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Abstract This paper develops a Bregman operator splitting algorithm with variable
stepsize (BOSVS) for solving problems of the form min{φ(Bu) + 1/2‖Au − f ‖2

2},
where φ may be nonsmooth. The original Bregman Operator Splitting (BOS) algo-
rithm employed a fixed stepsize, while BOSVS uses a line search to achieve better
efficiency. These schemes are applicable to total variation (TV)-based image recon-
struction. The stepsize rule starts with a Barzilai-Borwein (BB) step, and increases
the nominal step until a termination condition is satisfied. The stepsize rule is related

This research was partly supported by National Science Foundation grants 1115568 and 1016204,
and by Office of Naval Research grant N00014-11-1-0068.

Y. Chen · W.W. Hager · M. Yashtini (�)
Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, FL 32611-8105,
USA
e-mail: myashtini@ufl.edu
url: http://www.math.ufl.edu/~myashtini

Y. Chen
e-mail: yun@math.ufl.edu
url: http://www.math.ufl.edu/~yun

W.W. Hager
e-mail: hager@ufl.edu
url: http://www.math.ufl.edu/~hager

X. Ye
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta,
GA 30332-0160, USA
e-mail: xye33@math.gatech.edu
url: http://people.math.gatech.edu/~xye33

H. Zhang
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA
e-mail: hozhang@math.lsu.edu
url: https://www.math.lsu.edu/~hozhang

mailto:myashtini@ufl.edu
http://www.math.ufl.edu/~myashtini
mailto:yun@math.ufl.edu
http://www.math.ufl.edu/~yun
mailto:hager@ufl.edu
http://www.math.ufl.edu/~hager
mailto:xye33@math.gatech.edu
http://people.math.gatech.edu/~xye33
mailto:hozhang@math.lsu.edu
https://www.math.lsu.edu/~hozhang


318 Y. Chen et al.

to the scheme used in SpaRSA (Sparse Reconstruction by Separable Approxima-
tion). Global convergence of the proposed BOSVS algorithm to a solution of the op-
timization problem is established. BOSVS is compared with other operator splitting
schemes using partially parallel magnetic resonance image reconstruction problems.
The experimental results indicate that the proposed BOSVS algorithm is more effi-
cient than the BOS algorithm and another split Bregman Barzilai-Borwein algorithm
known as SBB.

Keywords Total variation image reconstruction · Bregman operator splitting ·
Barzilai-Borwein stepsize · SpaRSA · Convergence analysis · Magnetic resonance
imaging

1 Introduction

Image reconstruction has been widely applied to many applications in computer sci-
ence and engineering. The general form for this problem minimizes a functional in-
volving two terms, a fidelity term H related to the data and a regularization term φ:

min
u∈CN

φ(Bu) + H(u),

where u = (u1, . . . , uN)T ∈ CN , ui is the intensity of the i-th pixel in the image, N is
the number of pixels in the image, φ(·) and H(·) are convex, real-valued functions,
φ : C

d×N → R is possibly nondifferentiable, H : C
N → R is continuously differen-

tiable, B ∈ C
d×N×N , and Bu is a d × N matrix:

(Bu)ij =
N∑

k=1

bijkuk

Since φ and H are finite-valued functions, it follows from their convexity that they
are continuous [16, Corollary 10.1.1].

In this paper, we focus a specific version of this problem, which arises in imaging
and signal processing, where H is quadratic:

min
u∈CN

φ(Bu) + 1

2
‖Au − f ‖2. (1.1)

Here A ∈ C
M×N is a possibly large and ill-conditioned matrix, f ∈ C

M , and ‖ · ‖
is the 2-norm (Euclidean norm). In imaging applications, the matrix A describes the
imaging device, f is the measured data, and d is the dimension of the image. For the
examples in this paper, d = 2. For discrete total variation regularization, Bu = ∇u

where (∇u)i is a discrete gradient (finite differences along the coordinate directions)
of u ∈ C

N at the i-th pixel in the image, and

φ(Bu) = α‖u‖T V = α

N∑

i=1

∥∥(∇u)i
∥∥. (1.2)
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Here α > 0 is a parameter corresponding to the weight of the regularization term
‖u‖T V relative to the fidelity term 1

2‖Au − f ‖2. Hence, discrete total variation reg-
ularization is based on the sum of the Euclidean norms of the discrete gradients at
each pixel.

The problem (1.1) has received considerable attention [9, 21, 23, 25–28] due to
its application in signal and image processing including partially parallel magnetic
resonance (MR) imaging (PPI) [3, 5, 15, 23, 24], compressed sensing [7, 9, 14], and
radar [1]. If A is the identity matrix or a blurring matrix, then solving (1.1) yields
a restored clean image u from an observed noisy or blurry image f . Image denois-
ing by total variation regularization was first introduced by Rudin, Osher, and Fetami
in [17]. One of the significant advantages of TV regularization is that it allows dis-
continuities in the restored image; hence, it is able to preserve edges while suppress-
ing noise [18]. Despite the simplicity of the objective function in (1.1), the lack of
smoothness makes the TV-regularized problem difficult. Rudin et al. in their pioneer-
ing work [17] exploited the gradient projection method to minimize the energy. This
method was observed to converge slowly due to the nonlinearity and poor condition-
ing of the problem. Subsequent papers [4, 6, 12, 13, 19, 20] presented algorithms
with accelerated convergence.

The algorithm to be analyzed in this paper is based on ideas given in [24] where
a variable splitting and the alternating direction method of multipliers are combined
with a Barzilai/Borwein (BB) approximation to the Hessian. Due to differences be-
tween the algorithm in [24] and the algorithm that we analyze, including differences
in the formula for the BB parameter and in the treatment of proximal terms, we pro-
vide a short review of the ideas. First, the objective function in (1.1) is split by intro-
ducing an auxiliary variable w and adding a constraint:

minφ(w) + 1

2
‖Au − f ‖2 subject to w = Bu, u ∈ C

N, w ∈ C
d×N. (1.3)

Note that splitting techniques can be found in [9, 21, 23]. The augmented Lagrangian
associated with (1.3) is

Lρ(u,w,b) = φ(w) + 1

2
‖Au − f ‖2 + 〈b,Bu − w〉 + ρ

2
‖Bu − w‖2, (1.4)

where b ∈ C
d×N is a Lagrange multiplier, and 〈·, ·〉 is the Euclidean inner product.

If bk is the current approximation to the multiplier, then the gradient version of the
method of multipliers [11] minimizes the Lagrangian Lρ(u,w,bk) in (1.4) with re-
spect to (u,w) and then updates the multiplier:

⎧
⎨

⎩

(
uk+1,wk+1) = arg min

u,w
Lρ

(
u,w,bk

)

bk+1 = bk + ρ
(
Buk+1 − wk+1).

