A Randomized Incremental Primal Dual Method for Decentralized Consensus Optimization

Chenxi Chen† Yunmei Chen‡ Xiaojing Ye§

Abstract

We consider a class of convex decentralized consensus optimization problems over connected multi-agent networks. Each agent in the network holds its local objective function privately, and can only communicate with its directly connected agents during the computation to find the minimizer of the sum of all objective functions. We propose a randomized incremental primal dual method to solve this problem, where the dual variable over the network in each iteration is only updated at a randomly selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication only occurs in the neighborhood of the selected node in each iteration and hence can greatly reduce the chance of communication delay and failure in the standard fully synchronized consensus algorithms. We provide comprehensive convergence analysis including convergence rates of the primal residual and consensus error of the proposed algorithm, and conduct numerical experiments to show its performance using both uniform sampling and important sampling as node selection strategy.

1 Introduction

In this paper, we are interested in solving the following class of convex decentralized consensus optimization (DCO) problems:

\[
\min_{\hat{x} \in \mathbb{R}^n} \hat{f}(\hat{x}), \quad \text{where} \quad \hat{f}(\hat{x}) := \sum_{i=1}^{m} f_i(\hat{x}),
\]

The problem (1) is defined on a simple, connected, undirected graph (network) \(G = (V, E) \), where \(G \) consists of a node set \(V = \{1, 2, \cdots, m\} \) and an edge set \(E \subseteq V \times V \) such that \((i, j) \in E \) if and only if \(i \) and \(j \) are connected by an edge. Each node \(i \) can only communicate with its neighbors \(j \in N_i := \{j \mid (i, j) \in E\} \) (we also denote \(G_i := \{i\} \cup N_i \) for later use) during the computation. To establish convergence and the rates of our algorithm in this paper, we assume that each \(f_i : \mathbb{R}^n \to \mathbb{R} \), which is held privately at node \(i \), is convex and has Lipschitz continuous gradient.
To present our algorithmic development and convergence analysis in a more general and concise way, we adopt the notation $M = L \otimes I_n \in \mathbb{R}^{mn \times mn}$ which is a square matrix consisting of $m \times m$ blocks with the (i,j)-th block as $l_{ij}I_n \in \mathbb{R}^{n \times n}$. Here I_n is the $n \times n$ identity matrix, $L = [l_{ij}] := I - D^{-1/2}AD^{-1/2} \in \mathbb{R}^{mn \times mn}$ is the (normalized) graph Laplacian matrix, where A is the adjacency matrix of G, $D = \text{diag}(d_1, \ldots, d_m)$ is the diagonal matrix with the degree $d_i = |N_i|$ of node i as the i-th diagonal entry, and \otimes is the Kronecker product. During the computation, each node i may obtain an estimate $x_i \in \mathbb{R}^n$ of the underlying solution $x^* \in \mathbb{R}^n$ of (1). We hence define $x := [x_1; \ldots; x_n] \in \mathbb{R}^{mn}$ by stacking the column vectors x_i's vertically. Then the problem (1) can be rewritten as an equivalent, constrained optimization problem:

$$
\min_{x \in \mathbb{R}^{mn}} \ f(x) := \sum_{i=1}^{m} f_i(x_i), \quad \text{subject to } Mx = 0,
$$

(2)

due to the definition of L and the Perron-Frobenius theorem. More precisely, L is a symmetric matrix with zero row sums, and the eigenvalues of L are in $[0, 2)$ with 0 being the eigenvalue of multiplicity 1. Moreover, $Lu = 0$ if and only if $u = (c, \ldots, c)^\top \in \mathbb{R}^n$ for some constant $c \in \mathbb{R}$. Therefore, $Mx = 0$ if and only if $x_1 = x_2 = \cdots = x_m \in \mathbb{R}^n$, and hence the equivalency of (1) and (2). We further partition the rows of M into m sub-matrices such that $M = [M_1; \ldots; M_m]$ where the sub-matrix $M_i \in \mathbb{R}^{n \times mn}$ consists of the rows $(i-1)n + 1$ to in of M. Note that L assumes equal weights for all edges and use the binary adjacency matrix A in its definition. If the graph is weighted, we can use weighted Laplacian matrix L and all results presented in this paper follow similarly.

Following the theory of Lagrangian multipliers, we introduce a dual variable $z = [z_1; \ldots; z_n] \in \mathbb{R}^n$ for the constraint $Mx = 0$, and further rewrite the problem (2) as a saddle point problem:

$$
\min_{x \in \mathbb{R}^{mn}} \max_{z \in \mathbb{R}^n} \left\{ \sum_{i=1}^{m} f_i(x_i) + \langle Mx, z \rangle \right\}.
$$

(3)

Therefore, the problems (1), (2), and (3) are all equivalent and hence can be referred interchangeably. Note that $\langle Mx, z \rangle = \sum_{i=1}^{m} \langle M_i x, z_i \rangle = \sum_{i=1}^{m} \langle x_i, M_i z \rangle$.

The DCO problem (1) has a wide range of applications such as distributed machine learning [6, 12, 20, 24], sensor networks [17, 35, 41], smart grids [13, 27], multiple-agent control and coordination [32, 33, 50]. In these applications, it is often uneconomical, difficult, and sometimes impossible to have a central (master) node that communicates with every individual node and processes all the data, due to various reasons including the extremely large sizes of local datasets and privacy issues. These limitations prohibit the transmission of $f_i(x_i)$ between nodes. Hence, a more promising approach of sensor network applications is to let the nodes share their own estimates of x^*, the optimal solution of the global optimization problem (1), only with their neighbor nodes during the computation. In addition, the estimate x_i obtained by node i should be consensual, namely $x_1 = \cdots = x_n$ or $Mx = 0$ in (2), upon convergence. This ensures that one can retrieve an accurate approximation to x^* from any node on the network, as required in real-world decentralized consensus network applications.

1It is convenient to use $\hat{f} : \mathbb{R} \to \mathbb{R}$ in (1) and $f : \mathbb{R}^{mn} \to \mathbb{R}$ in (2) interchangeably as the meaning will be clear in the context. In particular, for consensual $x := [\hat{x}; \ldots; \hat{x}] \in \mathbb{R}^{mn}$ that consists of m identical copies of $\hat{x} \in \mathbb{R}^n$ (by stacking these column vectors \hat{x} vertically following the standard Matlab syntax $[\cdot; \cdot]$), there is $f(x) = \hat{f}(\hat{x})$. Therefore we only use f in the remainder of the paper.
However, the applications of modern large-scale networks are severely hindered by the increased chance of communication delays or failures in the standard synchronous decentralized consensus optimization setting, where all nodes are required to complete exchanging local estimates (or equivalent) with neighbors in each iteration. To overcome this issue, there have been a number of asynchronous algorithms, which are considered in a variety of application settings to allow computation and/or communication delays to some extent [4, 10, 31, 40, 43, 46, 47]. However, these methods are often based on very specific assumptions of the delays, which may not be practical in real-world applications.

Instead of building an asynchronous algorithm that allows delays, in this work we focus on how to greatly reduce the chance of delays by only requiring communications within local neighborhood during iterations. The main idea of our proposed method, called Randomized Incremental Primal Dual (RIPD) method, is that at each iteration the dual variable over the network G is only updated at a randomly selected node (say i), then the partially updated dual variable is exerted to establish an estimator for updating of the primal variable over the entire network. Therefore, in this iteration, communications only occur in the local neighborhood G_i of i, which greatly reduces delays compared to global synchronizations in the standard decentralized consensus optimization setting. Although such local communication strategy increases the total number of iterations, we will show that the total node-to-node communication number remains low, with the additional benefit of reducing delays per iteration for significantly improved efficiency overall.

