
INVERSE CONSISTENT DEFORMABLE IMAGE

REGISTRATION

YUNMEI CHEN AND XIAOJING YE

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Dedicated to the memory of Professor Alladi Ramakrishnan

Abstract. This paper presents a novel variational model for inverse consis-
tent deformable image registration. The proposed model deforms both source
and target images simultaneously, and aligns the deformed images in the way
that the forward and backward transformations are inverse consistent. To

avoid the direct computation of the inverse transformation fields, our model
estimates two more vector fields by minimizing their invertibility error using
the deformation fields. Moreover, to improve the robustness of the model to
the choice of parameters, the dissimilarity measure in the energy functional is

derived using the likelihood estimation. The experimental results on clinical
data indicate the efficiency of the proposed method with improved robustness,
accuracy and inverse consistency.

1. Introduction

Image registration is a very important subject that has been widely applied in
medical research and clinical applications. The task of image registration is to find
a transformation field that relates points in the source image to their corresponding
points in the target image. Deformable image registration allows localized trans-
formations, and is able to account for internal organ deformations. Therefore, it
has been increasingly used in health care to assist diagnosis and treatments. In
particular, deformable image registration has become a critical technique for image
guided radiation therapy. It allows more precise tumor targeting and normal tissue
preservation. A comprehensive review of image registration in radiation therapy
can be found in [Kes06].

A deformable image registration is called inverse consistent, if the correspondence
between two images is invariant to the order of the choice of source and target. More
precisely, let S and T be the source and target images, and h and g be the forward
and backward transformations, respectively, i.e.

S ◦ h = T and T ◦ g = S,

then an inverse consistent registration satisfies h◦g = id and g ◦h = id, where id is
the identity map. This can be illustrated by the following diagram with constraints

1991 Mathematics Subject Classification. Primary 62H35; Secondary 65K10.
Key words and phrases. image registration, inverse consistent, variational method,

optimization.

1



2 INVERSE CONSISTENT DEFORMABLE IMAGE REGISTRATION

g = h−1, h = g−1:

(1) S
g

// T
hoo ,

where each of the two squares in (1) represents the domain on which the labeled
image is defined. By applying an inverse consistent registration, measurements or
segmentations on one image can be precisely transferred to the other. In imaging
guided radiation therapy, the inverse consistent deformable registration technique
provides the voxel-to-voxel mapping between the reference phase and the test phase
in four-dimensional (4D) radiotherapy [LOC+06]. This technique is referred to
”automatic re-contouring”.

Inverse consistent deformable image registration has been an active subject of
study in the literature. There has been a group of work developed in the context of
large deformation by diffeomorphic metric mapping, e.g. [HC03, JDJG04, AGG06,
BK07]. The main idea of this method is modeling the forward and backward
transformations as a one-parameter diffeomorphism group. Then, a geodesic path
connecting two images is obtained by minimizing an energy functional symmetric
to the forward and backward transformations. This type of models produce a very
good registration results. However, it take long time to compute, since strong
regularization of the mappings are required.

Variational method is one of the popular approaches for inverse consistent de-
formable image registration. This method minimizes an energy functional(s) sym-
metric to the forward and backward transformations, and in general, consists of
three parts: regularization of deformation fields, dissimilarity measure of the target
and deformed source images, and penalty of inverse inconsistency [CJ01, ADPS02,
RK06, ZJT06]. In [CJ01], Christensen and Johnson proposed to minimize the fol-
lowing coupled energy functionals with respect to h and g alternately:

(2)

{
E(h) = λEs(S ◦ h, T ) + Er(u) + ρ∥h− g−1∥2L2(Ω)

E(g) = λEs(T ◦ g, S) + Er(v) + ρ∥g − h−1∥2L2(Ω)

,

where u and v are forward and backward deformation fields corresponding to h and
g, respectively, i.e. h(x) = x+u(x) and g(x) = x+v(x). The dissimilarity measure
Es and the regularization of the deformation field Er are defined by

Es(S ◦ h, T ) = ∥S ◦ h− T∥2L2(Ω), Er(u) = ∥a∆u+ b∇(div u)− cu∥2L2(Ω)

with positive constants a, b, c > 0. The last term in both energy functionals en-
forces the inverse consistency of h and g. The solution (u, v) to (2) is obtained
by iteratively solving a system of two evolution equations associated with their
Euler-Lagrange (EL) equations. This model gives considerably good results with
parameters chosen carefully. However, it needs to compute the inverse mappings
g−1 and h−1 explicitly in each iteration, which is computationally intensive can
cause cumulated numerical errors in the estimation of inverse mappings.

The variational models developed in [ADPS02] and [ZJT06] have the same
framework as in [CJ01], but with different representations of Es, Er, and inverse
consistent constraints. In [ADPS02] and [ZJT06] the terms ∥h ◦ g(x) − x∥2L2(Ω)

and ∥g ◦ h(x) − x∥2L2(Ω) are used in the energy functional to enforce the inverse

consistency. By using these terms the explicit computation of the inverse trans-
forms of h and g can be avoided during the process of finding optimal forward
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and backward transformations. The similarity measure in [ZJT06] is mutual in-
formation for multi-modal image registration. The Es(S ◦ h, T ) in [ADPS02] is
∥S ◦ h − T∥2L2(Ω)/max |DT |. The regularization term Er(u) in [ZJT06] is a func-

tion of Du, and that in [ADPS02] is a tensor based smoothing which is designed
to prevent the transformation fields from being smoothed across the boundaries of
features. In [YS05, YTS+08] the proposed models incorporated stochastic errors in
the inverse consistent constraints for both forward and backward transformations.

