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1 Preliminaries

1.1 Basics of sets

A set A is a collection of elements with certain properties P, commonly written
as A = {z : z satisfies P} (e.g., A = {x € R:2? > 1}). Recall the following
definitions: subset A C B, union AU B, intersection AN B, complement A€,
empty set (), equal sets A = B, set minus A\ B = AN B°.

Example 1.1. The following statements hold:
e ANBCAC AUB for any A, B.
e AC Biff B¢ C A°.
e ANB=0iff AcC B“.
e Let ABCX . f ENA=FEUB forany E C X, then A= X and B = ().

We frequently consider a set of sets, and call it a family (or collection) of sets:
F = {A, : @ € I}, where I is the index set. Here I can be finite {1,...,n},
countably infinite N, or uncountably infinite. We also work with union and
intersection of multiple (often infinitely many) sets:

UAy={z:3ael,st.zcA,} and N A,={z:x€ A, Vael}
acl ael
The union and intersection satisfy the distributive law:

A0 (aLEJI Ba) B aLeJI(AmBO‘) and AU (a@[ Ba) - a@I(AU Ba)
Example 1.2. Let Ay = [a+ +,b], then U, Ay = (a,b]. Let Ay = (a,b+ %),
then NP, A = (a,b].

Example 1.3. Let 4, = [0, —log ) where @ € I = (0,1] C R, then Uyes Ay =
[0,00) and Nyer Aq = {0}.

Example 1.4. Suppose f : [a,b] — R. Show that {z € [a,b] : |f(z)| > 0} =
ne{z € o8] 1 [ f(2)] > 3}

Theorem 1.5 (De Morgan’s law). (Nper Aa) = Uaer A%, and (Uper Aq)° =
maEI Ag

Example 1.6. Some basic tricks in proofs.
e Use of Venn diagram. For example, define the symmetric difference of A
and B by AAB = (A\ B)U(B\ A), show AAB=(AUB)\ (ANB).
e ACBiffre A=zx€B.
e A=Biff AC Band B C A.

Definition 1.7 (Limit of a sequence of monotone sets). Suppose 47 D As D
<+« Ap, D -+, then we say {Ax} is non-increasing or simply decreasing (to be
distinguished from strictly decreasing where Ap1 C Ay for all k), and NF2, Ay
is called the limit of { Ay}, denoted by limy_, o, Ag or simply limy Ag. Similarly,
suppose Ay C --- Ay C ---, then {A;} is non-decreasing or simply increasing,
and U2 | Ay is the limit of {Ay}, also denoted by limy Ay.



Example 1.8. Let Ay = [k,00) CR for k=1,...,, then limy Ay = 0.

Example 1.9. Suppose {fx} is a sequence of real-valued functions defined on
R, and fi(z) < fa(z) < -+ < fi(x) < --- and fr(z) — f(z) as k — oo for
every x € R. For any ¢ € R, define Ay = {z € R: fy(z) > t}. Show that {A;}
is increasing, and lim, Ay = {z € R: f(x) > t}.

Proof. Tt is clear that Ay is increasing and limy Ay C A:={z € R: f(z) > t}.
For every z € A, there are f(z) > ¢, and fi(xz) T f(z) as k — oo. Hence
let € = (f(x) —t)/2 > 0, then there exists k' such that fi/(x) > f(x) —€ =
(f(z)+1t)/2 > t, and therefore z € Ay C U2, A = limy, Aj. O

Definition 1.10 (Upper and lower limit of a sequence of sets). Suppose {Ay}
is a sequence of sets. Denote B; = Up>; A, then {B,} is non-increasing. The
upper limit of { Ay} is denoted by

DY

limsup Ay = hm By =
k—o0 J

Bj:ﬁ UAk

1 j=1k=j

Similarly, the lower limit of {Ay} is denoted by

liminf A} = U A Ay

k—o0 =1k=j

Note that = € limsup;,_, o Ar = Nj2; UpZ; Ax means that: Vj > 1, 3k > 7,
such that x € Aj. Similar for the lower limit.

Example 1.11. Show that liminfy_,., A C limsup,_, ., Ak.