We complete the square in Lρ(u,w,bk) to write this as
⎧
⎪⎨

⎪⎩

(
uk+1,wk+1) = arg min

u,w

{
φ(w) + 1

2
‖Au − f ‖2 + ρ

2

∥∥Bu − w + ρ−1bk
∥∥2

}

bk+1 = bk + ρ
(
Buk+1 − wk+1).
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We now modify the (u,w) minimization to ensure uniqueness as well as a fast itera-
tion. The first modification is to insert a proximal term in w:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
uk+1,wk+1) = arg min

u,w

{
φ(w) + 1

2
‖Au − f ‖2 + ρ

2

∥∥Bu − w + ρ−1bk
∥∥2

+ β

2

∥∥w − wk
∥∥2

}

bk+1 = bk + ρ
(
Buk+1 − wk+1),

(1.5)

where β > 0. The second modification involves the term:

H(u) = 1

2
‖Au − f ‖2. (1.6)

The expansion of H in a Taylor series around uk can be expressed

H(u) = H
(
uk

) + 〈∇H
(
uk

)
, u − uk

〉 + 1

2

〈
u − uk,∇2H

(
u − uk

)〉
, (1.7)

where the Hessian ∇2H = ATA. In magnetic resonance imaging and other applica-
tions, ATA can be large and dense. We make the approximation ∇2H ≈ δkI . With
this substitution, (1.7) gives

H(u) ≈ 1

2

∥∥Auk − f
∥∥2 + 〈

AT(
Auk − f

)
, u − uk

〉 + δk

2

∥∥u − uk
∥∥2

. (1.8)

In this paper, we exploit the Barzilai-Borwein (BB) choice for δk given by [2]

δk = arg min
δ

∥∥∇H
(
uk

) − ∇H
(
uk−1) − δ

(
uk − uk−1)∥∥2

= ‖A(uk − uk−1)‖2

‖uk − uk−1‖2
. (1.9)

By completing square, (1.8) can be written

H(u) ≈ 1

2

∥∥Auk − f
∥∥2 − 1

2δk

∥∥AT(
Auk −f

)∥∥2 + δk

2

∥∥u − uk + δk
−1AT(

Auk − f
)∥∥2

.

With this replacement in (1.5), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
uk+1,wk+1) = arg min

u,w

{
φ(w) + δk

2

∥∥u − uk + δk
−1AT(

Auk − f
)∥∥2

+ ρ

2

∥∥Bu − w + ρ−1bk
∥∥2 + β

2

∥∥w − wk
∥∥2

}

bk+1 = bk + ρ
(
Buk+1 − wk+1).

(1.10)
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To further simplify the minimization, we utilize the alternating direction method
of multipliers (ADMM) introduced by Gabay in [8]. This approximates the (u,w)-
minimization by the alternating minimization over u with w fixed and over w with u

fixed. That is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uk+1 = arg min
u

{
δk

∥∥u − uk + δ−1
k AT(

Auk − f
)∥∥2 + ρ

∥∥Bu − wk + ρ−1bk
∥∥2

2

}

wk+1 = arg min
w

{
φ(w) + ρ

2

∥∥w − Buk+1 − ρ−1bk
∥∥2 + β

2

∥∥w − wk
∥∥2

}

bk+1 = bk + ρ
(
Buk+1 − wk+1).

(1.11)

This algorithm with δk = δ, independent of k, is a special case of the general
algorithm Algorithm A1 in [26] corresponding to the following parameter choices:
Q1 = δI − ATA, Q2 = βI , and C = 1/ρ. Convergence follows from Theorem 4.2
of [26] for δ > ‖ATA‖. The idea of changing δ in each iteration using the BB choice
(1.9) appears in [24]. In [5] this split Bregman BB scheme is referred to as SBB.
For the BB choice of δk , we have δk ≤ ‖ATA‖ while the convergence theory in [26]
requires δ > ‖ATA‖. Nonetheless, the numerical performance for SBB was better
than that of other algorithms based on splittings.

In this paper we prove theoretically global convergence when δk is chosen in
accordance with a line search criterion. Numerically, we obtain significantly bet-
ter performance compared with the fixed stepsize and BB stepsize schemes. We
let BOSVS denote this Bregman operator splitting algorithm with our variable step-
size.

1.1 Outline of the paper

This paper is organized as follows. In Sect. 2, we present BOSVS and discuss its
implementation in the context of total variation regularization. Section 3 gives a con-
vergence analysis for BOSVS. The relation between the line search in BOSVS and
that of SpaRSA is explained in Sect. 4. Section 5 studies the performance of BOSVS
relative to that of either SBB or the fixed step size δk = ‖ATA‖ for Algorithm A1
of [26] using test problem that arise in partially parallel MR imaging (PPI). Finally,
some concluding remarks are given in Sect. 6.

1.2 Notation

For any matrix M , N (M) is the null space of M . The superscript T denotes the
conjugate transpose. For any vectors x and y ∈ C

N , 〈x, y〉 is the Euclidean inner
product. When x and y are column vectors, 〈x, y〉 = xTy. The norm ‖·‖ is the 2-norm
(Euclidean norm) given by ‖x‖ = √〈x, x〉. For matrices X and Y ∈ C

m×n, their inner
product is

〈X,Y 〉 =
n∑

i=1

〈Xi,Yi〉
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where Xi and Yi are the i-th columns of X and Y respectively. The adjoint B∗ of B

is given by

〈X,Bu〉 = 〈
B∗X,u

〉

for all X ∈ C
d×N and u ∈ C

N . For a differentiable function f : C
N → R, ∇f is the

gradient of f , a row vector. More generally, ∂f (x) denotes the subdifferential set
at x.

2 Proposed algorithm

The algorithm that we analyze in this paper appears in Fig. 1. Note that the updates
of (1.11) appear in Steps 2, 4, and 5 of BOSVS. The new feature in BOSVS is
the line search strategy in Step 2. δk increases until the condition in Step 2 is sat-
isfied. For the numerical experiments, the initial choice of δk is a safeguarded BB
choice

δ0,k = max

{
δmin,

‖A(uk − uk−1)‖2

‖uk − uk−1‖2

}
. (2.1)

BREGMAN OPERATOR SPLITTING WITH VARIABLE STEPSIZE (BOSVS)

Given τ,C,η > 1, β,ρ, δmin > 0, δ0 = 1, σ ∈ (0,1), and starting
guess u1, w1, and b1. Set k = 1 and Q1 = 0.

Step 1. Choose δ0,k ≥ δmin.

Step 2. Set δk = ηj δ0,k where j ≥ 0 is the smallest
integer such that Qk+1 ≥ − C

k2 where

Qk+1 := η̄kQk + �k, 0 ≤ η̄k ≤ (1 − k−1)2 for k > 1,

�k := σ(δk‖uk+1 − uk‖2 + ρ‖Buk+1 − wk‖2) − ‖A(uk+1 − uk)‖2,

and uk+1 = arg minu{δk‖u − uk + δ−1
k AT(Auk − f )‖2 +

ρ‖Bu − wk + ρ−1bk‖2}.
Step 3. If δk > δk−1, then δmin is replaced by τδmin.