In [LHG+05], Leow et al. proposed a non-variational approach that updates
the forward and backward transformations simultaneously by a force that reduces
the first two terms in E(h) and E(g) in (2) and preserves the inverse consistency.
However, in order to simplify the computation this algorithm only takes linear order
terms in the Taylor expression to approximate the inverse consistent conditions for
updated transformation fields. As a consequence, the truncating errors can be
accumulated and exaggerated during iterations. This can lead to large inverse
consistent error, despite that it can produce a good matching quickly [ZC08].

In this paper we propose a novel variational model to improve the accuracy,
robustness and efficiency of inverse consistent deformable registration. As an al-
ternate to the current framework of variational methods which finds the forward
and backward transformations that deform a source image S to match a target
image T and vice versa, we propose to deform S and T simultaneously, and let the
registration align the deformed source and deformed target images. It is clear that
the disparity between deformed S and deformed T is smaller than that between
deformed S and fixed T or deformed T and fixed S. Therefore, the deformation
by the bidirectional simultaneous deformations is in general smaller than the de-
formation by unidirectional deformation that deforms S full way to T or T full
way to S. As shown in section 5, deforming S and T simultaneously leads to a
faster and better alignment than deforming S to the fixed T or vice versa. Let
ϕ and ϕ̃ represent the transformation fields such that S ◦ ϕ matches T ◦ ϕ̃. It is
not difficult to verify that if ϕ and ϕ̃ are invertible, then the registrations from S
to T , and T to S are inverse consistent. To avoid the direct computation of the
inverse transformations of ϕ and ϕ̃, our model seeks for two additional deformation
fields ψ, ψ̃ such that ϕ and ψ are inverse to each other, and the same for ϕ̃ and
ψ̃. Moreover, the registration process enforces certain regularization of these four
deformation fields, and aligns the deformed S and deformed T . Then, the optimal
inverse consistent transformations from S to T , and T to S can be obtained simply
by appropriate compositions of these four transformations.

The idea of deforming S and T simultaneously has been adopted in the mod-
els where the forward or backward transformation is modeled as a one-parameter
diffeomorphism group [AGG06]. However, our model finds regularized invertible
deformation fields by minimizing the L2 norms of the deformation fields and in-
verse consistent errors rather than a one-parameter diffeomorphism group, whose
computational cost is very expensive and hence hinders its application in clinical
use. Moreover, our model allows parallel computations for all the deformation fields
to significantly reduce the computational time.

Furthermore, to improve the robustness of the model to noises and the choice
of the parameter λ that balances the goodness of matching and smoothness of
the deformation fields (see the λ in E(h) and E(g) of (2)), we adopt the maximum
likelihood estimate (MLE) that is able to accommodate certain degree of variability



4 INVERSE CONSISTENT DEFORMABLE IMAGE REGISTRATION

in matching to improve the robustness and accuracy of the registration. By using
MLE, the ratio of weighting parameters on the sum of squared distance (SSD) of

the residue image S ◦ ϕ − T ◦ ϕ̃ and the regularization term is not a fixed λ, but
λ/σ2 (see (18) below). This results in a self-adjustable weighting factor that makes
the choice of λ more flexible, and also speeds up the convergence to the optimal
deformation field.

The rest of the paper is organized as follows. In section 2, we present a detailed
description of the proposed model. The existence of solutions to the proposed model
is shown in section 3. The calculus of variation and an outline of a fast algorithm
for solving the proposed model numerically are provided in section 4. In section 5,
we present the experimental results on clinical data, and the application in auto
re-contouring. The last section concludes the paper.

2. Proposed Method

Let S and T be the source and target images defined on ΩS and ΩT in Rd, re-
spectively. Note that, in real applications, ΩS and ΩT are usually fully overlapped.
For simplicity we assume that images S and T are real-valued functions with con-
tinuous derivatives. Let | · | denote the absolute value (length) of a scaler (vector) in
Euclidean spaces, and ∥·∥ denote ∥·∥L2(Ω) henceforth. We also extend this notation

to vector-valued functions whose components are in L2 or H1: u = (u1, · · · , ud)⊤
with each component uj ∈ H1(Ω), j = 1, · · · , d, there is

∥u∥H1(Ω) ,
(
∥u∥2 + ∥Du∥2

)1/2
and

∥u∥ ,

 d∑
j=1

∥uj∥2
1/2

, ∥Du∥ ,

 d∑
j=1

∥Duj∥2
1/2

,

where

∥uj∥ =
(∫

Ω

|uj(x)|2dx
)1/2

and ∥Duj∥ =
(∫

Ω

|Duj(x)|2dx
)1/2

,

for j = 1, · · · , d.