Proof. If x € liminfy_, ., Ay, then there exists j > 1, such that x € Ay for all
k > j, which obviously implies that = € limsup,,_, . Ax. O

Example 1.12. Suppose f,, f : R — R. Show that

1
2 i = : — > — .
{eeR: m fole)# f@} =0 A T {eer:|ful@) - @) > 7}
Proof. Note that f,(z) - f(z) at © means that there exists ¢g > 0 (or k 6 N
such that 1 <€), such that for any N € N, there is | f, () — f(z)| > €o > + for
some n > N. Therefore, “there exists k > 1 (U32,), such that for any N >1
(N%¥_1), there exists an n > N (U2 ) for which |f,(z) — f(z)| > 1.7 O

Example 1.13. Suppose f,(z) — f(x) for every x € R. Show that, for any
t € R, there is

oo 1
: <t} = : < — 0.
freR:f@)<ty= A 5 A {oeR:fule) <t+ k}
Definition 1.14 (Cartesian product). The Cartesian product of A and B is
Ax B={(a,b):a€ A, be B}.
Definition 1.15. A few examples of Cartesian product:
o A=1{1,2,3}, B={4,5}, then AxB = {(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.
e [0,1] x[0,1] ={(z,y) : 0 < w,y < 1}.



1.2 Functions

Definition 1.16. We have a series of defintions regarding functions:

e Let X and Y be two sets. f: X — Y is called a function (or mapping, or
transformation) if f assigns every x € X to one element y € Y.

e Let AC X, then f(A)={y €Y :y= f(x) for some x € X} is called the
image of A under f. Let B C Y, then f~'(B) = {z € A: f(z) € B} is
called the inverse image (or pre-image) of B under f.

e X is called the domain of f. f(X) is the range of f.

o If f(X) =Y then fis called a mapping from X onto Y (or f is surjective).
If ©1 # xo implies f(z1) # f(x2) then f is called one-to-one (or f is
injective).

e If f is both injective and surjective, then f is called bijective, or a one-to-
one correspondence between X and Y. In this case f~! exists and is also
a one-to-one correspondence.

e Suppose f: X > Y andg:Y — Z, then go f : X — Z is called the
composition of f and g, defined by (g o f)(x) = g(f(z)).

Example 1.17 (Characteristic function). Suppose A C X. Define the charac-
teristic function of A by

() 1, ifzeA,
xTr) =
xa 0, ifze Ac.

Then one can verify the following statements for every z € X:
AC B = xalz) < xp(z)

xauB(x) =xa(z)+ x5(*) — xanB(2)

XAN B(x) = XA(DC)XB(CU)

XA\B(x) = xa(@)(1 - x5(z))

xanp(r) = |xa(z) — x5 ()|

1.3 Cardinality of sets

We denote |A| the cardinal number of A (informally the “number of elements
in A”). This is clear if A is finite. However it is not obvious if A is infinite. We
need the help of functions to “count” |A|.

Definition 1.18. X and Y is said to have the same cardinal number if there
exists a one-to-one correspondence f : X — Y. In this case, we denote X ~ Y.
Then it is obvious that ~ represents an equivalence relation: (i) A ~ A; (ii)
A~ Biff B~ A; (iii) If A~ B and B ~ C, then A ~ C.

Example 1.19. Sets with the same cardinality.
e N~Z~{0,1,...} ~{2n:n € N}.
e N x N ~ N by setting f((i,5)) = 2071+ (25 — 1) (since every integer n can
be uniquely represented by n = 2P - ¢ for some nonnegative integer p and
odd integer g).



e Q~N.

e (—1,1) ~ R by setting f(z) = 155 for z € (=1,1). [Or f(x) = tan(Fx).]
Lemma 1.20 (Decomposition of sets by functions). Suppose f : X — Y and
g:Y — X. Then there erist A1, Ao C X and By,By C Y, such that f(Ay) =
Bl, g(BQ) = AQ, A1 ﬂAQ = @, Bl OBQ = @, A1 UAQ = X, and Bl UB2 =Y.

Proof. Define ' := {F C X : ENng(Y \ f(F)) = 0}, Ay := Ugcr E, By =
f(A1), By =Y\ By =Y\ f(A1), and Ay := g(B3). Then it remains to show
that AlﬁAg = @ and A1UA2 =X.

For any E € T', we know E C A; and hence ENg(Y \ f(41)) C ENg(Y \
f(E)) = 0. Therefore A1 Ng(Y \ f(A1)) = Uger(ENg(Y \ f(41))) =0, ie.,
A; €T'. Hence A1NA; = 0.

If there exists g € X \ (A1 UAs), then define A = A; U{zy} and hence
there is By = f(A1) C f(A). This implies that Y \ f(A) C Bs, and hence
g(Y'\ f(A)) C g(B2) = A2 and Ang(Y \ f(A4)) = 0 which means A € T". This
contradicts to Ay = Uger F. O

Theorem 1.21 (Cantor-Bernstein). If U C X and V C Y, and X ~ V and
U~Y, then X ~Y.

