to 2.4, 4.1, and 4.1 for both VTVS and VTVN. The termination parameter is
\epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 6, and k\mathrm{m}\mathrm{a}\mathrm{x} is set to 180 and 250 for VTVS and VTVN, respectively. The parameters
for Primal Dual and EdgeRec are the same as before. For VTV2, the weight of VTV term is
5\times 10 - 4, and the primal and dual variables are set to 1 and 106, respectively. The termination
parameters are \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 8 and k\mathrm{m}\mathrm{a}\mathrm{x} = 1000 for VTV2. The weight of the VTV term in Primal
Dual is 5 \times 10 - 3, 3 \times 10 - 3, and 3 \times 10 - 3 for \sigma = 0, 4, 8, respectively. All other parameters
for Primal Dual and EdgeRec are the same as in their previous comparison. The results
without noise (\sigma = 0) are shown in Figure 17. The final relative reconstruction errors using
\epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 6 solely for all three noise levels are reported in the Brain (MR1) rows in Table 3.
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Figure 14. Zoom-ins of the corresponding images in Figure 13.

The quantitative comparison is given in Figure 18. Again the results confirm that EdgeRec
with the Frobenius norm can outperform existing methods in terms of reconstruction error.

Since we can obtain the noise distribution in the Fourier transform of Jacobian, the data
fidelity is more accurately formulated by taking such noise distribution into consideration,
as we showed in section 2.3.2. To demonstrate this numerically, we test EdgeRec without
and with the consideration of noise distribution on the BrainWeb dataset. More specifically,
EdgeRec without consideration of noise distribution uses (22) as the data fidelity term, whereas
EdgeRec with consideration noise distribution uses (25) which essentially employs different
weights specified in \Psi i in the norm. The results are shown in Figure 19. The results imply that
greater noise in data yield higher reconstruction error, which is expected. More importantly,
EdgeRec can reach better accuracy when the noise distribution is considered and the weighted
data fidelity term given in (25) is used.

The second MRI dataset is an in vivo MR image of two contrasts, T1 and T2, of resolution
512 \times 512 (denoted Brain (MR2)). The k-space is again artificially undersampled to 15.0\%
using a radial mask of 82 spokes. We first conduct the same test of different norms using
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Figure 15. Comparisons of relative error versus iteration number (top row) and CPU time in seconds
(bottom row) by Primal Dual and EdgeRec with three different norms on the BrainWeb MR image of T1 (left),
T2 (middle), and PD (right) contrasts.

Figure 16. Reconstructed v of the in vivo knee CT image using EdgeRec. Top two rows show v along the
vertical direction for the images of two energy levels 140 kVp and 80 kVp, and the bottom two rows show the
horizontal direction. From left to right: partial derivatives of the ground truth, EdgeRec with Frobenius norm,
2-norm, and nuclear norm, and their absolute differences from the ground truth.
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Figure 17. Reconstruction results by different methods on the BrainWeb MR image of T1, T2, and PD
contrasts with no noise (\sigma = 0). Top three rows are the reconstructed T1 (first row), T2 (second row), and PD
(third row) images. From left to right: ground truth, direct inverse Fourier, VTVS, VTVN, VTV 2, Primal
Dual (Frobenius), and EdgeRec (Frobenius). Bottom three rows show their absolute error to the ground truth
image.

Primal Dual and EdgeRec. For Primal Dual, the weight of VTV is set to 5 \times 10 - 3, and the
primal and dual step sizes are 1/8 and 1, respectively. For EdgeRec, the weight of the l1 term
is 5 \times 10 - 5 and the step size is 1/8. For both methods, the termination parameters are set
to \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 8 and k\mathrm{m}\mathrm{a}\mathrm{x} = 200. The reconstructed images are shown in Figure 20, zoom-in
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Table 3
Relative reconstruction errors of the comparison algorithms (Primal Dual and EdgeRec with Frobenius

norm) on the two multicontrast MRI datasets.