2.1. Motivation and Ideas of Proposed Method. In this paper, we propose
a novel variational model for inverse consistent deformable registration to improve
its efficiency and robustness. Our idea differs from the current framework which
deforms source image S to target image T , or vice versa: as an alternate, we
propose to deform S and T simultaneously, and match both deformed images. This
means that ideally we pursuit for a pair of half-way transforms ϕ : ΩS → ΩM and
ϕ̃ : ΩT → ΩM such that S ◦ϕ = T ◦ ϕ̃, where ΩM is the region where S ◦ϕ and T ◦ ϕ̃
have overlap. To ensure the transformations from S to T and T to S are inverse
consistent, the transforms ϕ and ϕ̃ are required to be invertible (but not necessarily
to be inverse to each other). Hence, our purpose is to find the transformations ϕ

and ϕ̃ such that

(3) S ◦ ϕ = T ◦ ϕ̃, ϕ, ϕ̃ invertible.

To avoid direct computation of inverses of ϕ and ϕ̃ during iterations, we enforce
the invertibility of ϕ and ϕ̃ by finding another two transformations ψ : ΩM → ΩS
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and ψ̃ : ΩM → ΩT such that

ψ ◦ ϕ = id, ϕ ◦ ψ = id,(4)

ψ̃ ◦ ϕ̃ = id, ϕ̃ ◦ ψ̃ = id.

Once we obtained such ψ and ψ̃, we can construct the objective full-way transfor-
mations h and g as follows,

h = ϕ ◦ ψ̃, g = ϕ̃ ◦ ψ.

It is easy to see that h and g satisfy the inverse consistent constraints h◦g = g◦h =
id. This idea is illustrated by the following diagram, where M is an intermediate
image.

(5) M

ψ

����
��

��
��

��
��

ψ̃

��?
??

??
??

??
??

?

S

ϕ

??

g
// T

ϕ̃

__

hoo

Since by deforming S and T simultaneously the difference between deformed S and
deformed T at each iteration, in general, is smaller than that between deformed
S and fixed T , or deformed T and fixed S, the computational cost of deforming
both S and T is much less than the conventional one that deform S all the way to
T and T to S. In particular, if the underlying deformations of h and g are large,
deforming both S and T can make the each deformation of ϕ and ϕ̃ in the proposed
model almost half smaller than that of h and g, and achieve a faster convergence
for the computation of ϕ and ϕ̃. Also, seeking ψ and ψ̃ along with ϕ and ϕ̃ avoids
direct computation of inverse transformations in each iteration as that in (4), which
usually causes cumulated errors during iterations if using approximations of the
inverses.

Moreover, regularizing the deformation fields is very important to obtain physi-
cally meaningful and accurate registrations. Also, if the energy functional consists
of only dissimilarity measures and invertible constraints, it is ill-posed in general.
Therefore, we propose the following framework for deformable inverse consistent
registration:

(6) min
ϕ,ϕ̃,ψ,ψ̃

R(ϕ, ϕ̃, ψ, ψ̃) + dis(S ◦ ϕ, T ◦ ϕ̃), s.t. condition (4) holds

where R is a regularization operator of its arguments, dis(S ◦ϕ, T ◦ ϕ̃) measures the

dissimilarity between S ◦ ϕ and T ◦ ϕ̃.

2.2. Alternative Formulation of (4) Using Deformation Fields. Let the
functions u, ũ, v and ṽ represent the corresponding deformation fields of the trans-
formations ϕ, ϕ̃, ψ and ψ̃, respectively. That is,

ϕ(x) = x+ u(x), ϕ̃(x) = x+ ũ(x),(7)

ψ(x) = x+ v(x), ψ̃(x) = x+ ṽ(x).
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Then, the constraints in (4) can be rewritten as

u+ v(x+ u) = v + u(x+ v) = 0,(8)

ũ+ ṽ(x+ ũ) = ṽ + ũ(x+ ṽ) = 0.

2.3. MLE based derivation for dis(S ◦ ϕ, T ◦ ϕ̃). To improve the robustness of
the algorithm for deformable image registration, we use the negative log-likelihood
of the residue image as a measure of mismatching. Consider voxel intensities of the
residue image defined by

W (x) , S ◦ ϕ(x)− T ◦ ϕ̃(x), x ∈ ΩM ,

as independent samples drawn from a Gaussian distribution of mean zero and vari-
ance σ2 to be optimized (see remark below for the reason of this assumption), whose
probability density function (pdf) is denoted by P (·|σ). Then the likelihood of the
residual image W (x) can be computed as

(9) L(σ|{W (x), x ∈ Ω}) =
∏
x∈Ω

P (W (x)|σ) =
∏
x∈Ω

(
1√
2πσ

e−|S◦ϕ−T◦ϕ̃|2/2σ2

)
.

Then, by writing the summation over all x ∈ Ω as an integral over Ω the negative
log-likelihood function is given as follows:

∥S ◦ ϕ− T ◦ ϕ̃∥2/2σ2 + |Ω| log
√
2πσ.

Omitting the constant Ω log
√
2π, we define the dissimilarity term as

(10) dis(S ◦ ϕ, T ◦ ϕ̃) , ∥S ◦ ϕ− T ◦ ϕ̃∥2/2σ2 + |Ω| log σ.

which can be rewritten as our MLE fitting term F by using corresponding defor-
mation fields u and ũ:

(11) F (u, ũ, σ) , dis(S(x+u), T (x+ ũ)) = ∥S(x+u)−T (x+ ũ)∥2/2σ2+ |Ω| log σ.