Step 4. wk+1 = arg min
w

{φ(w)+ ρ

2
‖w−Buk+1 −ρ−1bk‖2 + β

2
‖w − wk‖2}.

Step 5. bk+1 = bk + ρ(Buk+1 − wk+1).

Step 6. If a stopping criterion is satisfied,
terminate the algorithm.

Step 7. Set k = k + 1 and go to step 1.

Fig. 1 BOSVS
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The stepsize rule for δk in Step 2 of BOSVS is related but different from the
stepsize rule introduced in the SpaRSA algorithm [10, 22] (Sparse Reconstruction
by Separable Approximation). More precisely, in Sect. 3 we show that a monotone
SpaRSA step applied to the u-minimization of (1.11) is acceptable when

∥∥A
(
uk+1 − uk

)∥∥2 ≤ (2 − σ)δk

∥∥uk+1 − uk
∥∥2 + ρ

∥∥B
(
uk+1 − uk

)∥∥2
, (2.2)

while Step 2 amounts to requiring that

∥∥A
(
uk+1 − uk

)∥∥2 ≤ σδk

∥∥uk+1 − uk
∥∥2 + σρ

∥∥Buk+1 − wk
∥∥2 + η̄kQk + C

k2
.

Observe that �k ≥ 0 if

δk ≥ ‖A(uk+1 − uk)‖2

σ‖uk+1 − uk‖2
, (2.3)

and in this case, we have

Qk+1 = η̄kQk + �k ≥ η̄kQk ≥ −η̄kC/(k − 1)2 ≥ −C/k2

since η̄k ≤ (k − 1)2/k2. Hence, when

δk ≥ ‖A‖2/σ ≥ ‖A(uk+1 − uk)‖2

σ‖uk+1 − uk‖2
,

Step 2 terminates with j = 0.
The convergence analysis relies on the asymptotic monotonicity of δk . Whenever

δk is not monotone decreasing, δmin is increased by a factor τ > 1 in Step 3. Hence,
if the monotonicity of δk continues to be violated, then we eventually have

δmin >
‖A‖2

σ
≥ ‖A(uk − uk−1)‖2

σ‖uk − uk−1‖2
. (2.4)

If δ0,k is given by (2.1), then δ0,k = δmin whenever δmin > ‖A‖2. Moreover, if (2.4)
holds, then (2.3) holds, and by our previous observation, Step 2 stops with j = 0.
Hence, within a finite number of iterations, either δk is monotone decreasing or δk

becomes constant and equal to δmin. If δmin is large enough, then the convergence
analysis in [25] could be applied. In practice, we find that the algorithm reaches
a regime where δk+1 ≤ δk for each k sufficiently large; as a result, δk approaches
a constant which is usually smaller than ‖A‖2, and which leads to faster conver-
gence than is possible with a constant value of δk that is greater than ‖A‖2. On
the other hand, numerical experiments in Sect. 5 indicate that if δk is simply set to
the BB parameter in each iteration, then the iterates may not converge to a solution
of (1.3).
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For total variation regularization, the minimization in Steps 2 and 4 of BOSVS
can be implemented using Fourier transforms and soft shrinkage as pointed out in
[24]. For completeness, we summarize these implementation details. By the first-
order optimality conditions associated with the optimization problem for uk+1, we
have

(
ρB∗B + δkI

)
uk+1 = δku

k − AT(
Auk − f

) + ρB∗(wk − ρ−1bk
)
. (2.5)

If the image satisfies periodic boundary conditions and if we use total variation reg-
ularization, then the matrix B∗B is block circulant; hence, it can be diagonalized
by the Fourier transform matrix F as noted in [21, p. 252]. If � = F B∗BF T is the
diagonalization, then

uk+1 = F T(ρ� + δkI )−1 F
[
δku

k − AT(
Auk − f

) + ρB∗(wk − ρ−1bk
)]

.

For total variation regularization, the solution of

wk+1 = arg min
w

{
φ(w) + ρ

2

∥∥w − Buk+1 − ρ−1bk
∥∥2 + β

2

∥∥w − wk
∥∥2

}

is obtained by soft shrinkage [21]:

wk+1 = shrink

{
ρ(Buk+1 + ρ−1bk) + βwk

ρ + β
,
ρ + β

α

}
,

where shrink(t,μ) = t
‖t‖ max{‖t‖ − 1

μ
,0} with the convention ( 0

‖0‖ = 0).

3 Convergence analysis

In this section we prove that the sequence (uk,wk, bk) generated by BOSVS con-
verges to a solution of (1.3). We begin with an existence result.

Lemma 3.1 If N (A)∩ N (B) = {0} and φ(w) tends to infinity as ‖w‖ tends to infin-
ity, then there exists a solution to (1.1), or equivalently to (1.3).

Proof Suppose that uk is a minimizing sequence for (1.1). Hence there exists a posi-
tive κ such that

φ
(
Buk

) ≤ φ
(
Buk

) + 1

2

∥∥Auk − f
∥∥2 ≤ κ, (3.1)

for all k. Since φ(Buk) is uniformly bounded in k, it follows that ‖Buk‖ is uniformly
bounded in k. Write uk = bk + qk where bk ∈ N (B) and qk is orthogonal to N (B).
Since ‖Buk‖ = ‖Bqk‖ and qk is orthogonal to N (B), ‖qk‖ is bounded uniformly
in k.
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Now write uk = ak +pk where ak ∈ N (A) and pk is orthogonal to N (A); likewise
write f = f‖ + f⊥ where f‖ lies in the range of A and f⊥ is orthogonal to the range
of A. We have

∥∥Auk − f
∥∥2 = ∥∥Apk − f‖

∥∥2 + ‖f⊥‖2 = ∥∥A
(
pk − z

)∥∥2 + ‖f⊥‖2

where Az = f‖ and z is orthogonal to N (A). Combining this with (3.1) gives

1

2

∥∥A
(
pk − z

)∥∥2 ≤ κ − 1

2
‖f⊥‖2 − φ

(
Bqk

)
.

Since qk is bounded uniformly in k, it follows that ‖A(pk −z)‖ is bounded uniformly
in k, and since pk − z is orthogonal to N (A), we conclude that ‖pk − z‖ is bounded
uniformly in k; hence, ‖pk‖ is bounded uniformly in k.

Recall that uk = ak + pk where ak ∈ N (A) and pk is orthogonal to N (A). Let us
further write ak = ck + rk where ck ∈ N (B) and rk is orthogonal to N (B). By (3.1),

κ ≥ φ
(
Buk

) = φ
(
B

(
ck + rk + pk

)) = φ
(
B

(
rk + pk

))
.

Hence, ‖B(pk + rk)‖ is bounded uniformly in k. Since pk is bounded and rk is
orthogonal to N (B), we conclude that ‖rk‖ is bounded uniformly in k.

Consider the following minimization problem:

γ = min
a∈N (A)
‖a‖=1

min
b∈N (B)

‖a − b‖.

Since the minimization is over a compact set and N (A)∩ N (B) = {0}, it follows that
γ > 0.