VTV2 VTVS VTVN Primal Dual EdgeRec

Brain (MR1) T1 0.1135 0.2026 0.2112 0.0845 0.0855

(\sigma = 0) T2 0.1960 0.3275 0.3324 0.1660 0.1651

PD 0.0876 0.1755 0.1854 0.0683 0.0678

Brain (MR1) T1 0.1246 0.2040 0.2123 0.1014 0.0957

(\sigma = 4) T2 0.2072 0.3283 0.3332 0.1863 0.1870

PD 0.0963 0.1764 0.1862 0.0808 0.0805

Brain (MR1) T1 0.1470 0.2082 0.2161 0.1257 0.1131

(\sigma = 8) T2 0.2314 0.3310 0.3357 0.2104 0.2035

PD 0.1157 0.1791 0.1885 0.0995 0.0919

Brain (MR2) T1 0.0779 0.1671 0.1812 0.0479 0.0253

(\sigma = 4) T2 0.0812 0.2048 0.2163 0.0579 0.0355

Brain (MR2) T1 0.0792 0.1687 0.1723 0.0494 0.0444

(\sigma = 8) T2 0.0822 0.2058 0.2086 0.0591 0.0581

Brain (MR2) T1 0.0823 0.1734 0.1767 0.0613 0.0640

(\sigma = 12) T2 0.0841 0.2085 0.2113 0.0766 0.0751

images of the upper left 128 \times 128 in Figure 21, and relative error plots in Figure 22. As
for the first MR data, these figures imply that EdgeRec is more efficient than Primal Dual,
and the Frobenius norm is more cost-effective than other norms for these two methods. The
reconstructed gradients and absolute errors by EdgeRec are shown in Figure 23.

We also compare Primal Dual and EdgeRec with Frobenius norm to VTVS, VTVN, and
VTV2 for this dataset. In this case, we also manually add noise to the undersampled Fourier
data with noise levels \sigma = 4, 8, 12. For all noise levels, W is set to 106, the step size is 0.2,
and the two \epsilon 's are set to 7 and 11 for both VTVS and VTVN. The termination parameter
is \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 6 for both VTVN and VTVS. The parameters for Primal Dual and EdgeRec are
the same as before. For VTV2, the weight of the VTV term is 5\times 10 - 3, and the primal and
dual variables are set to 1 and 10, respectively. The termination parameters are \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 8

for VTV2. The weight of the VTV term for Primal Dual is 5\times 10 - 3, 5\times 10 - 3, and 1\times 10 - 2

for \sigma = 4, 8, 12, respectively. All other parameters for Primal Dual and EdgeRec are the same
as in their previous comparison. The reconstructed results for the noiseless case are shown
in Figure 24. The plots of relative error versus CPU time in seconds are given in Figure 25.
Again the results confirm that EdgeRec with the Frobenius norm is the most efficient among
all comparison methods. Finally, we also test EdgeRec without and with noise weights for this
in vivo dataset. Again, EdgeRec without consideration of noise weight uses (22) as the data
fidelity term, whereas EdgeRec with noise weight uses (25). The final reconstruction errors
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Figure 18. Comparisons of relative error versus CPU time in seconds by different methods on the BrainWeb
MR image of T1 (left), T2 (middle), and PD (right) contrasts with no noise (top row), noise level \sigma = 4 (middle
row), and noise level \sigma = 8 (bottom row).
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Figure 19. Relative error versus CPU time by EdgeRec without and with consideration of noise weight
using the BrainWeb MR image of T1 (left), T2 (middle), and PD (right) with noise levels \sigma = 4, 8, 12.

using stopping criterion \epsilon \mathrm{t}\mathrm{o}\mathrm{l} = 10 - 6 for all methods are reported in the Brain (MR2) rows in
Table 3. The results are shown in Figure 26, which implies that EdgeRec can reach better
accuracy when the noise distribution is considered and the weighted data fidelity term in (25)
is used.
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Figure 20. Reconstruction results by Primal Dual and EdgeRec on an in vivo MR image of T1 and T2
contrasts. Top two rows are the reconstructed T1 (first row) and T2 (second row) images. From left to right:
ground truth, direct inverse Fourier, Primal Dual with Frobenius norm, 2-norm, and nuclear norm, EdgeRec
with Frobenius norm, 2-norm, and nuclear norm. Bottom two rows show their absolute error to the ground
truth image.