Remark 2.1. Let P̂ be the estimation of the pdf for the random variable X ,
W (x), x ∈ Ω. We show below why it is reasonable to assume P̂ to be a Gaussian
distribution of zero mean and variance σ2.

In fact, P̂ is a function in C0(R), the space of all the continuous functions on real
line vanishing at infinity with the supreme norm. Let H0(R) be the Hilbert space
consisting of all linear combinations of κ(xl, x) for finite many of xl ∈ R, where

(12) κ(xl, x) =
(
2πσ2

)−1/2
e−(xl−x)2/2σ2

, ∀x ∈ R.

Define an inner product on H0(R) by⟨
m∑
i=1

aiκ(xi, ·),
n∑
j=1

bjκ(yj , ·)

⟩
H0(R)

=
m∑
i=1

n∑
j=1

aibjκ(xi, yj).

We claim that

(13) H0(R) is dense in C0(R).

In fact, if the claim (13) is not true, by Hahn-Banach theorem there exists a bounded
signed measure m in the dual space of C0(R), such that

(14)

∫
R
P̂ dm ̸= 0,
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but
∫
R fdm = 0, for all f ∈ H0(R). In particular, for any x ∈ R,∫

R
κ(x, y)dmy = 0,

where κ(·, ·) is as in (12), and hence,∫
R×R

κ(x, y)dmxdmy = 0.

This implies m = 0, which contradicts (14). Therefore, the claim holds.
By this claim it is easy to see that

(15) P̂ (z) ≈
k∑
l=1

αlκ(xl, z) =
(
2πσ2

)−1/2
k∑
l=1

αle
−(xl−z)2/2σ2

for some {xl;αl}kl=1. Since a good registration requires the the intensities of the
residue imageW (x) close to zero. Hence, in (15) the only dominate term in the sum
should be the one corresponding to xl = 0, and other terms are negligible. This
means that P̂ is approximately N (0, σ2), the Gaussian distribution with mean 0
and variance σ2.

2.4. Proposed model. Base on the discussion above, we are ready to present the
proposed model. We define the regularization term R(ϕ, ϕ̃, ψ, ψ̃) in (6) using their
corresponding deformation fields as

(16) R(ϕ, ϕ̃, ψ, ψ̃) = R(u, ũ, v, ṽ) , ∥Du∥2 + ∥Dũ∥2 + ∥Dv∥2 + ∥Dṽ∥2.
By plugging (16) and (11) into (6), and replacing the constraint in (6) by (8), the
proposed model can be written as:

(17) min
u,ũ,v,ṽ,σ

R(u, ũ, v, ṽ) + λF (u, ũ, σ), s.t. condition (8) holds,

where R(u, ũ, v, ṽ) and F (u, ũ, σ) are defined in (16) and (11), respectively.
To solve problem (17), we relax the equality constraints of inverse consistency,

and penalize their violation using quadratic functions, then write it as an uncon-
strained energy minimization problem

(18) min
u,ũ,v,ṽ,σ

R(u, ũ, v, ṽ) + λF (u, ũ, σ) + µ (I(u, v) + I(ũ, ṽ)) ,

where and I(u, v) is the cost of inverse inconsistency of u and v:

(19) I(u, v) = Iv(u) + Iu(v),
with

(20) Iv(u) = ∥u+ v(x+ u)∥2 and Iu(v) = ∥v + u(x+ v)∥2.
Similarly, we have I(ũ, ṽ). With sufficiently large µ, solving (18) gives an approxi-
mation to the solution of (17).

The term F (u, ũ, σ) is from the negative log-likelihood of the residual image (11).
Minimizing this term forces the mean of the residue image to be zero, but allows
it to have a variance to accommodate certain variability. This makes the model
more robust to noise and artifacts, and less sensitive to the choice of the parameter
λ than the model using the SSD, i.e. the squared L2-norm, of the residue image
as a dissimilarity measure as in (2). The parameter λ balances the smoothness of
deformation fields and goodness of alignments, and affects the registration result
significantly. In the proposed model, the ratio of the SSD of the residue image
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over the smoothing terms is λ/σ2 rather than a prescribed λ. Since σ is to be
optimized, and from its EL equation σ is the standard deviation of the residue
image. Therefore, in the proposed model the weight on the matching term updates
during iterations. When the alignment gets better, σ the standard deviation of
the residue as shown in (35) decreases, and hence the weight on the matching
term automatically increases. This self-adjustable feature of the weight not only
enhances the accuracy of alignment, but also makes the choice of λ flexible, and
results in a fast convergence.

As shown earlier, the final forward and backward transforms h and g can be
obtained by

h = ϕ ◦ ψ̃ = x+ ṽ + u(x+ ṽ) and g = ϕ̃ ◦ ψ = x+ ũ+ v(x+ ũ).

Thus, the corresponding final full-way forward and backward deformation fields ū
and v̄ are given as

(21) ū = ṽ + u(x+ ṽ) and v̄ = ũ+ v(x+ ũ),

respectively. Then the inverse consistent constraints (4) can be represented using
ū, v̄ as follows:

(22) ū+ v̄(x+ ū) = v̄ + ū(x+ v̄) = 0.