The contributions of this paper mainly lie in two aspects as follows. First, we develop a randomized incremental primal-dual (RIPD) method for convex decentralized consensus optimization problem (1). Our proposed algorithm incorporates the idea of randomized incremental gradients into the primal-dual formulation, which only requires randomized incremental dual variable to update primal variables. More precisely, in each iteration, the algorithm only updates the dual variable at a randomly selected node, other nodes on the network can keep using outdated dual variables without communicating with their neighbors. Then the partially updated dual variable is exerted to establish an estimator for updating of the primal variable over the entire network. This significantly lowers the per-iteration communication and synchronization requirement, which can greatly reduce the chance of delays in the standard decentralized consensus optimization setting. Second, we provide a comprehensive convergence analysis for the proposed RIPD method which fully characterizes the primal residual and consensus error. The convergence analysis mainly relies on the estimate of duality gap function. We are able to show that the RIPD can achieve the iteration complexity of $O(\bar{L}/\epsilon + m\bar{l}/\epsilon)$ with the total number of communication in the order of $O(d\bar{L}/\epsilon + md\bar{l}/\epsilon)$, where $d := \sum_{i=1}^{m} p_i d_i$, p_i is the probability that node i is selected at each iteration, $\bar{L} := \max(L_f, \sqrt{mL_f})$, $\bar{l} := \max_{1 \leq i \leq m} l_i$ and $l_i := (\sum_{i=1}^{m} l_{ij}^2)^{1/2}$, and L_f is the Lipschitz constant of the gradient of the objective function f.

The remainder of this paper is organized as follows. Section 2 reviews the related work in the literature of decentralized consensus optimization. In Section 3, we propose our RIPD algorithm, and present its main convergence properties under the uniform sampling and important sampling for the random incremental dual update setting. A comprehensive convergence analysis RIPD is carried out in Section 4. Section 5 presents the numerical results of the proposed algorithm. Finally, Section 6 concludes this paper.
2 Related work

Early attempts to the decentralized consensus optimization problem (1) focus on the globally synchronized setting. Under such setting, the decentralized gradient descent method [33] can solve the DCO problem (1) with diminishing step sizes. However, with constant step size policy, the iterates only converge to a point in the neighborhood of a solution. This issue is fixed by the decentralized exact first-order algorithm (EXTRA) developed in [38]. By introducing an error-correction term into the scheme of the decentralized gradient descent algorithm, it can converge consensually to the exact solution of (1) with a fixed large step size independent of the network size. EXTRA has a convergent rate $O(1/N)$ for general convex smooth f_i and a linear rate for restricted strongly convex f_i, where N is the number of iterations. Another approach to solve the DCO problem (1) is to use the alternating direction method of multipliers (ADMM) to solve problem (2), where the equality constraints ensure the consensus property. ADMM is firstly applied to distributed optimization in [2] and further popularized in [1, 7, 11, 26, 28, 30, 36, 49]. ADMM (or linearized ADMM) exhibits an $O(1/N)$ convergence rate for a convex smooth objective function [1, 42], and a linear convergence rate for strongly convex smooth problems [39]. Furthermore, in [16] an ADMM based method achieves a $O(1/\sqrt{N})$ rate for solving non-convex global consensus problem.

Primal-Dual method has also been studied for DCO problems (e.g. [3, 8, 15, 18, 29, 34]). The works in [3, 8, 34] developed random coordinate decent primal-dual algorithms for distributed and asynchronous optimization. The numerical results showed high performance of these methods, but no convergence rates are given. The work in [29] presented a primal-dual based algorithm that uses local stochastic averaging gradients to achieve a linear rate for smooth and strongly convex problems. The work [15] develops a stochastic proximal gradient method for solving problem (1). It randomly activates edges with given probability in each iteration. The primal and dual variables which are related to activated edges will be updated. The consensus in [15] is achieved by communication in a global scale, due to the fact that all the edges in network are probably activated. A rate of convergence $O(1/N)$ is achieved for (1) with convex objective function.

During the past few years, randomized incremental gradient (RIG) methods have emerged as an important class of first-order methods for finite-sum optimization problems [5, 9, 14, 19, 25, 37, 44, 48]. RIG methods are designed to reduce the number of full gradient evaluations but improve the convergence rate of stochastic gradient descent algorithm. For instance, the stochastic variance reduced gradient (SVRG) method presented in [19] iteratively updates the gradient of one randomly selected function in the summation and re-evaluating the exact gradient from time to time, to reduce the number of full gradient evaluation. SVRG is extended to solve proximal finite-sum problems in [44]. Later, the work in [48] shows that SVRG can be accelerated to achieve an optimal rate for minimizing the sum of strongly convex smooth functions. The randomized primal dual gradient (RPDG) developed in [22] also achieves a similar rate for minimizing the sum of strongly convex smooth functions. In [45], a synchronous and an asynchronous primal-dual methods of multipliers (PDMM) for distributed optimization over a graph is proposed. In the asynchronous setting of PDMM, a node becomes active, updates its primal and dual variables, and sends them to its neighbors in each iteration. Convergence is established for a predefined order of node activations.

Recently, there have been several works on stochastic distributed primal-dual type methods for solving distributed optimization problems directly to improve communication efficiency. In [21], a decentralized communication sliding method is proposed for solving nonsmooth decentralized convex problems, in where the subproblem of the primal variable is approximately solved by an iterative subgradient descent procedure, and the inter-node communications only occur during the
updates of the dual variables. The work in [23] proposes a centralized primal-dual gradient method. The structure of this network consists of slave agents and a master server. The master server dedicates to update the primal information using incremental gradients, and slave agents update dual variables. The idea of incremental gradients is similar to RPDG in [22], but the initialization in [22] requires an evaluation of full gradients from all the locally stored functions, while [23] does not require evaluation of full gradient at all. Inspired by the advancements in distributed algorithms, especially the work in [22, 23], the main focus of this work is to propose a randomized incremental primal-dual algorithm that requires less communications at each iteration, but maintains the same convergence rate as its deterministic counterpart.

3 Proposed Randomized Incremental Primal-Dual Method

In this section, we present the details of our proposed randomized incremental primal-dual (RIPD). In RIPD, each node i maintains x_i and \bar{x}_i for its own primal variable, and z_j and \bar{z}_j for the dual variable of each of its neighbor $j \in N_i$, which will be updated according to the rules of RIPD during iterations. These variables with superscript t indicate their current values at iteration t. In each iteration t, RIPD selects one node $i_t = i \in V$ randomly according to probability (p_1, \ldots, p_m). Then all nodes in the neighborhood G_i of this node i perform a weighted sum of its local primal variable obtained at the previous two iterations (see (4) below) to obtain \bar{x}_j^t, and the neighbors in N_i send their \bar{x}_j^t to i, which updates its own dual variable z_j to \bar{z}_j^{t+1}, and then use it to establish an estimator \bar{z}_j^{t+1} as shown in (5) and (6) below. Then the node i sends \bar{z}_i^{t+1} back to its neighbors. Each node $j \neq i$ (i.e., the neighbors of i and those outside of G_i) simply sets $\bar{z}_j^{t+1}, \bar{z}_j^{t+1}$ to their old values \bar{z}_j as in (6). Therefore \bar{z}_j^{t+1}, with only \bar{z}_i^{t+1} actually updated, serves as the estimator for the dual variable of the entire network. To compensate the bias of this partially updated dual variable, the node i performs an extrapolation in (6) to obtain \bar{z}_i^{t+1} according to the probability p_i. All nodes on the network then perform the gradient descent (7) using the weighted sum of dual variables $M_j z^{t+1}$ to obtain the new x_j^{t+1}. Here $M_j z = \sum_{l \in G_j} l_j z_l = \sum_{l=1}^m l_j z_l$ is the weighted sum (using weights l_{ji}) of z_l in the neighbor $l \in G_j$. Since only the neighbors of i receive an updated \bar{z}_i^{t+1}, each node j outside of G_i performs the update of \bar{x}_j^{t+1} effectively based on their old copy of z_i^t for $l \in N_j$ without any communications. Therefore, the communication cost is only $2d_i$ in this iteration\(^2\) (or $\sum_{l=1}^m 2p_l d_l$ expectedly in any iteration), in contrast to $2|E|$ per iteration in the standard decentralized consensus optimization. The proposed RIPD algorithm is summarized in Algorithm 1.