Figure 21. Zoom-ins of the corresponding images in Figure 20.
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Figure 22. Comparisons of relative error versus iteration number (top row) and CPU time in seconds
(bottom row) by Primal Dual and EdgeRec with three different norms on the in vivo MR image of T1 (left)
and T2 (right) contrasts.

Figure 23. Reconstructed v of the in vivo knee CT image using EdgeRec. Top two rows show v along the
vertical direction for the images of two energy levels 140 kVp and 80 kVp, and the bottom two rows show the
horizontal direction. From left to right: partial derivatives of the ground truth, EdgeRec with Frobenius norm,
2-norm, and nuclear norm, and their absolute differences from the ground truth.
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Figure 24. Reconstruction results by different methods on the in vivo MR image of T1 and T2 contrasts
with no noise (\sigma = 0). Top two rows are the reconstructed T1 (first row) and T2 (second row) images. From left
to right: ground truth, direct inverse Fourier, VTVS, VTVN, VTV 2, Primal Dual (Frobenius), and EdgeRec
(Frobenius). Bottom two rows show their absolute error to the ground truth image.

4. Concluding remarks. We proposed a new two-stage joint image reconstruction method
by recovering the edge (i.e., gradients or Jacobian) of the multimodal/contrast image directly
from observed data, and then assembling the final image using the recovered edges. The
first stage yields an optimal convergence rate O(1/k2) to recover the edges, and we provide
a fast, closed-form solution using matrix-valued shrinkage in each iteration of this stage.
The second stage of reconstructing the image using the edges recovered in the first stage
is formulated as a smooth convex problem that can be solved very quickly. Moreover, we
showed that there is even a closed-form solution for this stage which requires very minor
computation effort. Overall, the proposed method improves upon the O(1/k) convergence
rate of the state-of-the-art primal-dual algorithms for TV/VTV based image reconstruction.
We demonstrated such improvement using extensive numerical tests on multicontrast CT and
MR image reconstructions.

Appendix A. Proof of Theorem 2.1.

Proof. Define \ell \phi (v, w) := \alpha \| v\|  \star ,1+H(w)+\langle \nabla H(w), v - w\rangle , that is, \ell \phi (v, w) approximates
\phi (v) by replacing the H(v) part with its first-order Taylor expansion H(w)+ \langle \nabla H(w), v - w\rangle 
at w. Then by convexity of H(x) and Lipschitz continuity of \nabla H, we have
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Figure 25. Comparisons of relative error versus CPU time in seconds by different methods on the in vivo
MR image of T1 (left) and T2 (right) contrasts with no noise (top row), noise level \sigma = 4 (middle row), and
noise level \sigma = 8 (bottom row).
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Figure 26. Relative error versus CPU time by EdgeRec without and with consideration of noise weight
using the in vivo MR image of T1 (left) and T2 (right) with noise levels \sigma = 4, 8, 12.
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\ell \phi (v, w) \leq \phi (v) \leq \ell \phi (v, w) + (L/2) \cdot \| v  - w\| 2(38)

for all v, w. Denote \^w(k) = (1 - \alpha k)v
(k) + \alpha kv

\ast . Then we have

\phi 
\Bigl( 
v(k+1)

\Bigr) 
\leq \ell \phi 

\Bigl( 
v(k+1), w(k)

\Bigr) 
+
L

2

\bigm\| \bigm\| \bigm\| v(k+1)  - w(k)
\bigm\| \bigm\| \bigm\| 2 \leq \ell \phi 

\Bigl( 
v(k+1), w(k)

\Bigr) 
+

1

2\tau 

\bigm\| \bigm\| \bigm\| v(k+1)  - w(k)
\bigm\| \bigm\| \bigm\| 2 ,

(39)

where we used (38) in the first inequality and \tau \leq 1/L in the second inequality. Due to the
optimality of v(k+1) in solving (26), i.e., v(k+1) = argminv\{ \ell \phi (v, w(k)) + (2\tau ) - 1 \cdot \| v - w(k)\| 2\} ,
there is  - \nabla H(w(k)) - (1/\tau ) \cdot (v(k+1)  - w(k)) \in \alpha \partial \| v(k+1)\|  \star ,1 and hence