3. Existence of Solutions

In this section we prove the existence of solutions (u, ũ, v, ṽ, σ) to the proposed
model (18). For simplicity, we assume that both S and T defined on the same
domain Ω, which is simply connected, closed and bounded in Rd with Lipschitz
boundary ∂Ω. Also S, T ∈ C1(Ω). As in reality, deformation field cannot be
unbounded, we restrict u, ũ, v, ṽ to be in a closed subset of L∞(Ω):

B ,
{
u ∈ L∞(Ω) : ∥u∥L∞(Ω) ≤ B, B ∈ R+ only depends on Ω

}
Then, we seek solutions (u, ũ, v, ṽ, σ) to the problem (18) in the spaces u, ũ, v, ṽ ∈
H1(Ω) ∩ B and σ ∈ R+. For short notations, we let w denote the quaternion
(u, ũ, v, ṽ). Then, we show the existence of solutions to the following minimization
problem:

(23) min
(w,σ)∈(H1∩B)×R+

E(w, σ)

where

E(w, σ) = ∥Dw∥2 + λF (w, σ) + µI(w)
and F and I are defined correspondingly in (18) using the simplified notation of
w, i.e.

∥Dw∥2 = ∥Du∥2 + ∥Dũ∥2 + ∥Dv∥2 + ∥Dṽ∥2,
F (w, σ) = ∥S(x+ u)− T (x+ ũ)∥2/σ2 + |Ω| log σ,
I(w) = Iv(u) + Iu(v) + Iṽ(ũ) + Iũ(ṽ).

and the terms on the right side of I(w) are defined as in (20). The λ and µ are
prescribed positive constants.

Theorem 3.1. The minimization problem (23) admits solutions (w, σ) ∈
(
H1 ∩ B

)
×

R+.
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Proof. For (w, σ) ∈
(
H1 ∩ B

)
×R+, E(w, σ) is bounded below. Hence, there exists

a minimizing sequence {(wk, σk)}∞k=1 ⊂
(
H1 ∩ B

)
× R+ such that

lim
k→∞

E(wk, σk) = inf
(H1∩B)×R+

E(w, σ).

Therefore {∥Dwk∥}∞k=1 are uniformly bounded. Along with wk ∈ B we know that
{wk}∞k=1 is a bounded sequence in H1. By the weak compactness of H1 and the
fact that H1 is precompact in L2, there exists a convergent subsequence, which is
still denoted by {wk}∞k=1, and a function ŵ ∈ H1, such that

(24) wk ⇀ ŵ weakly in H1,

(25) wk → ŵ strongly in L2, and a.e. in Ω.

Moreover, since E(wk, σk)→∞ if σk → 0 or∞, there is a constant C > 0 such that
{σk}∞k=1 are bounded below and above by 1/C and C respectively. Hence, there is
a subsequence of {σk}∞k=1 and a scaler σ̂ ∈ R+, without changing the notation for
the subsequence we have

(26) σk → σ̂ ∈ R+.

From the weak lower semi-continuity of norms and (24), we know

(27) ∥Dŵ∥2 ≤ lim
k→∞

∥Dwk∥2.

Also, as I(w) ≤ 8B for any w ∈ H1∩B and wk → ŵ a.e. in Ω, we get, by dominant
convergence theorem, that

(28) lim
k→∞

I(wk) = I(ŵ).

By the same argument with the smoothness of S and T , the convergence of {σk}∞k=1,
and the fact that wk → ŵ a.e. in Ω, we can also have

(29) lim
k→∞

F (wk, σk) = F (ŵ, σ̂)

Combining (27), (28) with (29), we obtain that

E(ŵ, σ̂) ≤ lim
k→∞

E(wk, σk) = inf
(H1∩B)×R+

E(w, σ).

Furthermore, since {wk}∞k=1 ⊂ B ⊂ L∞(Ω), we know

wk ⇀
w∗ ŵ weakly* in L∞

and hence ŵ ∈ B. Therefore, (ŵ, σ̂) ∈
(
H1 ∩ B

)
× R+. Hence

E(ŵ, σ̂) = inf
(H1∩B)×R+

E(w, σ).

which implies that (ŵ, σ̂) is a solution to the minimization problem (23). �
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4. Numerical Scheme

In this section, we provide the numerical scheme for solving (18). Since the
compositions in the inverse consistency constraints Iu(v) and Iv(u) bring a difficulty
in getting an explicit form of the EL equations for the deformation fields and their
inverses, in our computation, instead of directly solving (18), we solve the following
two coupled minimization problems alternately:

(30)


min
u,ũ

Ev,ṽ,σ(u, ũ)

min
v,ṽ

Eu,ũ(v, ṽ)

where

(31) Ev,ṽ,σ(u, ũ, σ) = ∥Du∥2 + ∥Dũ∥2 + λF (u, ũ, σ) + µ (Iv(u) + Iṽ(ũ))
and

(32) Eu,ũ(v, ṽ) = ∥Dv∥2 + ∥Dṽ∥2 + µ (Iu(v) + Iũ(ṽ)) .
By taking first variation with respect to u, ũ, v, ṽ, we get the EL equations:

−∆u+
λ

σ2
Wu,ũDS(x+ u) + µ ⟨I +Dv(x+ u), u+ v(x+ u)⟩ = 0

−∆v + µ ⟨I +Du(x+ v), v + u(x+ v)⟩ = 0

−∆ũ− λ

σ2
Wu,ũDT (x+ ũ) + µ ⟨I +Dṽ(x+ ũ), ũ+ ṽ(x+ ũ)⟩ = 0

−∆ṽ + µ ⟨I +Dũ(x+ ṽ), ṽ + ũ(x+ ṽ)⟩ = 0

,(33)

in Ω, with free Neumann boundary conditions for each of them on ∂Ω:

(34) ⟨Du, n⟩ = ⟨Dũ, n⟩ = ⟨Dv, n⟩ = ⟨Dṽ, n⟩ = 0, on ∂Ω,

where Wu,ũ , S(x+ u)− T (x+ ṽ), I is the identity matrix of size d, and n is the
outer normal of ∂Ω. Also, the first variation of σ gives

(35) σ = ∥S(x+ u)− T (x+ ũ)∥/|Ω|1/2.
The solution to the EL equations (33) can be obtained by finding the stationary
solution to the evolution equations associated with the EL equations. In numerical
implementation, we use semi-implicit discrete form of the evolution equations. The
additive operator splitting (AOS) scheme was applied to solve the problem faster
[WtHRV98]. An alternative way of AOS to solve the semi-implicit discrete evolution
equation in this case can be obtained by applying discrete cosine transforms (DCT)
to diagonalize the Laplace operator with the assumption that the deformation fields
have symmetric boundary condition, which is compatible with (34).

In two-dimensional (2D) case, the semi-implicit discrete form of (33) with fixed
step sizes τu, τv for the evolution equations of u(k+1) as

(36)
u
(k+1)
i,j − u(k)i,j

τu
= ∆i,ju

(k+1) −Di,j

(
λF

(
u(k), ũ(k), σ(k)

)
+ µIv(k)

(
u(k)

))
,

and v(k+1) as

(37)
v
(k+1)
i,j − v(k)i,j

τv
= ∆i,jv

(k+1) − µDi,jIu(k)

(
v(k)

)
,

where ∆i,j and Di,j represent the discrete Laplacian and gradient operators at the
pixel indexed by (i, j), respectively. The 3D case is a simple analogue with one
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Algorithm 1 Inverse Consistent Deformable Image Registration (icDIR)

Input S, T , and τu, τv, λ, µ > 0, ϵ = .5, δc = 1. Initialize (u(0), ũ(0), v(0), ṽ(0)) = 0,
k = 0.
while δc ≥ ϵ do
repeat
{All terms in (u(k+1), ũ(k+1), v(k+1), ṽ(k+1)) can be calculated in parallel}
Calculate (u(k+1), v(k+1)) using (36) and (37).
Calculate (ũ(k+1), ṽ(k+1)) using (36) and (37) with (u(k+1), v(k+1)) replaced
by (ũ(k+1), ṽ(k+1)).
update σ(k+1) by (35).
k ← k + 1

until convergence
return (u, ũ, v, ṽ)µ

(u, ũ, v, ṽ)← (u, ũ, v, ṽ)µ, µ← 2µ.
Compute ū and v̄ using (21) and then δc using (38).

end while

more subscript in indices. Similarly, we have the discrete evolution equation for
ũ and ṽ with the two components within each of the three pairs (u, ũ), (v, ṽ) and
(S, T ) switched in (36) and (37). With AOS scheme being applied, the computation
for each update of u involves of solving d tridiagonal systems whose computational
costs are linear in N , where N is the total number of pixels in S (or T ). Also, in
each iteration of updating u and v, there needs 2(d+1) interpolations with size N .
It is important to point out that, in each iteration, the computations of u, ũ, v, ṽ
can be carried out in parallel. We summarize icDIR in Algorithm 1, where the
maximum inverse consistency error (ICE) δc is defined by

(38) δc = max
x
{|ū+ v̄(x+ ū)|, |v̄ + ū(x+ v̄)|} ,

and ū and v̄ are the final full-way deformation fields shown in (21). That is, it
measures the maximum ICE of deformations obtained by quaternion (u, ũ, v, ṽ).
The parameter µ in (18) may increase during iterations to ensure smaller ICE.
In each inner loop with fixed µ, the computation is terminated when the mean
of CC(S(x + ū), T ) and CC(T (x + v̄), S) converges. We set a stopping tolerance
ϵ = .5 and terminate the whole computation once δc is lower than ϵ, in which
case the maximum ICE is less than half of the grid size between two concatenate
pixels/voxels and hence the inverse consistency is exactly satisfied with respect to
the original resolution of the images.

5. Experimental Results

In this section, we present the experimental results of proposed model using
algorithm 1 (icDIR). All implementations involved in the experiments were coded
in Matlab v7.3 (R2006b), except the Thomas tridiagonal solver, which was coded
in C++. We used build-in functions interp2/interp3 of Matlab with default
settings for interpolations. All Computations were performed on a Linux (version
2.6.16) workstation with Intel Core 2 CPU at 1.86GHz and 2GB memory.