We present the main convergence results for RIPD in the following theorem. The RIPD algorithm can achieve a rate of convergence of $O(1/N)$ in terms of both primal residual $f(x) - f(x^*)$ and consensus error $\|Mx\|$, where N is the iteration number. The proofs involve several lemmas and are postponed to the next section.

Theorem 3.1. Let (\bar{x}^N, \bar{z}^N) be generated by Algorithm 1, and (x^*, z^*) be a saddle point of problem (3). Suppose that the parameters in Algorithm 1 satisfy the following conditions for all $t \geq 1$:

\[
\eta_t \geq \eta_{t-1} \geq L_f + \max_{1 \leq i \leq m} \left\{ \frac{4 \epsilon_i^2}{\tau \rho_i} \right\}, \quad \tau_t = \tau, \quad \theta_t = 1.
\]

\(^2\)We count the communication number by one for every estimate sent by a node i and received by another node j.

Algorithm 1 Randomized Incremental Primal-Dual Method (RIPD)

For node i, initialize $x_i^1 \in X_i$, $z_i^1 \in Z_i$, $x_i^0 = x_i^1$, $i = 1, \ldots, m$.

for $t = 1, \ldots, N$ do

Randomly choose i_t according to $P(i_t = i) = p_i$, $1 \leq i \leq m$.

Update x^t, z^t as follows:

\[
\begin{align*}
\bar{x}^t_j &= \theta_t(x^t_j - x^{t-1}_j) + x^t_j, \quad \text{if } j \in G_{i_t}, \\
z^t_i &= \begin{cases} \arg\min_{z_i \in Z_i} \langle -M_i \bar{x}^t, z_i \rangle + \frac{\tau}{2} \|z_i - z^t_i\|^2, & \text{if } i = i_t \\ z^t_i, & \text{if } i \neq i_t \end{cases} \\
\tilde{z}^t_i &= \begin{cases} p_i^{-1}(z_i^{t-1} - z_i^t) + z_i^t, & \text{if } i = i_t \\ z_i^t, & \text{if } i \neq i_t \end{cases} \\
x^{t+1}_j &= \arg\min_{x_j \in X_j} \langle \nabla f_j(x^t_j) + M_j \tilde{z}^{t+1}_j, x_j \rangle + \frac{\eta_t}{2} \|x_j - x^t_j\|^2
\end{align*}
\]

end for

Return $(x^N, z^N) = \frac{1}{N} \sum_{t=1}^N (x^{t+1}, z^{t+1})$.

Then the primal residual is bounded by

\[
E [f(x^N) - f(x^*)] \leq \frac{\eta_1 \|x^* - x^1\|^2}{2N} + \frac{1}{N} \sum_{i=1}^m \frac{\tau \|z_i^1\|^2}{2p_i},
\]

and the consensus error is bounded by

\[
E \left[\|Mx^N\| \right] \leq \frac{U \|x^* - x^1\|}{N} + \sum_{i=1}^m \frac{V_i \|z_i^* - z_i^1\|}{N},
\]

where the constants are

\[
U = \frac{\tau}{\bar{l}} \sqrt{\frac{\eta_1}{2C}} + \bar{l} \sqrt{\frac{\eta_1}{2C}}, \quad V_i = \frac{\tau}{\bar{l}} \sqrt{\frac{\tau}{2p_i C}} + \bar{l} \sqrt{\frac{\tau}{2p_i C}},
\]

\[
C = \frac{\eta_N - L_f}{\frac{4}{p} - \sum_{i=1}^m \frac{p_i l_i^2}{2r_N}}, \quad C = \min_{1 \leq i \leq m} \left\{ \frac{\tau}{2p_i} - \frac{\|M_i\|^2}{\eta_N - L_f} \right\},
\]

and $p = \min_{1 \leq i \leq m} p_i$ and $\bar{l} = \max_{1 \leq i \leq m} l_i$.

Next, we provide two possible parameter settings with uniform sampling or importance sampling for Algorithm 1. Uniform sampling is a standard setting where all nodes are selected with equal probability $p_i = 1/m$. In contrast, importance sampling improves convergence by selecting nodes of higher degree with greater probability. Corollary 3.3 provides the details of such importance sampling strategy.

We first give a parameter setting with uniform sampling for Algorithm 1.

Corollary 3.2. Suppose that the parameters are given as

\[
p_i = \frac{1}{m}, \quad \tau_t = \tau, \quad \eta_t = L_f + \frac{4m l^2}{\tau},
\]

(13)
where \(\tau > 0 \) is a constant. Then, \(\{\eta_t\}_{t=1}^N, \{\tau_t\}_{t=1}^N \) satisfy (8).

Now we provide an example of parameter setting with importance sampling in Corollary 3.3, in which each node is picked with certain node-related importance.

Corollary 3.3. Suppose that the parameters are given as
\[
p_i = \frac{l^\alpha_i}{\|l\|_\alpha}, \quad \tau_t = \tau, \quad \eta_t = L_f + \frac{4\|l\|_\alpha}{\tau} \bar{l}^{2-\alpha},
\]
where \(\alpha \in [0,2], \tau > 0 \) are constants, \(\|l\|_\alpha = \sum_{i=1}^m l^\alpha_i \). Then, \(\{\eta_t\}_{t=1}^N, \{\tau_t\}_{t=1}^N \) satisfy (8).

Comparing Corollary 3.2 with Corollary 3.3, we can see that taking importance sampling can improve the performance of the RIPD algorithm. For example, if we set \(\alpha = 1 \) in (13), then the step size \(\eta_t^{-1} \) in RIPD is \(1/(L_f + 4\tau^{-1}\|l\|_1\bar{l}) \). While by taking uniform sampling as in Corollary 3.2, the step size is \(1/(L_f + 4\tau^{-1}m\bar{l}^2) \). By the definition of \(\bar{l} \), we have that \(\|l\|_1 \leq m\bar{l} \), which implies that importance sampling may allow a greater step size \(\eta_t^{-1} \) than that in uniform sampling.

From Theorem 3.1 and Corollary 3.2, we can have the estimate for the iteration complexity of \(O(\bar{L}/\epsilon + m\bar{l}/\epsilon) \) for RIPD to obtain an \(\epsilon \)-solution \(x^\epsilon \) to problem (2), i.e. \(\mathbb{E}[f(x^\epsilon) - f(x^*)] < \epsilon \), and \(\mathbb{E}[\|Mx^\epsilon\|] < \epsilon \). The total communication complexity of RIPD to obtain an \(\epsilon \)-solution of problem (2) is \(O(d\bar{L}/\epsilon + md\bar{l}/\epsilon) \).