Proof. Let f : X — V and g : Y — U be one-to-one correspondences. By
Lemma there exist Ay, Ao C X and By, By C Y, such that A1 N Ay = 0,
Bl ﬂBQ = @, A1 UAQ = X, Bl UBQ = Y, f(Al) = Bl and g(BQ) = A2 (Wthh
are still one-to-one correspondences as they are restrictions of f and g on A;
and Bs respectively). Define

- f(ZL'), ifx € A1
he) = {g_l(x), ifxe Ay

Then it is clear that h is a one-to-one correspondence between X and Y, so
X~Y. O

Corollary 1.22. IfC C AC B and C ~ B, then C ~ A ~ B.

Proof. If C' = A or A = B then trivial. Otherwise C' C A C B, then setting
X =AY =B,U=Cand V = A in Theorem [I.2]] yields A ~ B. O

Example 1.23. (-1,1) ~ (-1,1] ~ [-1,1] ~ R.

Definition 1.24 (Cardinality of N). N is said to have cardinality Yo (pro-
nounced as “aleph zero”). An infinite set of cardinality Ry is called countable;
otherwise called uncountable.

Theorem 1.25 (X, is the smallest cardinality of infinite sets). Every infinite
set contains a countable set.

Proof. Suppose E is infinite. Then we can pick aj,as ..., one by one from E,
such that a1 € E\ {a1,...,an} #0, to get {ar : k € N} C E. O



Example 1.26. A few examples of sets of cardinality Ng.
e If A~ Nand B~ N then AUB ~ N.
o If A, ~ N for every n > 1, then U52; 4,, ~ N.
e Q ~ N. (Note that this only means that it is possible to list the elements
of Q in some order, but not necessarily by their values.)

Example 1.27. The set of mutually disjoint open intervals in R is at most
countable.

Proof. Define the function f that maps each interval to a rational number r in
that interval. Then f is injective to Q. O

Example 1.28. If f : R — R is monotone, then {z € R : lim,_,,- f(y) #
lim,_,,+ f(y)} is at most countable.

Proof. WLOG, assume non-decreasing. Then for each point in the set above,
there exists r, € Q such that lim,_,,- f(y) < 7, < lim,_,,+ f(y). Define
g:x 1., then g is injective. O

Example 1.29. If FE is a countable subset of R, then 3z € R such that
EN(E + {z0}) = 0. [Hint: consider A = {r,, — 7y, : 7, Tm € E,n # m} which
is countable, hence Iz € R\ A/]

Theorem 1.30. If A is an infinite set and B is at most countable, then A ~
AUB.

Proof. Suppose B = {by,bs,...}. Extract a countable set 41 = {a1,as,...}
from A, and denote Ay = A\ A;. Then define

asi_1 ifx=b,€B
f(fE) =< a9; ifx=a; € Ay
a ifz=a¢€ A,

Hence f: AUB — A is a one-to-one correspondence. O

Theorem 1.31. X is infinite iff X ~ A for some A C X.

Proof. The necessity is obvious. Extract a finite set B from X and define
A= X\ B, then A is inifite, and A ~ AUB = X. O

Definition 1.32 (Cardinality of R). R is said to have cardinality X1, also called
cardinality of the continuum ¢ = Ry = 280,

We consider the cardinality of (0,1] ~ R. For every z € (0,1], it can be
written as x = > >~ | 92 for a,, € {0,1} and infinitely many a,’s being 1. To
see this, note that every irrational number is a limit point of rational numbers,
and if ap = 0 for all £k > n then we can instead set a, = 0 and a; = 1 for all
k > n. We can show that A = {(a1,as,...) : a, € {0,1}} is an uncountable set,
and (0,1] ~ A (we only removed a subset of A, consisting of those with finitely
many 1’s, which correspond to some rational numbers that are collectively at

most countable). We can interprete | A| = 280 as A is the set of binary sequences.



Example 1.33. The following statements hold:
o If |A,| =Ny for all n > 1, then |U2; A, | = N;. [Hint: Ay ~ (k, &+ 1].]
e |R"| = |R|=%y. [Hint: Ay =Rfork=1,...,n]

Theorem 1.34 (There is no “cap” on cardinal number). Suppse A # 0, then
Ax24:={E:ECA}.