\alpha \| w\|  \star ,1 \geq \alpha 
\bigm\| \bigm\| \bigm\| v(k+1)

\bigm\| \bigm\| \bigm\| 
 \star ,1

 - 
\biggl\langle 
\nabla H

\Bigl( 
w(k)

\Bigr) 
+ (1/\tau ) \cdot 

\Bigl( 
v(k+1)  - w(k)

\Bigr) 
, w  - v(k+1)

\biggr\rangle 
(40)

for all w. Using the identity 2\langle a  - b, a\rangle = \| a  - b\| 2 + \| a\| 2  - \| b\| 2 for a = v(k+1)  - w(k) and
b = w  - w(k) and substituting w by \^w(k) in (40), we obtain

\ell \phi 

\Bigl( 
v(k+1), w(k)

\Bigr) 
+

1

2\tau 

\bigm\| \bigm\| \bigm\| v(k+1)  - w(k)
\bigm\| \bigm\| \bigm\| 2 \leq \ell \phi 

\Bigl( 
\^w(k), w(k)

\Bigr) 
(41)

+
1

2\tau 

\bigm\| \bigm\| \bigm\| \^w(k)  - w(k)
\bigm\| \bigm\| \bigm\| 2  - 1

2\tau 

\bigm\| \bigm\| \bigm\| \^w(k)  - v(k+1)
\bigm\| \bigm\| \bigm\| 2 .

Combining (39) and (41) above, we obtain

\phi (v(k+1)) \leq \ell \phi 

\Bigl( 
\^w(k), w(k)

\Bigr) 
+

1

2\tau 

\bigm\| \bigm\| \bigm\| \^w(k)  - w(k)
\bigm\| \bigm\| \bigm\| 2  - 1

2\tau 

\bigm\| \bigm\| \bigm\| \^w(k)  - v(k+1)
\bigm\| \bigm\| \bigm\| 2

\leq (1 - \alpha k)\ell \phi 

\Bigl( 
v(k), w(k)

\Bigr) 
+ \alpha k\ell \phi 

\Bigl( 
v\ast , w(k)

\Bigr) 
+

1

2\tau 

\bigm\| \bigm\| \bigm\| (1 - \alpha k) v
(k) + \alpha kv

\ast  - w(k)
\bigm\| \bigm\| \bigm\| 2

 - 1

2\tau 

\bigm\| \bigm\| \bigm\| (1 - \alpha k) v
(k) + \alpha kv

\ast  - v(k+1)
\bigm\| \bigm\| \bigm\| 2

\leq (1 - \alpha k)\phi 
\Bigl( 
v(k)

\Bigr) 
+ \alpha k\phi (v) +

\alpha 2
k

2\tau 

\biggl( \bigm\| \bigm\| \bigm\| v\ast  - z(k)\| 2  - \| v\ast  - z(k+1)
\bigm\| \bigm\| \bigm\| 2\biggr) ,

where we used the convexity of \ell \phi and definition of \^w(k) in the second inequality, and again
(38) and the notation z(k+1) := v(k) + \alpha  - 1

k (v(k+1)  - v(k)) for all k \geq 0 and z(0) := v(0) in the
last inequality. Now we subtract \phi (v) on both sides, divide both sides by \alpha 2

k, use the condition
(1 - \alpha k+1)/\alpha 

2
k+1 \leq 1/\alpha 2

k and \alpha 0 = 1, and finally take the telescope sum on both sides from 0
to k to obtain

1 - \alpha k
\alpha 2
k

\biggl( 
\phi 
\Bigl( 
v(k)

\Bigr) 
 - \phi \ast 

\biggr) 
\leq 1 - \alpha 0

\alpha 2
0

\biggl( 
\phi 
\Bigl( 
v(0)
\Bigr) 
 - \phi \ast 

\biggr) 
+

1

2\tau 

\bigm\| \bigm\| \bigm\| v\ast  - z(0)
\bigm\| \bigm\| \bigm\| 2 = 1

2\tau 

\bigm\| \bigm\| \bigm\| v\ast  - z(0)
\bigm\| \bigm\| \bigm\| 2 .