Since rk = ak − ck where ak ∈ N (A) and ck ∈ N (B), we have

∥∥rk
∥∥ = ∥∥ak − ck

∥∥ = ∥∥ak
∥∥
∥∥∥∥

ak

‖ak‖ − ck

‖ak‖
∥∥∥∥ ≥ ∥∥ak

∥∥γ.

Since ‖rk‖ is bounded uniformly in k and γ > 0, we conclude that ‖ak‖ is bounded
uniformly in k. Consequently, ‖uk‖ = ‖ak + pk‖ is bounded uniformly in k. By
continuity of the objective function, a minimizer exists. �

Lemma 3.2

(I) In Step 2 of the BOSVS algorithm, j ≤ �logη(
‖ATA‖
σδmin

)�, where �x� is the smallest
integer greater than or equal to x for any x ∈ R.

(II) Moreover, the replacement of δmin by τδmin in Step 3 of BOSVS can occur in at
most a finite number of iterations.

Proof The line search condition in Step 2 of BOSVS is satisfied by the smallest j for
which

C

k2
+ η̄kQk + σ

(
ηj δ0,k

∥∥uk+1 − uk
∥∥2 + ρ

∥∥Buk+1 − uk
∥∥2) ≥ ∥∥A

(
uk+1 − uk

)∥∥2
.
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We rearrange this to obtain

ηj ≥ σ−1

δ0,k

‖A(uk+1 − uk)‖2

‖uk+1 − uk‖2
−

C

k2 + η̄kQk + σρ‖Buk+1 − wk‖2

σδ0,k‖uk+1 − uk‖2
. (3.2)

Hence, the smallest j in Step 2 will be the first nonnegative integer where (3.2) holds.
Neglecting the negative term and taking logarithm to base η, we have

j ≤
⌈

logη

(
σ−1‖ATA‖

δmin

)⌉
,

since δ0,k ≥ δmin and ‖ATA‖ ≥ ‖A(uk+1 − uk)‖2/‖uk+1 − uk‖2.
Note that (II) holds since Step 2 terminates at j = 0 and δk = δmin when δmin is

larger than ‖ATA‖
σ

as we showed earlier. �

Lemma 3.3 If sk ∈ ∂φ(wk) and s ∈ ∂φ(w), then

〈
sk − s,wk − w

〉 ≥ 0. (3.3)

Moreover, if limk→∞〈sk − s,wk − w〉 = 0, then

(a) limk→∞ φ(wk) − φ(w) − 〈s,wk − w〉 = 0, and
(b) limk→∞ φ(w) − φ(wk) − 〈sk,w − wk〉 = 0.

Proof For a convex function φ, we have

φ
(
wk

) − φ(w) − 〈
s,wk − w

〉 ≥ 0, (3.4)

and

φ(w) − φ
(
wk

) − 〈
sk,w − wk

〉 ≥ 0. (3.5)

Add (3.4) and (3.5) to obtain (3.3). If (3.3) approaches to zero as k goes to infinity,
then both (3.4) and (3.5) approach zero. �

Theorem 3.4 If there exists a solution of (1.1), then the sequence (uk,wk, bk) gen-
erated by BOSVS approaches a point (u∗,w∗, b∗) where the first-order optimality
conditions for (1.3) are satisfied. Moreover, (u∗,w∗) is a solution of (1.3) and u∗ is
a solution of (1.1).

Proof The first-order optimality conditions for the sequence (uk+1,wk+1, bk+1) gen-
erated by BOSVS are

⎧
⎪⎪⎨

⎪⎪⎩

0 = δk

(
uk+1 − uk + δk

−1AT(
Auk − f

)) + ρB∗(Buk+1 − wk + ρ−1bk
)

0 = sk+1 + ρ
(
wk+1 − Buk+1 − ρ−1bk

) + β
(
wk+1 − wk

)

bk+1 = bk + ρ
(
Buk+1 − wk+1),

(3.6)
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where sk+1 ∈ ∂φ(wk+1)
T
. Let u denote a solution of (1.1), and define w = Bu. The

first-order optimality condition for (1.3) can be written

0 = s − b, 0 = AT(Au − f ) + B∗b, 0 = Bu − w (3.7)

for some s ∈ ∂φ(w)T. Rearrange (3.7) to obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = δk

(
u − u + δ−1

k AT(Au − f )
) + ρB∗(Bu − w + ρ−1b

)

0 = s + ρ
(
w − Bu − ρ−1b

) + β(w − w)

b = b + ρ(Bu − w),

(3.8)

which shows that (u,w,b) is a fixed point of the BOSVS algorithm.
Denote the errors by uk

e = uk − u, wk
e = wk − w, bk

e = bk − b, and sk
e = sk − s.

Subtract (3.8) from (3.6) to obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = δk

(
uk+1

e − uk
e + δk

−1ATAuk
e

) + ρB∗(Buk+1
e − wk

e + ρ−1bk
e

)

0 = sk+1
e + ρ

(
wk+1

e − Buk+1
e − ρ−1bk

e

) + β
(
wk+1

e − wk
e

)

bk+1
e = bk

e + ρ
(
Buk+1

e − wk+1
e

)
.

(3.9)

Form the inner product between the three equations of (3.9) and uk+1
e , wk+1

e , and bk
e

respectively to obtain

0 = δk

〈
uk+1

e , uk+1
e − uk

e

〉 + 〈
uk+1

e ,ATAuk
e

〉 + ρ
〈
Buk+1

e ,Buk+1
e − wk

e + ρ−1bk
e

〉

0 = 〈
sk+1
e ,wk+1

e

〉 + ρ
〈
wk+1

e − Buk+1
e − ρ−1bk

e ,w
k+1
e

〉 + β
〈
wk+1

e ,wk+1
e − wk

e

〉

〈
bk
e , b

k+1
e

〉 = 〈
bk
e , b

k
e

〉 + ρ
〈
bk
e ,Buk+1

e − wk+1
e

〉
.

We exploit the equality 〈a, a − b〉 = 1/2(〈a, a〉 + 〈a − b, a − b〉 − 〈b, b〉) to obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δk

2

(∥∥uk+1
e

∥∥2 + ∥∥uk+1 − uk
∥∥2 − ∥∥uk

e

∥∥2) + 〈
Auk+1

e ,Auk
e

〉

= ρ
〈
Buk+1

e ,wk
e − ρ−1bk

e − Buk+1
e

〉

β

2

(∥∥wk+1
e

∥∥2 + ∥∥wk+1 − wk
∥∥2 − ∥∥wk

e

∥∥2) + 〈
sk+1
e ,wk+1

e

〉

= 〈
bk
e ,w

k+1
e

〉 + ρ
〈
Buk+1

e − wk+1
e ,wk+1

e

〉

1

2ρ

(∥∥bk+1
e

∥∥2 − ∥∥bk
e

∥∥2) = 1

2ρ

∥∥bk+1
e − bk

e

∥∥2 + 〈
bk
e ,Buk+1

e − wk+1
e

〉
.