We first test the accuracy of registration and auto re-contouring of the proposed
algorithm on a clinical data set of 100 2D-prostate MR images. Each image, called
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a phase, is a 2D image of dimension 288 × 192 that focuses on the prostate area.
The first phase is used as a source image S, as shown in Fig. 1(a). The boundaries

(a) Source image S (b) Target image T

(c) Deformed T (d) Deformed S

Figure 1. Inverse consistent registration result by proposed
model (18). (a) source image S. (b) target image T . (c) deformed
T , i.e. T (x+ v̄). (d) deformed S, i.e. S(x+ ū).

of the regions of interests (ROI) in S were delineated by contours and superimposed
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(a) |S(x+ ū)− T | (b) |S − T | (c) |T (x+ v̄)− S|

Figure 2. Residue image (in the square area shown in Fig. 1(a))
obtained by proposed model (18). (a) |S(x + ū) − T | (b) initial
|S − T |. (c) |T (x+ v̄)− S|.

by medical experts, as enlarged and shown in Fig. 4(a). The rest 99 phases were
considered as targets. In this experiment we applied the proposed model (18) with
parameters (λ, µ, τ) set to be (.05, .2, .05) to S and T s. For demonstration, we only
showed the result using the 21st phase as T , as depicted in Fig. 1(b). The deformed
T and deformed S, i.e. T (x+ v̄) and S(x+ ū), are shown in the Fig. 1(c) and 1(d)
respectively, where ū and v̄ are defined in (21) using the optimal (u, ũ, v, ṽ) obtained
by model (18). The errors of the alignments, |T (x+v̄)−S| and |S(x+ū)−T |, on the
squared area (shown in Fig. 1(a)) are displayed in Fig. 2(a) and 2(c), respectively.
With comparison to the original error |S − T | shown in Fig. 2(b), we can see the
errors of alignments are significantly reduced. This indicates that the proposed
registration model (18) has high accuracy in matching two images.

The final optimal forward and backward deformation fields ū and v̄ are displayed
by applying them to a domain of regular grids, shown in Fig. 3(a) and 3(c), respec-
tively. Furthermore, to validate the accurate inverse consistency obtained by our
model (18), we applied ū + v̄(x + ū) on a domain with regular grids, and plotted
the resulting grids in Fig. 3(b). The resulting grids by v̄ + ū(x + v̄) had the same
pattern so we omitted it here. From Fig. 3(b), we can see that the resulting grids
are the same as the original regular grids. This indicates that the inverse consistent
constraints ū+ v̄(x+ ū) = v̄ + ū(x+ v̄) = 0 are well preserved. We also computed
the maximum ICE δc using ū, v̄ and (38) and the result was .46. The mean ICE
(∥ū+ v̄(x+ ū)∥+ ∥v̄ + ū(x+ v̄)∥) /2|Ω| versus the number of iterations is plotted
in Fig. 5, which shows the inverse consistency is preserved during the registration.
These imply that the proposed algorithm provides an accurate inverse consistent
registration.

An accurate inverse consistent registration can transform segmentations from
one image to another accurately. One of the applications is auto re-contouring,
that deforms the expert’s contours from a planning image to new images during
the course of radiation therapy. In this experiment, we had expert’s contours su-
perimposed on the source image S as shown in Fig. 4(a). Then by applying the
deformation field ū on this contours we get the deformed contours on the target
image T as shown in Fig. 4(b). The accuracy in auto re-contouring is evident.
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(a) ū (b) ū+ v̄(x+ ū) (c) v

Figure 3. Deformation fields obtained by proposed model (18)
in the zoomed-in area applied on regular grid with half of original
resolution of images. (a) ū. (b) ū+ v̄(x+ ū), which demonstrates
the inverse consistency is well preserved. (c) v̄.

(a) Original Contour on S (b) Re-contouring on T

Figure 4. Auto re-contouring result using the deformation field
ū obtained by proposed model (18). Images are zoomed-ins of the
square area shown in Fig. 1(a). (a) S with initial contours on ROIs
(drawn by medical expert). (b) T with re-contouring on ROIs by
applying deformation field ū to the initial contours.

The second experiment was aimed to test the efficiency of the proposed model
(18) in registering 3D images. We applied (18) to a pair of 3D chest CT images of
dimension 64× 83× 48 taken from the same subject but at different periods. The
parameters (λ, µ, τ) were set to be (.05, .1, .004). The registration was performed
in 3D, but for demonstration, we only show the corresponding axial (xy plane with
z = 33), sagittal (yz plane with x = 25) and coronal (zx plane with y = 48) slices.
The registration results are plotted in Fig. 5, 6 and 7, respectively. In each figure,
the images in the upper row are S and T , respectively, and the images in the middle
row are deformed T and S, i.e. T (x + v̄) and S(x + ū), respectively. The bottom
row shows the residual images |S(x+ ū)−T |, |S−T | and |T (x+ v̄)−S|. The mean
of CC(S(x+ ū), T ) and CC(T (x+ v̄), S) reached .998 after 50 iterations, and the
mean of inverse consistency errors was .015. The results shows the high accuracy
of proposed model (18) and the well preserved inverse consistency.
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Figure 5. Registration result of proposed model (18) applied to
3D chest CT image. This figure shows the z = 33 slice at axial
direction. Upper left: S. Upper right: T , Middle left: deformed
T , i.e. T (x+ v̄). Middle right: deformed S, i.e. S(x+ ū). Bottom
left: residue image |S(x+ ū)− T |. Bottom middle: initial residue
image |S − T |. Bottom right: residue image |T (x+ v̄)− S|.