4 Convergence Analysis

In this section, we conduct comprehensive convergence analysis of Algorithm 1. First of all, we introduce the duality gap function and provided some of its important properties. Denote \(W = X \times Z \). For any \(w = (x,z), w' = (x',z') \in W \), we define
\[
Q(w,w') = f(x) - f(x') + \langle Mx, z' \rangle - \langle Mx', z \rangle.
\]

It can be easily seen that \(w = (x,z) \) is a solution of problem (3) if and only if \(Q(w,w') \leq 0 \) for all \(w' = (x',z') \in W \) due to the convex-concave structure of (3). This suggests us to define the duality gap function as follows:

Definition 4.1. For problems (3) with compact feasible set \(W = X \times Z \), the duality gap function is defined as
\[
d(w) = \sup_{w' \in W} Q(w,w').
\]

For problems (3) with closed but unbounded feasible set \(W \), the duality gap function is defined as
\[
d_Z(v,w) = \sup_{z' \in Z} \{Q((x,z),(x^*,z')) - \langle v, z' \rangle\}.
\]

where \(v \in X \) and \(x^* \) is optimal for problem (1).

In this paper, we consider the case with \(Z = Z_1 \times \cdots \times Z_m = \mathbb{R}^{mn} \) where \(Z_i \subseteq \mathbb{R}^n \), which is necessary for the decentralized consensus problem (3) but more challenging than the compact \(W \) case. We denote \(d(v,w) := d_Z(v,w) \) for notation simplicity.

Proposition 4.2 below states the relation between the duality gap function, the primal residue and the consensus error for problem (3):

7
Proposition 4.2. Let $Z = \mathbb{R}^{mn}$. Suppose the random variables $w = (x, z)$ and v satisfy $\mathbb{E}[d(v, w)] < \infty$, where $d(v, w)$ is defined in (15), then the following identities hold almost surely (a.s.):

\[
\begin{align*}
\frac{f(x) - f(x^*)}{d(v, w)}, \\
\frac{Mx}{v}.
\end{align*}
\]

(16) In addition, if $\mathbb{E}[d(v, w)] \leq \epsilon$, and $\mathbb{E}[\|v\|] \leq \delta$, we have

\[
\mathbb{E}[f(x) - f(x^*)] \leq \epsilon \quad \text{and} \quad \mathbb{E}[\|Mx\|] \leq \delta.
\]

(18)

Proof. By the definition of the duality gap function for $Z = \mathbb{R}^{mn}$, there is

\[
d(v, w) = f(x) - f(x^*) + \sup_{z \in Z} \langle Mx - v, z \rangle,
\]

where we used the fact that $Mx^* = 0$ since x^* is optimal for (3). Thus, $d(v, w) < \infty$ if and only if $v = Mx$. Furthermore, $\mathbb{E}[d(v, w)] < \infty$ implies $\text{Prob}[d(v, w) < \infty] = 1$, then $\text{Prob}[v = Mx] = 1$, which implies $Mx = v$ a.s. as in (17). Hence, $d(v, w) = f(x) - f(x^*)$ a.s. as in (16). Then (18) follows immediately.

We now present several lemmas that will be critically useful for the convergence analysis later.

Lemma 4.3. Suppose f has L_f-Lipschitz continuous gradient ∇f, then the following estimate holds for any $x \in X$:

\[
f(x^t+1) - f(x) \leq \langle \nabla f(x^t), x^{t+1} - x \rangle + \frac{L_f}{2} \|x^{t+1} - x^t\|^2.
\]

(19)

Proof. By the Lipschitz continuity of ∇f, we have

\[
f(x^{t+1}) \leq f(x^t) + \langle \nabla f(x^t), x^{t+1} - x^t \rangle + \frac{L_f}{2} \|x^{t+1} - x^t\|^2.
\]

Moreover, by the convexity of f, there is $f(x) \geq f(x^t) + \langle \nabla f(x^t), x - x^t \rangle$ for all $x \in X$. Combining these two inequalities yields (19).

Lemma 4.4. Suppose the nonnegative real sequence $\{a_t\}$ is non-increasing, then

\[
\sum_{t=1}^{N} a_t \left(\|x - x^t\|^2 - \|x - x^{t+1}\|^2\right) \leq a_1 \|x - x^1\|^2 - a_N \|x - x^{N+1}\|^2.
\]

(20)

Proof. The result follows immediately by rearranging the sum in the left side into

\[
a_1 \|x - x^1\|^2 - a_N \|x - x^{N+1}\|^2 + \sum_{t=2}^{N} (a_t - a_{t-1}) \|x - x^t\|^2,
\]

and using the fact that $a_t \leq a_{t-1}$ for all t.

The following lemma provides three identities to characterize the conditional first and second moments of \tilde{z}^{t+1} and z^{t+1} given \mathcal{F}_t, the filtration of the randomized consensus process in Algorithm 1 up to the t-th iteration. For notation simplicity, we denote $\mathbb{E}[X] = \mathbb{E}[X|\mathcal{F}_t]$ for any random variable (vector) X.

Lemma 4.5. Let $Z_i = \mathbb{R}^n$ and $\tilde{z}_i^{t+1} := \arg\min_{z_i \in Z_i} \langle -M_i x^t, z_i \rangle + \frac{\eta_i}{2} \|z_i - z_i^t\|^2$ for $i = 1, \cdots, m$. Then the following identities hold:

\[
E_t[z_i^{t+1}] = z_i^{t+1},
\]
\[
E_t[\|z_i^t - z_i^{t+1}\|^2] = p_i \|z_i^t - z_i^{t+1}\|^2,
\]
\[
E_t[\|z_i - z_i^{t+1}\|^2] = p_i \|z_i - z_i^{t+1}\|^2 + (1 - p_i) \|z_i - z_i^t\|^2, \quad \forall z_i \in Z_i.
\]

Proof. Recall the definition of \tilde{z}_i^{t+1} in Algorithm 1, we have

\[
\tilde{z}_i^{t+1} = \begin{cases} p_i^{-1}(z_i^{t+1} - z_i^t) + z_i^t, & \text{if } i = i_t, \\ z_i^t, & \text{if } i \neq i_t.
\end{cases}
\]

Note that, at the t-th iteration, $\text{Prob}[z_i^{t+1} = p_i^{-1}(z_i^{t+1} - z_i^t) + z_i^t] = \text{Prob}[i_t = i] = p_i$, and $\text{Prob}[z_i^{t+1} = z_i^t] = \text{Prob}[i_t \neq i] = 1 - p_i$. Then it follows immediately that

\[
E[\tilde{z}_i^{t+1}] = p_i \cdot (p_i^{-1}(z_i^{t+1} - z_i^t) + z_i^t) + (1 - p_i) \cdot z_i^t = z_i^{t+1}.
\]

The identities (22) and (23) follow similarly. \hfill \Box

Now we provide an important estimate to bound the duality gap function (15) at (x^t, z^t) generated by Algorithm 1:

Lemma 4.6. Let (x^{t+1}, z^{t+1}) be generated by Algorithm 1, then the following estimate holds for any $(x,z) \in W$:

\[
\begin{align*}
E_t & \left[Q((x^{t+1}, z^{t+1}), (x, z)) \right] \\
\leq & \ E_t \left[\langle M(x^{t+1} - x^t), z - \tilde{z}^{t+1} \rangle - \theta_t \langle M(x^t - x^{t-1}), z - \tilde{z}^t \rangle + \langle M x, z^{t+1} - z^{t+1} \rangle \\
& + \frac{\eta_t}{2} \|x - x^t\|^2 - \frac{\eta_t}{2} \|x - x^{t+1}\|^2 - \frac{\eta_t - L_f}{2} \|x^{t+1} - x^t\|^2 \\
& + \sum_{i=1}^m \frac{\tau_i p_i^{-1}}{2} (\|z_i - z_i^t\|^2 - \|z_i - z_i^{t+1}\|^2 - \|z_i^t - z_i^{t+1}\|^2) \\
& + \theta_t(M_{i_t}(x^t - x^{t-1}), p_i^{-1}(z_i^{t+1} - z_i^t)) \\
& - \theta_t(M_{i_{t-1}}(x^t - x^{t-1}), (p_i^{-1} - 1) \cdot (z_i^{t+1} - z_i^{t+1-1})) \right].
\end{align*}
\]

Proof. By the definition of Q and Lemma 4.3, we have

\[
Q((x^{t+1}, z^{t+1}), (x,z)) = f(x^{t+1}) - f(x) + \langle M x^{t+1}, z \rangle - \langle M x, z^{t+1} \rangle \\
\leq \ |\nabla f(x^t), x^{t+1} - x| + \frac{L_f}{2} \|x^{t+1} - x^t\|^2 \\
+ \langle M x^{t+1}, z \rangle - \langle M x, z^{t+1} \rangle.
\]

On the other hand, the optimality condition of x_j^{t+1} in (7) Algorithm 1 implies

\[
\langle \nabla f_j(x_j^{t}), x_j^{t+1} \rangle + \langle M_j x_j^{t+1}, x_j^{t+1} \rangle + \frac{\eta_t}{2} \|x_j^{t+1} - x_j^t\|^2 \\
\leq \ |\nabla f_j(x_j^{t}), x_j | + \langle M_j x_j^{t+1}, x_j \rangle + \frac{\eta_t}{2} \|x_j - x_j^t\|^2 - \frac{\eta_t}{2} \|x_j - x_j^{t+1}\|^2,
\]

9
for all \(x_j \in X_j \). Therefore, summing (26) over \(i = 1, \ldots, m \) yields
\[
\langle \nabla f(x^t), x^{t+1} - x \rangle \leq \frac{\eta_t}{2} \| x - x^t \|^2 - \frac{\eta_t}{2} \| x - x^{t+1} \|^2 - \frac{\eta_t}{2} \| x^{t+1} - x^t \|^2 + \langle Mz^{t+1}, x - x^{t+1} \rangle
\]
where \(x = [x_1; \ldots; x_m] \in \mathbb{R}^{mn} \).
Combining (25) and (27) yields
\[
Q((x^{t+1}, z^{t+1}), (x, z)) \leq \langle Mz^{t+1}, x - x^{t+1} \rangle + \langle Mx^{t+1}, z \rangle - \langle Mx, z^{t+1} \rangle
\]
\[
+ \frac{\eta_t}{2} \| x - x^t \|^2 - \frac{\eta_t}{2} \| x - x^{t+1} \|^2 - \frac{\eta_t - Lf}{2} \| x^{t+1} - x^t \|^2.
\]
Due to the optimality condition of \(z_i^{t+1} \) in (5), we have
\[
\langle -M_i \tilde{x}^t, z_i^{t+1} \rangle + \frac{\tau_i}{2} \tilde{z}_i^{t+1} - z_i^t \|^2
\]
\[
\leq \langle -M_i \tilde{x}^t, z_i \rangle + \frac{\tau_i}{2} \| z_i - z_i^t \|^2 - \frac{\tau_i}{2} \| z_i - z_i^{t+1} \|^2,
\]
for all \(z_i \in Z_i \), which can be rearranged into
\[
\langle M_i \hat{x}^t, z_i - z_i^{t+1} \rangle \leq \frac{\tau_i}{2} \| z_i - z_i^t \|^2 - \frac{\tau_i}{2} \| z_i - z_i^{t+1} \|^2 - \frac{\tau_i}{2} \| z_i^{t+1} - z_i^t \|^2.
\]
Then, by (21), we have
\[
E_{\| t \left[\langle M_i \hat{x}^t, z_i - z_i^{t+1} \rangle \right] = E_{\| t \left[\langle M_i \tilde{x}^t, z_i - z_i^{t+1} \rangle \right].
\]
Furthermore, by (22) and (23) in Lemma 4.5, we have
\[
E_{\| t \left[\langle M_i \hat{x}^t, z_i - z_i^{t+1} \rangle \right] \leq E_{\| t \left[\langle M_i \tilde{x}^t, z_i - z_i^{t+1} \rangle \right] \leq E_{\| t \left[\langle M_i \hat{x}^t, z_i - z_i^{t+1} \rangle \right]
\]
\[
\leq E_{\| t \left[\langle M_i \tilde{x}^t, z_i - z_i^{t+1} \rangle \right] \leq E_{\| t \left[\langle M_i \hat{x}^t, z_i - z_i^{t+1} \rangle \right]
\]
\[
\sum_{i=1}^{m} \frac{\tau_i p_i^{-1}}{2} \left(\| z_i - z_i^t \|^2 - \| z_i - z_i^{t+1} \|^2 - \| z_i^t - z_i^{t+1} \|^2 \right)
\]
summing over \(i = 1, \ldots, m \) of which implies that
\[
E_{\| t \left[\langle M_i \hat{x}^t, z_i^{t+1} - z \rangle \right] + \sum_{i=1}^{m} \frac{\tau_i p_i^{-1}}{2} \left(\| z_i - z_i^t \|^2 - \| z_i - z_i^{t+1} \|^2 - \| z_i^t - z_i^{t+1} \|^2 \right) \geq 0.
\]
Combining this inequality and (28), we can get
\[
E_{\| t \left[Q((x^{t+1}, z^{t+1}), (x, z)) \right] \leq E_{\| t \left[\langle Mz^{t+1}, x - x^{t+1} \rangle + \langle Mx^{t+1}, z \rangle - \langle Mx, z^{t+1} \rangle + \langle M\hat{x}^t, z^{t+1} - z \rangle \right.
\]
\[
\left. + \frac{\eta_t}{2} \| x - x^t \|^2 - \frac{\eta_t}{2} \| x - x^{t+1} \|^2 - \frac{\eta_t - Lf}{2} \| x^{t+1} - x^t \|^2 \right]
\]
\[
+ \sum_{i=1}^{m} \frac{\tau_i p_i^{-1}}{2} \left(\| z_i - z_i^t \|^2 - \| z_i - z_i^{t+1} \|^2 - \| z_i^t - z_i^{t+1} \|^2 \right)
\]
\[
= E_{\| t \left[\langle M(x^{t+1} - x^t), z - z^{t+1} \rangle - \theta_t \langle M(x^t - x^{t-1}), z - z^t \rangle \right.
\]
\[
+ \frac{\eta_t}{2} \| x - x^t \|^2 - \frac{\eta_t}{2} \| x - x^{t+1} \|^2 - \frac{\eta_t - Lf}{2} \| x^{t+1} - x^t \|^2 \right]
\]
\[
+ \sum_{i=1}^{m} \frac{\tau_i p_i^{-1}}{2} \left(\| z_i - z_i^t \|^2 - \| z_i - z_i^{t+1} \|^2 - \| z_i^t - z_i^{t+1} \|^2 \right)
\]\n(29)
Now we focus on the term $\langle M(x^t - x^{t-1}), \tilde{z}^{t+1} - \tilde{z}^t \rangle$ above. From the updating rule of z^{t+1} in (5) and \tilde{z}^{t+1} in (6) of Algorithm 1, we know that
\[
z^t_i - z^t_i = \begin{cases} (p_i^{-1} - 1) \cdot (z_i^{t-1} - z_i^{t-1}), & \text{if } i = i_{t-1}, \\
0, & \text{if } i \neq i_{t-1}, \end{cases}
\] and that
\[
z^{t+1}_i - z^t_i = \begin{cases} p_i^{-1} (z_i^{t+1} - z_i^t), & \text{if } i = i_t, \\
0, & \text{if } i \neq i_t.\end{cases}
\] (30)
Combining (30) and (31) yields
\[
\langle M(x^t - x^{t-1}), \tilde{z}^{t+1} - \tilde{z}^t \rangle = \sum_{i=1}^m \langle M_i(x^t - x^{t-1}), z_i^{t+1} - z_i^t \rangle + \sum_{i=1}^m \langle M_i(x^t - x^{t-1}), z_i^t - z_i^{t-1} \rangle
\]
\[
= \langle M_i(x^t - x^{t-1}), p_i^{-1} (z_i^{t+1} - z_i^t) \rangle - \langle M_{i_{t-1}}(x^t - x^{t-1}), (p_{i_{t-1}}^{-1} - 1)(z_i^{t-1} - z_i^{t-1}) \rangle.
\]
Plugging this into (29) implies (24), which completes the proof.