(42)

Dividing both sides by (1 - \alpha k)/\alpha 
2
k yields the inequality in (28). Furthermore, the condition

(1 - \alpha k+1)/\alpha 
2
k+1 \leq 1/\alpha 2

k implies that \alpha k \leq 2/(k+ 2) and hence \alpha 2
k/(1 - \alpha k) = O(1/k2). This

completes the proof.
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Appendix B. Computation of matrix-valued shrinkage. We show that the minimization
problem (29) has closed-form solutions when the matrix  \star -norm is Frobenius, induced 2-norm,
or nuclear norm. Without loss of generality, we assume all matrices here have d \times m with
d \leq m.

\bullet Frobenius norm. In this case, all matrices can be considered as vectors and hence the
vector-valued shrinkage formula can be directly applied. We omit the derivations here.

\bullet Induced 2-norm. We first recall the Moreau's identity

prox\alpha J(B) + \alpha prox\alpha  - 1J\ast (\alpha  - 1B) = B,(43)

where proxJ(B) = argminX J(X) + 1
2\| X  - B\| 2F is the proximity operator of J . Let

J(X) = \| X\| 2 be the matrix 2-norm; then its Fenchel dual is given by

J\ast (X) = \Pi (X) =

\Biggl\{ 
0 if \| X\| N \leq 1,

+\infty otherwise
(44)

due to the fact that the matrix 2-norm and nuclear norm are dual to each other.
Therefore, to compute prox\alpha J(B), it suffices to compute prox\alpha  - 1J\ast (\alpha  - 1B) according
to (43).
Let B = U diag(\sigma )V \top be the (reduced) SVD of B, where diag(\sigma ) \in \BbbR d\times d is a di-
agonal matrix with \sigma on the diagonal, and \sigma \in \BbbR d is the vector of singular values
(in descending order). Then we have

prox\alpha  - 1J\ast (\alpha  - 1B) = argmin
\| X\| N\leq 1

\Bigl\{ 
\| X  - B

\alpha 
\| 2F
\Bigr\} 
= U diag(s(\sigma /\alpha ))V \top ,

where s(\sigma ) is the projection onto the set \blacktriangle := \{ z \in \BbbR d | 0 \leq z \leq 1, 1\top z \leq 1\} .
If \sigma /\alpha \in \blacktriangle , i.e., 1\top \sigma \leq \alpha , then s(\sigma /\alpha ) = \sigma /\alpha and hence prox\alpha  - 1J\ast (\alpha  - 1B) = \alpha  - 1B,
from which and (43) we obtain that prox\alpha J(B) = 0.
If \sigma /\alpha /\in \blacktriangle , then s(\sigma /\alpha ) is the projection of \sigma /\alpha onto the standard simplex \bigtriangleup := \{ z \in 
\BbbR d | 0 \leq z \leq 1, 1\top z = 1\} in \BbbR d, which can be computed efficiently with complexity
O(d log d); see, e.g., [13].
Now we can see the most demanding computation to the SVD of B. Note that B has
size 2\times m (i.e., d = 2), and hence a reduced SVD is more sufficient. In particular, for
m = 2, there is a closed form expression to compute SVD of X. In general, the SVD
of a 2\times m matrix is easy to compute and has at most two singular values.

\bullet Nuclear norm. This corresponds to standard nuclear norm shrinkage: compute the
SVD of B = U\Sigma V \top , and set X\ast = U max(\Sigma  - \alpha , 0)V \top , as shown in [10]. Computation
complexity is comparable to the 2-norm case above.

REFERENCES

[1] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM J. Imaging Sci., 2 (2009), pp. 183--202.

[2] B. Bilgic, V. K. Goyal, and E. Adalsteinsson, Multi-contrast reconstruction with bayesian com-
pressed sensing, Magnetic Resonance in Medicine, 66 (2011), pp. 1601--1615.