(3.10)

Insert bk+1
e − bk

e = ρ(Buk+1
e − wk+1

e ) in the last equality to get

1

2ρ

(∥∥bk+1
e

∥∥2 − ∥∥bk
e

∥∥2) = ρ

2

∥∥Buk+1
e − wk+1

e

∥∥2 + 〈
bk
e ,Buk+1

e − wk+1
e

〉
. (3.11)
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Add the equations in (3.10), while taking into account (3.11), to obtain

δk

2

(∥∥uk+1
e

∥∥2 + ∥∥uk+1 − uk
∥∥2 − ∥∥uk

e

∥∥2) + 〈
Auk+1

e ,Auk
e

〉 + 〈
sk+1
e ,wk+1

e

〉

+ β

2

(∥∥wk+1
e

∥∥2 + ∥∥wk+1 − wk
∥∥2 − ∥∥wk

e

∥∥2) + ρ−1

2

(∥∥bk+1
e

∥∥2 − ∥∥bk
e

∥∥2)

= −ρ

2

∥∥Buk+1
e − wk

e

∥∥2 − ρ

2

(∥∥wk+1
e

∥∥2 − ∥∥wk
e

∥∥2)
.

Rearrange this equation to obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δk

2

∥∥uk+1
e

∥∥2 +
(

β + ρ

2

)∥∥wk+1
e

∥∥2 + ρ−1

2

∥∥bk+1
e

∥∥2 + δk

2

∥∥uk+1 − uk
∥∥2

+ 〈
Auk+1

e ,Auk
e

〉 + β

2

∥∥wk+1 − wk
∥∥2 + 〈

sk+1
e ,wk+1

e

〉

+ ρ

2

∥∥Buk+1
e − wk

e

∥∥2

= δk

2

∥∥uk
e

∥∥2 +
(

β + ρ

2

)∥∥wk
e

∥∥2 + ρ−1

2

∥∥bk
e

∥∥2
.

(3.12)

Substituting

〈
Auk+1

e ,Auk
e

〉 = 1

2

∥∥Auk+1
e

∥∥2 + 1

2

∥∥Auk
e

∥∥2 − 1

2

∥∥A
(
uk+1 − uk

)∥∥2
,

in (3.12) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δk

∥∥uk+1
e

∥∥2 + (β + ρ)
∥∥wk+1

e

∥∥2 + ρ−1
∥∥bk+1

e

∥∥2

+ δk

∥∥uk+1 − uk
∥∥2 − ∥∥A

(
uk+1 − uk

)∥∥2 + ∥∥Auk+1
e

∥∥2 + ∥∥Auk
e

∥∥2

+ β
∥∥wk+1 − wk

∥∥2 + 2
〈
sk+1
e ,wk+1

e

〉 + ρ
∥∥Buk+1

e − wk
e

∥∥2

= δk

∥∥uk
e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2
.

(3.13)

which by definition of �k , can be equivalently written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δk

∥∥uk+1
e

∥∥2 + (β + ρ)
∥∥wk+1

e

∥∥2 + ρ−1
∥∥bk+1

e

∥∥2 + �k + η̄kQk

+ (1 − σ)δk

∥∥uk+1 − uk
∥∥2 + ερ

∥∥Buk+1
e − wk

e

∥∥2

+ ∥∥Auk+1
e

∥∥2 + ∥∥Auk
e

∥∥2 + β
∥∥wk+1 − wk

∥∥2 + 2
〈
sk+1
e ,wk+1

e

〉

= δk

∥∥uk
e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2 + (η̄k − 1)Qk + Qk.
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where ερ = (1 − σ)ρ. Since Qk+1 = �k + η̄kQk , η̄k ≤ 1 and − C

(k−1)2 ≤ Qk , the
equality above yields the following relation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δk

∥∥uk+1
e

∥∥2 + (β + ρ)
∥∥wk+1

e

∥∥2 + ρ−1
∥∥bk+1

e

∥∥2 + Qk+1

+ (1 − σ)δk

∥∥uk+1 − uk
∥∥2 + ερ

∥∥Buk+1
e − wk

e

∥∥2

+ ∥∥Auk+1
e

∥∥2 + ∥∥Auk
e

∥∥2 + β
∥∥wk+1 − wk

∥∥2 + 2
〈
sk+1
e ,wk+1

e

〉

≤ δk

∥∥uk
e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2 + Qk + (1 − η̄k)C

(k − 1)2
.

(3.14)

By Lemma 3.3, 〈sk+1 − s,wk+1 − w〉 = 〈sk+1
e ,wk+1

e 〉 ≥ 0. We drop from the left
side the following nonnegative terms

∥∥uk+1 − uk
∥∥2

,
∥∥Auk+1

e

∥∥2
,

∥∥Auk
e

∥∥2
,

∥∥wk+1 − wk
∥∥2

,

〈
sk+1
e ,wk+1

e

〉
,

∥∥Buk+1
e − wk

e

∥∥2
.

After dropping these terms, we obtain

δk

∥∥uk+1
e

∥∥2 + (β + ρ)
∥∥wk+1

e

∥∥2 + ρ−1
∥∥bk+1

e

∥∥2 + Qk+1

≤ δk

∥∥uk
e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2 + Qk + (1 − η̄k)C

(k − 1)2
.

By Lemma 3.2, δk ≥ δk+1 for all k sufficiently large. It follows that

δk+1
∥∥uk+1

e

∥∥2 + (β + ρ)
∥∥wk+1

e

∥∥2 + ρ−1
∥∥bk+1

e

∥∥2 + Qk+1

≤ δk

∥∥uk
e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2 + Qk + (1 − η̄k)C

(k − 1)2
(3.15)

for all k sufficiently large. Hence, for any j sufficiently large and k ≥ j we conclude
that

δmin
∥∥uk

e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2 + Qk

≤ δk

∥∥uk
e

∥∥2 + (β + ρ)
∥∥wk

e

∥∥2 + ρ−1
∥∥bk

e

∥∥2 + Qk

≤ δj

∥∥u
j
e

∥∥2 + (β + ρ)
∥∥w

j
e

∥∥2 + ρ−1
∥∥b

j
e

∥∥2 + Qj +
k−1∑

i=j

(1 − η̄i )C

(i − 1)2
. (3.16)

This shows that the sequence (uk,wk, bk) is bounded since η̄i ∈ (0,1),
∑k−1

i=j
(1−η̄i )C

(i−1)2

is finite, and Qk ≥ −C/(k − 1)2.
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Let ε = (1 − σ)δmin, we sum the inequality (3.14) from k = j to infinity to obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

k=j

ε
∥∥uk+1 − uk

∥∥2 +
∞∑

k=j

ερ

∥∥Buk+1
e − wk

e

∥∥2

+
∞∑

k=j

β
∥∥wk+1 − wk

∥∥2 +
∞∑

k=j

(δk − δk+1)
∥∥uk+1

e

∥∥2

+
∞∑

k=j

∥∥Auk+1
e

∥∥2 +
∞∑

k=j

∥∥Auk
e

∥∥2 + 2
∞∑

k=j

〈
sk+1
e ,wk+1

e

〉

≤ δj

∥∥u
j
e

∥∥2 + (β + ρ)
∥∥w

j
e

∥∥2 + ρ−1
∥∥b

j
e

∥∥2 + Qj +
∞∑

k=j

(1 − η̄k)C

(k − 1)2
< ∞.