Now we are ready to prove the main convergence result, i.e., Theorem 3.1.

Proof. By the convexity of $Q(w, w')$ in w and the definition of $(\tilde{x}^N, \tilde{z}^N)$, we know
\[
Q((\tilde{x}^N, \tilde{z}^N), (x, z)) \leq \frac{1}{N} \sum_{i=1}^N Q((x^{t+1}, z^{t+1}), (x, z))
\]
for any $(x, z) \in W$. By Lemma 4.6, we have
\[
\mathbb{E}\left[Q((\tilde{x}^N, \tilde{z}^N), (x, z))\right]
\]
\[
\leq \frac{1}{N} \cdot \mathbb{E}\left\{ \sum_{i=1}^N \left[\langle M(x^{t+1} - x^t), z - z^{t+1} \rangle - \theta_t \langle M(x^t - x^{t-1}), z - z^{t} \rangle \right] + \frac{\eta}{2} \|x - x^t\|^2 - \frac{\eta}{2} \|x - x^{t+1}\|^2 \right. + \langle M x, s^N \rangle
\]
\[
+ \sum_{i=1}^m \left[\frac{\tau_t p_i^{-1}}{2} \|z_i - z_i^t\|^2 - \|z_i - z_i^{t+1}\|^2 \right] - \Lambda_0 \right\},
\]

where $s^N := \frac{1}{N} \sum_{i=1}^N (z_i^{t+1} - z_i^t)$, and Λ_0 above denotes
\[
\Lambda_0 := \sum_{i=1}^N \frac{\eta}{2} \|x^{t+1} - x^t\|^2 + \sum_{i=1}^m \frac{\tau_t p_i^{-1}}{2} \|z_i^t - z_i^{t+1}\|^2
\]
\[
- \sum_{i=1}^m \theta_t \langle M_i(x^t - x^{t-1}), p_i^{-1} (z_i^{t+1} - z_i^t) \rangle
\]
\[
+ \sum_{i=1}^m \theta_t \langle M_{i_{t-1}}(x^t - x^{t-1}), (p_{i_{t-1}}^{-1} - 1)(z_i^{t-1} - z_i^{t-1}) \rangle,
\]
and we used the fact that
\[
\sum_{t=1}^N \sum_{i=1}^m \frac{\tau_t^{-1}}{2} \|z_i^t - z_i^{t+1}\|^2 = \sum_{t=1}^N \frac{\tau_t^{-1}}{2} \|z_i^t - z_i^{t+1}\|^2.
\]

By setting \(\theta_t = 1\) for all \(t\) as in (8), the first two terms on the right side of (32) becomes
\[
\sum_{t=1}^N \left[\langle M(x^{t+1} - x^t), z - z^{t+1} \rangle - \theta_t \langle M(x^t - x^{t-1}), z - z^t \rangle \right]
= \langle M(x^{N+1} - x^N), z - z^{N+1} \rangle - \theta_t \langle M(x^1 - x^0), z - z^1 \rangle
\]
(34)
where the last equality is due to the initialization \(x_1 = x_0\). For the second summation term in (32), we know that the sequence \(\{\eta_t\}_{t=1}^N\) is non-increasing, and hence by Lemma 4.4 we have
\[
\sum_{t=1}^N \left[\frac{\eta_t}{2} \|x - x^t\|^2 - \frac{\eta_t}{2} \|x - x^{t+1}\|^2 \right] \leq \frac{\eta_1}{2} \|x - x^1\|^2 - \frac{\eta_N}{2} \|x - x^{N+1}\|^2.
\]
(35)

Moreover, by the setting of \(\tau_t\) in (8), we have
\[
\sum_{t=1}^N \sum_{i=1}^m \frac{\tau_t^{-1}}{2} \|z_i - z_i^t\|^2 - \|z_i - z_i^{t+1}\|^2 \leq \sum_{i=1}^m \frac{\tau_1}{2} \|z_i - z_i^1\|^2 - \frac{\tau_N}{2} \|z_i - z_i^{N+1}\|^2.
\]
(36)

Plugging (34), (35) and (36) into (32), we obtain
\[
\mathbb{E} \left[Q((x^N, z^N), (x, z)) \right] \leq \frac{1}{N} \mathbb{E} \left\{ \frac{\eta_1}{2} \|x - x^1\|^2 - \frac{\eta_N}{2} \|x - x^{N+1}\|^2 \right.
+ \left. \sum_{t=2}^N \left(\frac{\eta_t}{2} \|x - x^t\|^2 - \frac{\eta_{t-1}}{2} \|x - x^{t-1}\|^2 \right) \right\} - \Lambda,
\]
where we used the updating rule of \(\tilde{z}^{t+1}\) in Algorithm 1, and
\[
\Lambda := \Lambda_0 - \langle M(x^{N+1} - x^N), z - z^{N+1} \rangle.
\]

Using the definition of \(\Lambda_0\) in (33) and reorganizing \(\Lambda\) yield
\[
\Lambda \geq \left[\frac{\eta_N - Lf}{4} \|x^{N+1} - x^N\|^2 - \langle M(x^{N+1} - x^N), z - z^{N+1} \rangle \right]
+ \Lambda_1 + \Lambda_2 + \Lambda_3 + \sum_{t=2}^N \frac{\eta_{t-1} - Lf}{2} \|x^t - x^{t-1}\|^2,
\]
(37)
where

\[\Lambda_1 = \frac{\eta_N - L_f}{4} \|x^{N+1} - x^N\|^2 + \frac{\tau_N p_i^{-1}}{4} \|z_{i,N}^N - z_{i,N}^{N+1}\|^2 \geq 0 \]

\[\Lambda_2 = \sum_{t=2}^{N} \left[\frac{\tau_t p_i^{-1}}{4} \|z_{t,i}^t - z_{t+1,i}^t\|^2 - \langle M_{t-1}(x^t - x^{t-1}), p_{t-1}^{-1}(z_{t,i}^t - z_{t+1,i}^t) \rangle \right] \]

\[\Lambda_3 = \sum_{t=2}^{N} \left[\frac{\tau_{t-1}}{4p_{t-1}} \|z_{t-1,i}^t - z_{t-1,i}^t\|^2 + \langle M_{t-1}(x^t - x^{t-1}), (p_{t-1}^{-1} - 1) \cdot (z_{t-1,i}^t - z_{t-1,i}^t) \rangle \right] \]