1462 YUNMEI CHEN, BIN LI, AND XIAOJING YE

[3] P. Blomgren and T. F. Chan, Color Tv: total variation methods for restoration of vector-valued
images, IEEE Trans. Image process., 7 (1998), pp. 304--309.

[4] K. Bredies, Recovering piecewise smooth multichannel images by minimization of convex functionals
with total generalized variation penalty, in Efficient Algorithms for Global Optimization Methods in
Computer Vision, Springer, New York, 2014, pp. 44--77.

[5] K. Bredies and M. Holler, A TGV-based framework for variational image decompression, zooming,
and reconstruction. Part I: Analytics, SIAM J. Imaging Sci., 8 (2015), pp. 2814--2850.

[6] K. Bredies and M. Holler, A tgv-based framework for variational image decompression, zooming, and
reconstruction. Part II: Numerics, SIAM J. Imaging Sci., 8 (2015), pp. 2851--2886.

[7] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010),
pp. 492--526.

[8] X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applica-
tions to color image processing, Inverse Problems Imaging, 2 (2008), pp. 455--484.

[9] R. L. Burden and J. D. Faires, Numerical Analysis, 9th ed., Brooks/Cole, Boston, MA, 2011.
[10] J.-F. Cai, E. J. Cand\`es, and Z. Shen, A singular value thresholding algorithm for matrix completion,

SIAM J. Optim., 20 (2010), pp. 1956--1982, https://doi.org/10.1137/080738970.
[11] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications

to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120--145.
[12] I. Chatnuntawech, A. Martin, B. Bilgic, K. Setsompop, E. Adalsteinsson, and E. Schiavi,

Vectorial total generalized variation for accelerated multi-channel multi-contrast MRI, Magnetic Res-
onance Imaging, 34 (2016), pp. 1161--1170.

[13] Y. Chen and X. Ye, Projection onto a Simplex, preprint arXiv:1101.6081, 2011.
[14] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike, and A. C. Evans, Brainweb: Online

interface to a 3D MRI simulated brain database, NeuroImage, 5 (1997).
[15] S. Di Zenzo, A note on the gradient of a multi-image, Computer Vision graphics Image Processing, 33

(1986), pp. 116--125.
[16] J. Duran, M. Moeller, C. Sbert, and D. Cremers, Collaborative total variation: A general frame-

work for vectorial TV models, SIAM J. Imaging Sci., 9 (2016), pp. 116--151.
[17] M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Trans.

Image Process., 23 (2014), pp. 9--18.
[18] M. J. Ehrhardt and M. M. Betcke, Multicontrast MRI reconstruction with structure-guided total

variation, SIAM J. Imaging Sci., 9 (2016), pp. 1084--1106.
[19] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton, and S. R.

Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31
(2015), 015001.

[20] M. J. Ehrhardt, K. Thielemans, L. Pizarro, P. Markiewicz, D. Atkinson, S. Ourselin, B. F.
Hutton, and S. R. Arridge, Joint reconstruction of PET-MRI by parallel level sets, in Proceedings
of the Nuclear Science Symposium and Medical Imaging Conference, IEEE, 2014, pp. 1--6.

[21] V. Estellers, S. Soatto, and X. Bresson, Adaptive regularization with the structure tensor, IEEE
Trans. Image Process., 24 (2015), pp. 1777--1790.

[22] B. Goldluecke and D. Cremers, An approach to vectorial total variation based on geometric measure
theory, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
2010, pp. 327--333.

[23] M. Grasmair and F. Lenzen, Anisotropic total variation filtering, Appl. Math. Optim., 62 (2010),
pp. 323--339.

[24] E. Haber and M. H. Gazit, Model fusion and joint inversion, Surv. Geophys. 34 (2013), pp. 675--695.
[25] J. Hahn, X.-C. Tai, S. Borok, and A. M. Bruckstein, Orientation-matching minimization for image

denoising and inpainting, Int. J. Comput. Vis., 92 (2011), pp. 308--324.
[26] J. Huang, C. Chen, and L. Axel, Fast multi-contrast mri reconstruction, Magnetic Resonance Imaging,