Proof. If not, then there exists a one-to-one correspondence f : A — 24. Let
B={r€A:x¢ f(x)}. Since B € 24, there exists y € A such that f(y) = B.
Ify € B, theny ¢ f(y) = B; if y ¢ B = f(y), then y € B. Both yield
contraditions. O

1.4 Topology of metric spaces

Definition 1.35 (Euclidean space and norm). We denote R™ = {(a:l, R I
x; € R, Vi} the n-dimensional Euclidean space. The norm of x = (x; Xp) €
R™ is defined by |z| = (2 + --- + 22)V/2.

One can verify the following properties of norms:

o 2| >0; || =0iff x = (0,...,0).

e |azx| = |a||z| for any a € R.

o |z +y| <|z|+ |y|. [Use the Cauchy-Schwarz inequality below.]

Theorem 1.36 (Cauchy-Schwarz). Letx = (x1,...,2,),y = (Y1,---,Yn) € R™,
then there is (31, ziy:) < (O, )2 (320, v2)Y/2. In addition, the equality

holds iff ¢ = ay or y = ax for some a € R,..

Proof. Note that A2 4 b\ +c¢ > 0 for all X iff b2 < 4c. Use this fact and that the
quadratic function f(A) = >0, (z; + Ay;)? > 0 for all A O

Definition 1.37 (Metric space). Let X be aset. Thend : X x X — R is called
a distance (or a metric) on X if the followings hold for all z,y, z € X:

e d(x,y) >0forall z,y € X; and d(z,y) =0iff x =y

o d(zy) = d(y, ).

o d(z,y) <d(z,z)+d(y, 2).
A set X with a distance d is called a metric space, denoted by (X, d) or simply
X. Throughout this class, we set d(z,y) = |z — y| for z,y € R™ by default.

Definition 1.38. There are a series of definitions given (X, d):

o diam(E) := sup{d(z,y) : z,y € E} is the diameter of E. E is said to be
bounded if diam(FE) < oo.

e For any x € X and § > 0, B(z,9) :={y € X : d(z,y) < 6} is called the
open ball with center z and radius §. B(z,0) = {y € X : d(x,y) < 4} is
the closed ball.

e z is called an interior point of E if there exists an open ball B(z,d) C E
(i.e., there exists 6 > 0 such that B(z,d) C E).

e F is called open if every point of F is an interior point. F is called closed
if £ is open. [It is easy to show that an open ball B(z, ) is literally open
by definition, and a closed ball is closed.]




(Only in R™) Suppose a; < b; for i = 1,...,n, then I = (a1,b1) X -+ X
(an,by) is called an open bor in R™. The volume of I is denoted by
1] = TTi= (bi — ai).

A sequence {zr} in X is said to converge to x if limy_, o d(zg, ) = 0 (or

simply denoted by xj — x).

e A sequence {2} in X is said to be Cauchy if for any e > 0, there exists
N, such that d(x,,z,,) < € for all n,m > N.

e Let E be an infinite subset of X. If there exists a sequence of distinct
points {x} such that zp — x, then z is called a limit point (or accumu-
lation point) of E. [Note that a limit point of E needs not be in E.]

e The set of limit points of E is denoted by E’. The union F := EUFE’ is
called the clousure of E. [E is a closed set; see below.]

o If AC B and A = B, then A is called dense in B, or A is a dense subset
of B.

e If x € F and «x is not a limit point of F, then x is called an isolated point
of E (i.e., 34 > 0, such that B(z,d)NE = {z}).

e If G, is open for every a € I and E C UaerGq, then {G, @ « € I} is

called an open cover of E.

FE is called compact if every open cover of E contains a finite subcover.

[In R™, E is compact iff E is closed and bounded; see below.]

Theorem 1.39. = € E' iff for any § > 0 there is (B(z,6) \ {x})NE # 0.

Proof. Necessity is clear. Let 6; = 1 and select 21 € (B(x,d1) \ {z}) N E. Then
for any k > 1, let 611 = 2d(zx, z) and select 41 € (B(z,0p41) \ {z}) N E,
then we obtain a sequence {z} which are distinct and z, — x, i.e., x € E/. O

Theorem 1.40. FE is closed iff E' C E.

Proof. Suppose F is closed, then E° is open. If z € E'\ E, then € E° and
there exists {zx} C F and z; — x. But this is a contradiction since x is an
interior point of E°.

Suppose E' C E. For any = € E°, we know = ¢ E’, i.e., there exists § > 0
such that B(z,d6) N E = (. Hence B(xz,§) C E°, i.e., x is an interior point of
E€. As x is arbitrary, we know E€ is open, and hence E is closed. O

Theorem 1.41. E is closed.