\[\Lambda_3 \geq - \sum_{t=2}^{N} \frac{(1 - p_{t-1})^2 \|M_{t-1}(x^t - x^{t-1})\|^2}{\tau_{t-1} p_{t-1}} \]

\[\Lambda \geq \frac{\eta_N - L_f}{4} \|x^{N+1} - x^N\|^2 - \langle M(x^{N+1} - x^N), z - z^{N+1} \rangle \]

\[+ \sum_{t=2}^{N} \left(\frac{\eta_{t-1} - L_f}{2} - \frac{\|M_{t-1}\|^2}{\tau_{t-1} p_{t-1}} - \frac{(1 - p_{t-1})^2 \|M_{t-1}\|^2}{\tau_{t-1} p_{t-1}} \right) \|x^t - x^{t-1}\|^2 \]

\[\geq \frac{\eta_N - L_f}{4} \|x^{N+1} - x^N\|^2 - \langle M(x^{N+1} - x^N), z - z^{N+1} \rangle, \]

where we obtained the second inequality by using (8), the definition \(l_i = \|M_i\| \), and observing that

\[\frac{\eta_t - L_f}{4} \geq \max_{1 \leq i \leq m} \left\{ \frac{l_i^2}{\tau p_i} \right\} \geq \frac{l_i^2}{\tau p_i} > \max \left\{ \frac{(1 - p_i)^2 l_i^2}{\tau p_i}, \frac{l_i^2}{2 \tau p_i} \right\} \quad \forall t, i. \]

13
To sum up, we have an estimate of the duality gap function $Q((x^N, z^N), (x, z))$ as follows,

$$
\mathbb{E}\left[Q((x^N, z^N), (x, z)) \right]
\leq \frac{1}{N} \cdot \mathbb{E}\left\{ \frac{\eta}{2} \|x - x^1\|^2 - \frac{\eta_N}{2} \|x - x^{N+1}\|^2 + \langle Mx, s^N \rangle
+ \sum_{i=1}^{m} p_i^{-1} \cdot \left[\frac{\eta}{2} \right] \|z_i - z_i^1\|^2 - \frac{\eta_N - Lf}{2} \|z_i - z_i^N\|^2 - \bigg\} \right\}
\leq \frac{1}{N} \cdot \mathbb{E}\left\{ \frac{\eta}{2} \|x - x^1\|^2 - \frac{\eta_N}{2} \|x - x^{N+1}\|^2 + \sum_{i=1}^{m} p_i^{-1} \|z_i^1\|^2 + \langle Mx, s^N \rangle
+ \sum_{i=1}^{m} \langle p_i^{-1}(\tau_1 z_i^1 - \tau_N z_i^N) + M_i(x^N - x^{N+1}), z_i \rangle \right\},
$$

By reorganizing above inequality, we obtain

$$
\mathbb{E}\left[Q((x^N, z^N), (x, z)) \right] + \frac{1}{N} \sum_{i=1}^{m} \langle p_i^{-1}(\tau_1 z_i^1 - \tau_N z_i^N) + M_i(x^N - x^{N+1}), z_i \rangle
\leq \frac{1}{N} \cdot \mathbb{E}\left\{ \frac{\eta}{2} \|x - x^1\|^2 - \frac{\eta_N}{2} \|x - x^{N+1}\|^2 + \sum_{i=1}^{m} p_i^{-1} \|z_i^1\|^2 + \langle Mx, s^N \rangle
- \left[\frac{\eta_N - Lf}{4} \|z_i^N - z_i\|^2 + \frac{\eta_N - Lf}{4} \|z_i - z_i^N\|^2 + \sum_{i=1}^{m} p_i^{-1} \|z_i\|^2 \langle M_i(x^N - x^{N+1}), z_i \rangle \bigg\} \right\}
\leq \frac{1}{N} \cdot \mathbb{E}\left\{ \frac{\eta}{2} \|x - x^1\|^2 - \frac{\eta_N}{2} \|x - x^{N+1}\|^2 + \sum_{i=1}^{m} p_i^{-1} \|z_i^1\|^2 + \langle Mx, s^N \rangle
- \left(\frac{\eta_N - Lf}{4} - \sum_{i=1}^{m} \frac{p_i f^2}{2\tau_N} \right) \|x^N - x^1\|^2 \right\}
\leq \frac{1}{N} \cdot \mathbb{E}\left\{ \frac{\eta}{2} \|x - x^1\|^2 + \sum_{i=1}^{m} \frac{p_i^{-1} \tau_1^2}{2} \|z_i^1\|^2 \right\},
$$

14
where we obtained the last inequality by using (8) and observing that
\[
\sum_{i=1}^{m} p_i l_i^2 = \sum_{i=1}^{m} p_i^2 \frac{l_i^2}{p_i} \leq \max_{1 \leq i \leq m} \left\{ \frac{l_i^2}{p_i} \right\} \sum_{i=1}^{m} p_i^2 < \max_{1 \leq i \leq m} \left\{ \frac{l_i^2}{p_i} \right\} < \frac{\eta t - L_f}{2\tau - 1}. \tag{43}
\]

Now for \(i = 1, \ldots, m \), we set
\[
v_i := -\frac{1}{N} [p_i^{-1} (\tau_1 z_i - \tau_N z_i^{N+1}) + M_i (x^N - x^{N+1})]. \tag{44}
\]

By setting \(x = x^* \) in (43), we have \(Mx^* = 0 \) due to the optimality of \(x^* \) and thus obtain
\[
\mathbb{E} \left[Q((x^N, z^N), (x^*, z)) - \langle v, z \rangle \right] \leq \frac{1}{N} \cdot \mathbb{E} \left[\frac{\eta t}{2} \|x^* - x^1\|^2 + \sum_{i=1}^{m} \frac{\tau_i}{2p_i} \|z_i^* - z_i^{N+1}\|^2 \right]
\]
for any \(z \in Z \), where the right hand side is bounded and independent of \(z \). Therefore, \(\mathbb{E} [d(v, (x^N, z^N))] < \infty \), and hence we obtain (9) and \(Mx^N = v \) a.s. due to Proposition 4.2.

Next, to estimate the consensus error \(v = Mx^N \) defined in (44), we only need to bound \(\|\tau_1 z_i^1 - \tau_N z_i^{N+1}\| \) and \(\|x^N - x^{N+1}\| \). For a saddle point \((x^*, z^*)\) of problem (3), we know that \(Q((x^N, z^N), (x^*, z^*)) \geq 0 \) due to the optimality of \((x^*, z^*)\). Thus, by (42), we have
\[
\begin{align*}
\mathbb{E} \left[\frac{\eta N - L_f}{4} \|x^{N+1} - x^N\|^2 \right] &\leq \mathbb{E} \left[(M(x^N + 1 - x^N), z^* - z^{N+1}) - \sum_{i=1}^{m} \frac{\tau_N}{2p_i} \|z_i^* - z_i^{N+1}\|^2 \right] \\
&\quad + \frac{\eta t}{2} \|x^* - x^1\|^2 + \sum_{i=1}^{m} \frac{\tau_i}{2p_i} \|z_i^* - z_i^1\|^2.),
\end{align*}
\]
which implies that
\[
\begin{align*}
\mathbb{E} \left[\left(\frac{\eta N - L_f}{4} - \sum_{i=1}^{m} \frac{p_i l_i^2}{2\tau N} \right) \|x^{N+1} - x^N\|^2 \right] &\leq \frac{\eta t}{2} \|x^* - x^1\|^2 + \sum_{i=1}^{m} \frac{\tau_i}{2p_i} \|z_i^* - z_i^1\|^2.
\end{align*}
\]