(3.17)

Suppose that j is large enough that δk ≥ δk+1 for all k ≥ j . Since

∞∑

k=j

(δk − δk+1)
∥∥uk+1

e

∥∥2 ≥ 0,

we drop this term and additional nonnegative terms on the left side of (3.17) to obtain
the relation

∞∑

k=j

(
ε
∥∥uk+1 − uk

∥∥2 + ερ

∥∥Buk+1
e − wk

e

∥∥2 + β
∥∥wk+1 − wk

∥∥2)
< ∞.

This implies that

lim
k→∞

(
ε
∥∥uk+1 − uk

∥∥ + ερ

∥∥Buk+1
e − wk

e

∥∥ + β
∥∥wk+1 − wk

∥∥) = 0. (3.18)

Moreover, by the last equality in (3.9) and the triangle inequality, we obtain
∥∥bk+1 − bk

∥∥ = ∥∥bk+1
e − bk

e

∥∥ = ρ
∥∥Buk+1

e − wk+1
e

∥∥

≤ ρ
∥∥Buk+1

e − wk
e

∥∥ + ρ
∥∥wk+1

e − wk
e

∥∥.

Combining this with (3.18) gives

lim
k→∞

∥∥bk+1 − bk
∥∥ = 0. (3.19)

We just showed in (3.16) that the sequence (uk,wk, bk) is bounded. Consider
any subsequence, also denoted (uk,wk, bk) for convenience, converging to a limit
(u∞,w∞, b∞). Choose any sk ∈ ∂φ(wk)T. By Theorem 23.4 of [16], ∂φ(w∞) is
bounded, and by Corollary 24.5.1 of [16], for any λ > 0, there exists μ > 0 with the
following property: If ‖w − w∞‖ ≤ μ, then for each s ∈ ∂φ(w), the distance from s

to ∂φ(w∞) is at most λ. Choose L large enough that ‖wk − w∞‖ ≤ μ for all k ≥ L.
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It follows that sk is bounded uniformly. Hence, there exists a subsequence converging
to a limit s∞. Again, for convenience, let (uk,wk, bk, sk) denote a subsequence con-
verging to (u∞,w∞, b∞, s∞). According to Theorem 24.4 in [16], s∞ ∈ ∂φ(w∞)T.

The first-order optimality conditions (3.6) for the sequence (uk,wk, bk) is

⎧
⎪⎪⎨

⎪⎪⎩

0 = δk

(
uk+1 − uk

) + AT(
Auk − f

) + ρB∗(Buk+1 − wk + ρ−1bk
)

0 = sk+1 + ρ
(
wk+1 − Buk+1 − ρ−1bk

) + β
(
wk+1 − wk

)

0 = −bk+1 + bk + ρ
(
Buk+1 − wk+1).

(3.20)

By (3.18) and (3.19), we have

lim
k→∞

∥∥uk+1 − uk
∥∥ = 0, lim

k→∞
∥∥wk+1 − wk

∥∥ = 0, and lim
k→∞

∥∥bk+1 − bk
∥∥ = 0.

Let k tend to infinity in (3.20) while taking values associated with the convergent
subsequence to obtain

⎧
⎪⎪⎨

⎪⎪⎩

0 = AT(
Au∞ − f

) + ρB∗(Bu∞ − w∞ + ρ−1b∞)

0 = s∞ + ρ
(
w∞ − Bu∞ − ρ−1b∞)

0 = Bu∞ − w∞,

which simplifies to

0 = AT(
Au∞ − f

) + B∗b∞, 0 = s∞ − b∞, 0 = Bu∞ − w∞,

where s∞ ∈ ∂φ(w∞)T. Hence, the limit point (u∞,w∞, b∞) satisfies the first-order
optimality conditions for (1.3).

The proof of this theorem started with an arbitrary extreme point (u,w,b). Let us
now consider the specific extreme point u = u∞, w = w∞, and b = b∞ that is the
limit of a convergent subsequence (ukl ,wkl , bkl ), l ≥ 1. We substitute j = kl in (3.16)
and let l tend to infinity to deduce that

0 = lim
k→∞uk

e = lim
k→∞wk

e = lim
k→∞bk

e .

This shows that the entire sequence (uk,wk, bk) converges to (u∞,w∞, b∞). Since
φ is convex, (u∞,w∞) is a solution of (1.3) and u∞ is a solution of (1.1). �

4 Connection with SpaRSA

We now study the relation between the stepsize condition in Step 2 of BOSVS and
a monotone SpaRSA step [10, 22]. SpaRSA is designed to minimize a function of
the form Φ(u) = F(u) + ψ(u). In each iteration, F is linearized while ψ is treated
exactly. In a monotone SpaRSA step,

uk+1 = arg min
{∇F

(
uk

)
v + ψ(v) + δk

∥∥v − uk
∥∥2 : v ∈ C

N
}
,
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where δk = ηj δ0 with j ≥ 0 the smallest integer such that

Φ
(
uk+1) ≤ Φ

(
uk

) − σδk

∥∥uk+1 − uk
∥∥2

. (4.1)

Let us take F(u) = ‖Au − f ‖2 and ψ(u) = ρ‖Bu − wk + ρ−1bk‖2. In this case,
uk+1 in SpaRSA is given by

uk+1 = arg min
{
2(Au)T(

Auk − f
) + ρ

∥∥Bu − wk + ρ−1bk
∥∥2 + δk

∥∥u − uk
∥∥2 : u ∈ C

N
}

= arg min
{
δk

∥∥u − uk + δ−1
k AT(

Auk − f
)∥∥2 + ρ

∥∥Bu − wk + ρ−1bk
∥∥2 : u ∈ C

N
}

Hence, the formula for uk+1 in SpaRSA is exactly the same as the formula for uk+1

in Step 2 of BOSVS.
Now let us compare the SpaRSA criterion for the choice of δk to the criterion in

Step 2 of BOSVS. The SpaRSA criterion (4.1) reduces to

∥∥Auk+1 − f
∥∥2 + ρ

∥∥Buk+1 − wk + ρ−1bk
∥∥2

≤ ∥∥Auk − f
∥∥2 + ρ

∥∥Buk − wk + ρ−1bk
∥∥2 − σδk

∥∥uk+1 − uk
∥∥2

.

We simplify this inequality to obtain

⎧
⎨

⎩

∥∥Auk+1
∥∥2 + ρ

∥∥Buk+1
∥∥2 + σδk

∥∥uk+1 − uk
∥∥2 ≤ ∥∥Auk

∥∥2 + ρ
∥∥Buk

∥∥2

− 2ρ
〈
B

(
uk+1 − uk

)
,−wk + ρ−1bk

〉 + 2
〈
A

(
uk+1 − uk

)
, f

〉
.