The third experiment was aimed to compare the effectiveness of model (18)
with the following conventional full-way inverse consistent deformable registration
model:

(39) min
u,v,σu,σv

∥Du∥2 + ∥Dv∥2 + λJ(u, v, σu, σv) + µ (Iv(u) + Iu(v))

where u and v are forward and backward deformation fields, respectively, and the
term J is defined by

J(u, v, σu, σv) = ∥S(x+ u)− T∥2/2σ2
u + ∥T (x+ v)− S∥2/2σ2

v + |Ω| log σvσv.

The comparison is made on the efficiency and accuracy of matching, as well as
the preservation of inverse consistency. The accuracy of matching is measured by
correlation coefficients (CC) between the target image and deformed source image
with the optimal forward and backward deformations obtained by model (39) and
proposed model (18), respectively. Recall that for any two images S and T both
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Table 1. Number of iterations used for convergence and the final
CC obtained by proposed model with σ updated/fixed. For a large
range of λ, updating σ in each iteration consistently leads to faster
convergence and higher accuracy.

Update σ Fix σ
λ CC Iter CC Iter
1e2 .962 48 .955 89
1e1 .962 97 .946 420
1e0 .960 356 .933 1762

with N pixels, the CC of S and T is defined by

CC(S, T ) =

∑N
i=1(Si − S̄)(Ti − T̄ )√∑N

i=1(Si − S̄)2
∑N
i=1(Ti − T̄ )2

,

where Si and Ti are the intensities at the ith pixels of S and T , respectively, S̄
and T̄ are the mean intensities of S and T , respectively. The maximum value of
CC is 1, in which case S and T are (positively) linearly related. In this experiment
we applied models (39) and (18) to the images in the first experiment shown in
Fig. 1 with the same parameters (λ, µ, τ) to be (.05, .2, .05). In Fig. 5, we plotted
the CC obtained by model (39) and proposed model (18) at each iteration. One
can observed that the CC obtained by model (18) is higher and increases faster
than model (39). This demonstrates that proposed model (18) is more efficient
than the conventional full-way model. The reason is that the disparity between
deformed S and deformed T is smaller than that between deformed S and fixed T
or deformed T and fixed S. When S and T are deformed simultaneously, the two
directional deformation fields are not necessarily to be large even if the underlying
deformation field is large, which usually makes it difficult for the full-way based
registration model to reach a satisfactory alignment in short time.

The last experiment is aim to test the robustness of the model to noises and the
choice of the parameter λ with the use of MLE based approach (11) for measuring
the goodness of matching. The images S and T in Fig. 1 with additive Gaussian
noises (standard deviation is 3% of largest intensity value of S) were used in this
experiment. The CC between S and T before registration is CC(S, T ) = .901. We
applied model (18) with σ to be updated/optimized by its EL equation (35), and σ
to be set σ = 1, that is the same as using SSD as similarity measure, respectively,
to the noise data mentioned above. We proceeded the registration with various
values of λ, but kept other parameters fixed. Then the numbers of iterations (Iter)
for convergence and the final CC were recorded and shown in Table 1. One can see
that while λ decreases, the accuracy of model (18) using fixed σ reduces as the final
CC become much smaller, and it also takes much longer time for the algorithm to
converge. On the other hand, with σ being updated (whose computational cost is
extremely cheap) model (18) can obtain good matching in much less iterations for
a large range of λ. This shows that model with MLE fitting is much less sensitive
to noise and the choice of λ, and can achieve fast and accurate results compared
with the model using SSD to measure mismatching.
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Figure 6. Registration result of proposed model (18) applied to
3D chest CT image. This figure shows the x = 25 slice at sagittal
direction. Upper left: S. Upper right: T , Middle left: deformed
T , i.e. T (x+ v̄). Middle right: deformed S, i.e. S(x+ ū). Bottom
left: residue image |S(x+ ū)− T |. Bottom middle: initial residue
image |S − T |. Bottom right: residue image |T (x+ v̄)− S|.
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Figure 7. Registration result of proposed model (18) applied to
3D chest CT image. This figure shows the y = 48 slice at coronary
direction. Upper left: S. Upper right: T , Middle left: deformed
T , i.e. T (x+ v̄). Middle right: deformed S, i.e. S(x+ ū). Bottom
left: residue image |S(x+ ū)− T |. Bottom middle: initial residue
image |S − T |. Bottom right: residue image |T (x+ v̄)− S|.
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Figure 8. CC in each iteration obtained by full-way model (39)
and proposed model (18). Proposed model (18) gives quick match-
ing with better accuracy, as CC by model (18) increase much faster
and can reach higher limits than that by full-way model (39).
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Figure 9. Mean of inverse consistent errors (ICE) of the final
deformation fields obtained by using full-way model (39) and pro-
posed model (18). The value is much smaller than the size of grid
between concatenate pixels, which shows that the inverse consis-
tency is preserved.