32 (2014), pp. 1344--1352.
[27] D. Karlis and I. Ntzoufras, Bayesian analysis of the differences of count data, Stat. Med., 25 (2006),

pp. 1885--1905.
[28] F. Knoll, K. Bredies, T. Pock, and R. Stollberger, Second order total generalized variation (TGV)

for MRI, Magnetic Resonance in Medicine, 65 (2011), pp. 480--491.

https://doi.org/10.1137/080738970


TWO-STAGE JOINT MULTIMODAL IMAGE RECONSTRUCTION 1463

[29] F. Knoll, M. Holler, T. Koesters, R. Otazo, K. Bredies, and D. K. Sodickson, Joint MR-PET
reconstruction using a multi-channel image regularizer, IEEE Trans. Medical Imaging, 36 (2017),
pp. 1--16.

[30] S. Lefkimmiatis, A. Roussos, P. Maragos, and M. Unser, Structure tensor total variation, SIAM
J. Imaging Sci., 8 (2015), pp. 1090--1122.

[31] F. Lenzen and J. Berger, Solution-driven adaptive total variation regularization, in International Con-
ference on Scale Space and Variational Methods in Computer Vision, Springer, New York, 2015,
pp. 203--215.

[32] A. Majumdar and R. K. Ward, Joint reconstruction of multiecho mr images using correlated sparsity,
Magnetic Resonance Imaging, 29 (2011), pp. 899--906.

[33] M. Moeller, E.-M. Brinkmann, M. Burger, and T. Seybold, Color Bregman TV, SIAM J. Imaging
Sci., 7 (2014), pp. 2771--2806.

[34] Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2), Technical report 3, Doklady AN SSSR, 1983.

[35] V. M. Patel, R. Maleh, A. C. Gilbert, and R. Chellappa, Gradient-based image recovery methods
from incomplete fourier measurements, IEEE Trans. Image Process., 21 (2012), pp. 94--105.

[36] J. Rasch, E.-M. Brinkmann, and M. Burger, Joint reconstruction via coupled bregman iterations
with applications to PET-MR imaging, Inverse Problems, 34 (2017), 014001.

[37] J. Rasch, V. Kolehmainen, R. Nivaj\"arvi, M. Kettunen, O. Gr\"ohn, M. Burger, and E.-M.
Brinkmann, Dynamic MRI reconstruction from undersampled data with an anatomical prescan, In-
verse Problems, 34 (2018), 074001.

[38] D. S. Rigie and P. J. La Rivi\`ere, Joint reconstruction of multi-channel, spectral CT data via constrained
total nuclear variation minimization, Phys. Med. Biol., 60 (2015), pp. 1741--1762.

[39] E. Sakhaee, M. Arreola, and A. Entezari, Gradient-based sparse approximation for computed to-
mography, in Proceedings of the 12th International Symposium on Biomedical Imaging, IEEE, 2015,
pp. 1608--1611.

[40] G. Sapiro, Vector-valued active contours, in Proceedings of CVPR'96, IEEE, 1996, pp. 680--685.
[41] G. Sapiro and D. L. Ringach, Anisotropic diffusion of multivalued images with applications to color

filtering, IEEE Trans. Image Process., 5 (1996), pp. 1582--1586.
[42] J. G. Skellam, The frequency distribution of the difference between two poisson variates belonging to

different populations, J. Roy. Statist. Soc. Ser. A, 109 (1946), pp. 296--296.
[43] P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, 2008.
[44] J. Weickert, B. T. H. Romeny, and M. A. Viergever, Efficient and reliable schemes for nonlinear

diffusion filtering, IEEE Trans. Image Process., 7 (1998), pp. 398--410.


	Introduction
	Related work
	Our contribution
	Organization

	Proposed method
	Preliminaries on vectorial total-variation regularization
	Joint edge reconstruction
	Formulating fidelity of Jacobian v
	Radon case
	Fourier case

	Edge reconstruction scheme and computation complexity
	Closed form solution of matrix-valued shrinkage
	Reconstruct image from gradients
	Summary of algorithm steps

	Numerical results
	Multienergy CT image reconstruction
	Multicontrast MR image reconstruction

	Concluding remarks
	Proof of Theorem 2.1
	Computation of matrix-valued shrinkage