(4.2)

The first-order optimality conditions for uk+1 are

δk

(
uk+1 − uk + δk

−1AT(
Auk − f

)) + ρB∗(Buk+1 − wk + ρ−1bk
) = 0.

We compute the inner product with uk+1 − uk to obtain

δk

∥∥uk+1 − uk
∥∥2 + 〈

A
(
uk+1 − uk

)
,Auk − f

〉

+ ρ
〈
B

(
uk+1 − uk

)
,Buk+1 − wk + ρ−1bk

〉 = 0.

Rearrange this equality to obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ρ
〈
B

(
uk+1 − uk

)
,−wk + ρ−1bk

〉 + 〈
A

(
uk+1 − uk

)
, f

〉

= δk

∥∥uk+1 − uk
∥∥2 + 〈

Auk+1,Auk
〉 + ρ

∥∥Buk+1
∥∥2 − ∥∥Auk

∥∥2

− ρ
〈
Buk+1,Buk

〉
.

(4.3)

Finally, incorporate (4.3) in (4.2) to obtain

∥∥A
(
uk+1 − uk

)∥∥2 ≤ (2 − σ)δk

∥∥uk+1 − uk
∥∥2 + ρ

∥∥B
(
uk+1 − uk

)∥∥2
. (4.4)
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Thus for a monotone SpaRSA step, δk is acceptable when (4.4) holds, while for the
BOSVS algorithm, δk is acceptable when

∥∥A
(
uk+1 − uk

)∥∥2 ≤ σ
(
ηj δ0,k

∥∥uk+1 − uk
∥∥2 + ρ

∥∥Buk+1 − uk
∥∥2) + η̄kQk + C

k2
.

5 Numerical experiments

We test the proposed algorithm using data from an emerging magnetic resonance
(MR) imaging technology known as partially parallel imaging, or PPI. This is an MR
imaging technique that uses multiple radio frequency (RF) coil arrays with a separate
receiver channel for each RF coil. A set of multi-channel Fourier (k-space) data from
each RF coil array is acquired simultaneously. The imaging process is accelerated by
only acquiring part of the k-space data. Partial data acquisition increases the spacing
between regular subsequent read-out lines, thereby reducing scan time. However, this
reduction in the number of recorded Fourier components leads to aliasing artifacts in
images.

Sensitivity encoding (SENSE) is one of the most commonly used PPI approaches
to remove the aliasing artifacts and reconstruct high quality images. The fundamental
equations of SENSE are as follows: In a PPI system consisting of L coil arrays, the
undersampled data fl from the l-th channel is related to the underlying image u∗ by

P F
(
sl � u∗) = fl, l = 1, . . . ,L, (5.1)

where F is the Fourier transform, P is a binary matrix representing the undersam-
pling pattern (mask) (e.g. Fig. 2), and sl ∈ C

N is the sensitivity map for the l-th
channel. The symbol � is the Hadamard (or componentwise) product between two
vectors. The underlying image can be recovered by solving an optimization problem
of the form:

min
u∈CN

{
Ψ (u) := α‖u‖T V + 1

2

L∑

l=1

∥∥Fp(sl � u) − fl

∥∥2

}
, (5.2)

Fig. 2 Left: Poisson random mask used for data1 and data2, with 25 % undersampling ratio. Right: radial
mask used for data3, with 34 % undersampling ratio
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Table 1 The data acquisition parameters for three datasets

Data acquisition parameters data1 data2 data3

Relaxation Time (TR) 3060 ms 3000 ms 53.5 ms
Echo Time (TE) 126 ms 85 ms 34 ms
Field of View (FOV) 220 mm2 205 mm2 220 mm2

Size 512 × 512 × 8 500 × 512 × 8 256 × 512 × 8
Slice Thickness (ST) 5 mm 5 mm 5 mm
Flip Angle (FA) 90◦ 90◦ 75◦

where Fp is the undersampled Fourier transform defined by Fp := P F and α is a
given parameter which weighs the importance of the regularization term ‖.‖T V to the
fidelity term. Let

A = [FpS1; FpS2; · · · ; FpSL], f = [f1;f2; . . . ;fL], (5.3)

where Sl := diag(sl) ∈ C
N×N is the diagonal matrix with sl ∈ C

N on the diagonal,
l = 1,2, . . . ,L, and [X;Y ] denotes the matrix obtained by stacking X above Y . Prob-
lem (5.2) has the form of (1.1) which can be solved using the BOSVS algorithm. For
more details concerning the data structure and model formulation, we refer readers
to [24] and references therein.

5.1 Test problems

In this section, we apply the proposed algorithm to three PPI datasets denoted data1,
data2 and data3. These were obtained from commercially available eight-channel
(L = 8) PPI machines.

Data1 was acquired from a 3T GE system (GE Healthcare, Waukesha, Wisconsin).
Data2 was acquired from a 3T Phillips scanner (Phillips, Best, Netherlands) using
T2-weighted turbo spin echo (T2 TSE) sequence. Data3 was acquired from a 1.5T
Siemens Symphony system (Siemens Medical Solutions, Erlangen, Germany). The
data acquisition parameters for these three datasets are given in Table 1. These three
datasets were fully acquired; that is, all the Fourier components were acquired to
obtain an image u with intensities scaled to the interval [0,1] (see Fig. 3) along with
estimated sensitivity maps {sl}Ll=1. We use the masks P shown in Fig. 2 with 25 %
undersampling for data1 and data2 and 34 % undersampling for data3. The artificially
undersampled data fl was given by P F (sl � u) + nl , where nl is complex valued
white Gaussian noise with standard deviation σ̄ for both of the real and imagery parts
(we set σ̄ = 0.7 × 10−3 for all the experiments). These artificially undersampled data
{fl}Ll=1 were used to test the performance of three different line search schemes:

(a) The fixed stepsize δk = ‖ATA‖ corresponding to the BOS type Algorithm A1 in
[26] with Q1 = δI − ATA, Q2 = βI , and C = 1/ρ.

(b) The BB stepsize δk = ‖A(uk − uk−1)‖2/‖uk − uk−1‖2 given in [5] for the SBB
algorithm.

(c) The variable stepsize employed in the BOSVS algorithm.

We used TV-regularization to recover the images.
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Fig. 3 Top row: reference images corresponding to data1, data2, and data3, respectively. Bottom row:
(d)–(f) zoomed into the box in (a)–(c), respectively

Table 2 Parameter values for three algorithms: BOS, SBB and BOSVS. α and ρ are used in all of the
algorithms where τ , η, δmin, σ , C, and η̄k are specific to BOSVS

Algorithms parameters α ρ β τ η δmin σ C η̄k

Considered values 10−4 10−2 1 2 3 0.001 0.99999 100 1/k

5.2 Parameter setting

In all of our experiments, we consider the parameter values given in Table 2. The-
oretically the choice of ρ does not effect the convergence of the tested algorithms.
This is also demonstrated by our experiments since the results are not sensitive to ρ

for a large range. Therefore in all experiments we set ρ to a moderate value 10−2.
It is worth noting that the image reconstructions depend on the choice of α in (1.2).
The initial guess u1, b1 and w1 were set to 0 for all algorithms. Our algorithm com-
parisons are based on the value of objective function, the CPU time in seconds, the
number of matrix-vector multiplications, and the relative error in the image defined
by ‖uk − u∗‖/‖u∗‖ where u∗ is the underlying image.