Hence, we have
\[
\mathbb{E} \left[\|x^{N+1} - x^N\| \right] \leq \sqrt{\frac{\eta t}{2C}} \|x^* - x^1\| + \sum_{i=1}^{m} \sqrt{\frac{\tau_i}{2p_i C}} \|z_i^* - z_i^1\|, \tag{45}
\]

15
where C is defined in (12) and hence is positive by (43). Similarly, (42) above implies that

$$
\mathbb{E} \left[\sum_{i=1}^{m} \frac{\tau_i}{2p_i} \| z_i^* - z_i^{N+1} \|^2 \right]
\leq \mathbb{E} \left[(M(x^{N+1} - x^N), z^* - z^{N+1}) - \frac{\eta N - L_f}{4} \| x^{N+1} - x^N \|^2
+ \frac{\eta_1}{2} \| x^* - x^1 \|^2 + \sum_{i=1}^{m} \frac{\tau_1}{2p_i} \| z_i^* - z_i^1 \|^2 \right].
$$

$$
\leq \mathbb{E} \left[\sum_{i=1}^{m} \frac{\tau_i}{2p_i} \| x^{N+1} - x^N \| \| z_i^* - z_i^{N+1} \| - \frac{\eta N - L_f}{4} \| x^{N+1} - x^N \|^2
+ \frac{\eta_1}{2} \| x^* - x^1 \|^2 + \sum_{i=1}^{m} \frac{\tau_1}{2p_i} \| z_i^* - z_i^1 \|^2 \right],
$$

which implies that

$$
\mathbb{E} \left[\sum_{i=1}^{m} \left(\frac{\tau_i}{2p_i} - \frac{L_i^2}{\eta N - L_f} \right) \| z_i^* - z_i^{N+1} \|^2 \right] \leq \frac{\eta_1}{2} \| x^* - x^1 \|^2 + \sum_{i=1}^{m} \frac{\tau_1}{2p_i} \| z_i^* - z_i^1 \|^2.
$$

Therefore we have

$$
\mathbb{E} \left[\| z^* - z^{N+1} \|^2 \right] \leq \frac{\eta_1}{2C} \| x^* - x^1 \|^2 + \sum_{i=1}^{m} \frac{\tau_1}{2p_i C} \| z_i^* - z_i^1 \|^2,
$$

where C is defined in (12) and hence must be positive due to (41). Notice that $\| z^1 - z^{N+1} \|^2 \leq 2\| z^* - z^1 \|^2 + 2\| z^* - z^{N+1} \|^2$, we can have an estimate for $\| z^* - z^{N+1} \|^2$ as following

$$
\mathbb{E} \left[\| z^1 - z^{N+1} \|^2 \right] \leq \frac{\eta_1}{C} \| x^* - x^1 \|^2 + \sum_{i=1}^{m} \left(2 + \frac{\tau_1}{p_i C} \right) \| z_i^* - z_i^1 \|^2,
$$

from which we have

$$
\mathbb{E} \left[\| z^1 - z^{N+1} \| \right] \leq U \| x^* - x^1 \| + \sum_{i=1}^{m} V_i \| z_i^* - z_i^1 \|,
$$

(46)

where U and V_i are defined in (11). Therefore, combining (44), (45) and (46) yields (10). \hfill \Box

5 Numerical Experiments

In this section, we present several numerical results of Algorithm 1 on synthetic decentralized consensus optimization problem on networks. We simulate five two-dimensional (2D) lattice networks with different sizes: 2×5, 3×6, 3×7, 3×8, and 5×8. The size m of the networks are hence 10,
18, 21, 24, and 40, respectively. We also simulated an Erdős-Rényi random network of size $m = 50$ and average degree 4. The dimension of unknown x is set to $n = 5$. We randomly generate the ground truth $x_{\text{true}} \in \mathbb{R}^n$. For each node i in the simulated network, we randomly generate matrices $A_i \in \mathbb{R}^{q \times n}$ with $q = 5$, and normalize each column of A_i. Then b_i is obtained by $b_i = A_i x_{\text{true}} + \epsilon_i$, where noise ϵ_i is generated from normal distribution $\mathcal{N}(0, 0.0001)$. The objective function $f_i(x)$ of node i is defined as $\frac{1}{2} \| A_i x - b_i \|^2$, and $f(x) = \sum_{i=1}^m f_i(x)$. Then we know that the Lipschitz constant L_f of ∇f_i is given by $\max_{1 \leq i \leq m} L_i$, where L_i is the Lipschitz constant of ∇f_i, $L_i = \| A_i^\top A_i \|_2$. The initialization of x_i is set to be 0 for all nodes.

The performance is evaluated by the primal residual $f(x^t) = \frac{1}{2} \sum_{i=1}^m \| A_i x_i^t - b_i \|^2$ and disagreement $\sum_{i=1}^m \| x_i^t - x_{\text{mean}}^t \|^2$, where x_{mean}^t is the average value of x_i^t at t-th iteration, $x_{\text{mean}}^t = \frac{1}{m} \sum_{i=1}^m x_i^t$. We test three sampling strategies: uniform sampling (curves labeled by “uniform” in figures), importance sampling of $p_i \propto l_i$ (curves labeled by “one” in figures), and importance sampling of $p_i \propto l_i^2$ (curves labeled by “square” in figures). In all tests, we set $\tau_t = \tau = 2$, and η_t as in (13) for the “uniform” case and (3.3) for the “one” and “square” cases (with $\alpha = 1$ and 2 respectively). The primal residual and disagreement versus iteration t for the six networks are plotted in Figure 1, 2, 3, 4, 5, 6, respectively. In Figure 2, we can observe that the primal residual $f(x^t)$ and disagreement both converges to 0 as stated in theoretical analysis. Besides, we see that importance sampling show some advantages over uniform sampling, both in the primal residual and disagreement. The step size η in RIPD with importance sampling is greater than step size in uniform sampling. Larger step size may accelerate the convergence of proposed method and result better practical performance.

![Figure 1: Comparisons on decentralized least squares by local communication on 2×5 network. The agents in each iteration are activated with different probability distributions. Left: the objective function values. Right: the disagreements.](image)

6 Conclusion

We present a randomized incremental primal dual method for solving a class of smooth convex optimization problems. The dual variable over the network in each iteration is only updated at a randomly selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication only occurs in the neighborhood of the selected node in each
Figure 2: Comparisons on decentralized least squares by local communication on 3×6 network. The agents in each iteration are activated with different probability distributions. Left: the objective function values. Right: the disagreements.

Figure 3: Comparisons on decentralized least squares by local communication on 3×7 network. The agents in each iteration are activated with different probability distributions. Left: the objective function values. Right: the disagreements.
Figure 4: Comparisons on decentralized least squares by local communication on 3×8 network. The agents in each iteration are activated with different probability distributions. Left: the objective function values. Right: the disagreements.

Figure 5: Comparisons on decentralized least squares by local communication on 5×8 network. The agents in each iteration are activated with different probability distributions. Left: the objective function values. Right: the disagreements.
Figure 6: Comparisons on decentralized least squares by local communication on an Erdos random network of size 50 and average degree 4. The agents in each iteration are activated with different probability distributions. Left: the objective function values. Right: the disagreements.

iteration and hence can greatly reduce the chance of communication delay and failure in the standard fully synchronized consensus algorithms. The proposed method converges to optimal solution with a provable rate of $O(1/t)$, where t is the iteration number.

References