We ran the BOS algorithm for 1000 iterations to obtain the following high accu-
racy estimates for the optimal objective function value Ψ in (5.2):

1. For data1: Ψ ∗ = 0.50400636019746.
2. For data2: Ψ ∗ = 1.814917047692733.
3. For data3: Ψ ∗ = 1.189609461117846.
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Fig. 4 Top row: (a)–(c) reconstructed image of data1 by BOS, SBB and BOSVS, respectively. Bottom
row: (d)–(f) absolute errors of reconstructions u (shown in top row) to the reference image (shown in
Fig. 3(a)), i.e., |u − u∗|, respectively. All images are shown with the same brightening scale

Fig. 5 Top row: (a)–(c) zoomed in to the box of reconstructed images of data1 (shown in Fig. 4(a)–(c))
by BOS, SBB and BOSVS, respectively. Bottom row: (d)–(f) absolute errors of reconstructed images in
the top row to the image (shown in Fig. 3(d)). All images are shown with the same brightening scale
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Fig. 6 Top row: (a)–(c) reconstructed image of data2 by BOS, SBB and BOSVS, respectively. Bottom
row: (d)–(f) absolute errors of reconstructions u (shown in top row) to the reference image (shown in
Fig. 3(b)), i.e., |u − u∗|, respectively. All images are shown with the same brightening scale

For all algorithms tested in our experiments, we terminate the computation when the
absolute error of the objective function value satisfies the stopping criterion:

∣∣Ψ
(
uk

) − Ψ ∗∣∣ < 10−5.

Note that, all data sets are normalized such that the intensities of reference images
have range [0,1]. All algorithms tested in this section were implemented in the MAT-
LAB programming environment (Version R2010a). The experiments were performed
on a HP Pavilion laptop, Model G71-340US, with Intel Dual Core, and Windows 7
operating system.

5.3 Numerical results

The reconstructed images from the three PPI datasets are shown in Figs. 4, 6, and 8
respectively. For a better comparisons, Figs. 5, 7, and 9 show a portion of each image
in higher resolution. The figures correspond to the reconstructed images that satisfy
the stopping criteria of Sect. 5.2 or the image at iteration 500 if the stopping criteria
were not satisfied. The absolute error of the reconstructed image appear in the second
row or each figure. Since all images are normalized in [0 1], the pixels with the
zero absolute error are black, and the pixels with the highest error are white. All
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Fig. 7 Top row: (a)–(c) zoomed in to the box of reconstructed images of data2 (shown in Fig. 6(a)–(c))
by BOS, SBB and BOSVS, respectively. Bottom row: (d)–(f) absolute errors of reconstructed images in
the top row to the image (shown in Fig. 3(e)). All images are shown with the same brightening scale

three methods adequately recovered the image in the sense that most details and fine
structures were accurately recovered.

Table 3 shows the comparisons between BOS, SBB, and BOSVS. Both BOS and
BOSVS eventually satisfy the stopping criteria, however, BOS is much slower than
BOSVS. The SBB algorithm did not satisfy the stopping criteria for data1 and data2,
and it did not converge. Hence, for SBB we report in Table 3 the minimum objective
function value and corresponding error in data1 and data2.

The plots of objective function value versus iteration number are given in
Figs. 10, 11, and 12. In all three cases, the objective function values for BOS de-
cay monotonically, however, the convergence speed is slower than that of BOSVS
and SBB. SBB at first decreases the objective value quickly, but asymptotically, the
algorithm may not converge. Initially, the BOSVS and SBB iterates are identical;
asymptotically, BOSVS converges monotonically. The Figures also plot the value of
j in Step 2 of BOSVS as a function of iteration number. The initial values of j are 0,
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Fig. 8 Top row: (a)–(c) reconstructed image of data3 by BOS, SBB and BOSVS, respectively. Bottom
row: (d)–(f) absolute errors of reconstructions u (shown in top row) to the reference image (shown in
Fig. 3(c)), i.e., |u − u∗|, respectively. All images are shown with the same brightening scale

Fig. 9 Top row: (a)–(c) zoomed in to the box of reconstructed images of data3 (shown in Fig. 8(a)–(c))
by BOS, SBB and BOSVS, respectively. Bottom row: (d)–(f) absolute errors of reconstructed images in
the top row to the image (shown in Fig. 3(f)). All images are shown with the same brightening scale
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Table 3 Comparison of
objective function value, relative
error ‖uk − u∗‖/‖u∗‖, CPU
time in seconds, and the number
of matrix-vector products (Ax)
for BOS, SBB, and BOSVS.
SBB is unable to satisfy the
stopping criterion for data1 and
data2; hence, for these two
images, we give the minimum
objective value that SBB
achieves along with the
corresponding relative error and
the number of matrix-vector
products

Algorithms Objective value Relative error CPU Ax

data1

BOS 0.50401527 0.06432442 93.50 712

SBB 0.50407064 0.06567046 ∞ 123

BOSVS 0.50399763 0.06044609 23.54 192

data2

BOS 1.81491239 0.05268322 348 494

SBB 1.81751525 0.04972965 ∞ 105

BOSVS 1.81492665 0.05103128 117 168

data3

BOS 1.18961102 0.02122704 87 136

SBB 1.18960946 0.02100478 32 51

BOSVS 1.18960946 0.02100478 32 51

Fig. 10 Performance results for data1

Fig. 11 Performance results for data2
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Fig. 12 Performance results for data3

and asymptotically, j becomes 0. In between, there can be a few iterations where j

is nonzero. Since we took η̄k = 1/k (see Table 2), it follows that both η̄k and − C

k2

approach 0 as k increases. Referring to Step 2, that can cause j to increase. In our
numerical results, we noticed that the value of C has an important role in perfor-
mance. If C was 20, the objective function had jumps like the SBB algorithm. The
best values for C in our experiments were between 80 and 120.

6 Conclusion

A variable stepsize Bregman operator splitting algorithm (BOSVS) was introduced
and analyzed. Our implementation utilizes a BB iteration in the updates of the image.
Global convergence is established. BOSVS is well suited for total variation-based
image reconstruction, and problems where the matrix in the fidelity term is large and
complex. Experimental results are given for partially parallel magnetic resonance
imaging. Comparisons are given with a BOS type algorithm in [26] based on a fixed
step size and an algorithm based on a BB step as given in [5]. BOSVS was found to
be asymptotically efficient and robust for large-scale image reconstruction.

Acknowledgements The authors thank Invivo Corporation and Dr. Feng Huang for providing the PPI
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