Proof. For any x ¢ E = E' U E’, there exists § > 0 such that B(x,8) N E = .
If 3y € E' such that y € B(x,d), then there exists 6’ > 0 and 2’ € B(y,d’) C
B(z,9), contradiction. Hence B(z,d) N E’' = §. Therefore B(x,d) C (E U E’)C,
implying that (E U E’)¢ is open. O

Example 1.42. A few examples of limit points.
e Let E = {1 :neN}. Then E' = {0}. All points in E are isolated points.
o Let £ ={/m—+/n:m,n € N}. Then E' = R. [Hint: for any z € R,
let z,, = \/[(x +n)2] — Vn? (where |z] := max{n € Z : n < z}). Then

VE+n)?2-1-n<zx, <zand z, — .



Theorem 1.43. Let E1, Es C R™. Then (E1UE>) = Ef UE).

Proof. Tt is clear that E C (EyUEy)' for j =1,2. If ¥ € (£, U Ey)’, then there
exists a sequence of distinct points {zx} C E1 U Es, such that 25, — . Then at
least one of Ey and Fs contains a subsequence of {zj} which also converges to
x. Hence (E1 U E»)' C Ej U E). O

Theorem 1.44 (Bolzano-Weierstrass). Every bounded infinite set E of R™ has
at least one limit point.

Proof. Let E be contained in [[;",[a;,b;], then by focusing on the first com-
ponents of the points in E we can extract a convergent sequence in [ag, b1] (by
Weierstrass theorem on R) with limit ¢;; then we focus on the second compo-
nents of this sequence and extract a convergent subsequence with limit ¢y, and
so on, until we finish the n-th component with ¢,. Then the sequence have
distinct points and its limit is ¢ = (¢1, ..., ¢n). O

Theorem 1.45. f € C(R™) iff for every t € R the sets By = {x € R" : f(z) >
t} and Eo = {x € R™ : f(z) <t} are open.

Proof. The necessity is clear. To show the sufficiency, suppose that for every
t both Ef and E§ are closed. If f is not continuous at xg, then there exists
€0 > 0 and a sequence x — ¢ such that |f(zx) — f(zo)] > €. WLOG,
suppose f(zg) < f(xo) — € for all k. Then set t = f(xg) — €9, we know
Ef ={x € R": f(x) <t} is closed, which is a contradiction since xy — xo and
{zr} C ES but x ¢ EY. O

Theorem 1.46 (Operations on open and closed sets). Union of (finitely or
infinitely many) open sets is open; Intersection of finitely many open sets is
open. Contrary for closed sets. Namely,
o If F, is closed and G, is open for every a € I, then Nyey Fy is closed,
and Uger G s open.
o If Iy, is closed and Gy, is open for k = 1,...,n, then Ni_; F} is closed,
and Up_; G, 1is open.

Proof. We only show this for open sets. Then applying De Morgan’s law implies
those for closed sets.

For every z € Uyer Ga, there exists o/ € I such that z € G, and hence
IAB(x,8) C Go C Uner Ga-

For every = € N}_, Gy, there exist d; > 0 such that B(z, ;) C Gy, for every
kE=1,....,n. Let 6 = min{dy : k = 1,...,n} > 0 (require finiteness!) then
B(z,0) C Gy, for all k. O

Definition 1.47 (Gs-set and F,-set). We call H = N2 Gy, a Gs-set if Gy, is
open for all k, and K = U2, F), an Fi-set if F}, is closed for all .

Theorem 1.48 (Compact sets are closed). If K is a compact set, then K is
closed.
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Proof. Tt suffices to show that K¢ is open, i.e., every point of K€ is an interior
point. For every y € K¢ and z € K, denote §, = 3d(x,y) > 0. Then {B(z,6,) :
x € K} is an open cover of K, and hence has a finite subcover {B(z;,d,,) : 1 <
i <k} of K. Let 0 := miny<;<j 0, (which is > 0), then B(y, ) N B(x;,d,,) =0
for all <. Hence B(y,d) C K¢, i.e., y is an interior point of K*¢. O

F

Theorem 1.49 (Closed subsets of a compact set are compact). If F C K,
1s closed and K s compact, then F' is compact.

Proof. Let {G, : « € I} be any open cover of F, then {G,,F°:a € I} is an
open cover of X and hence also of K. As K is compact, there is a finite subcover
{Gu,;, F©:1<i<k}of K. Therefore {G,, : 1 <i < k} is a finite subcover of
F by noting that F'° does not help covering F. O

Theorem 1.50 (Cantor). Suppose Fj # 0 is compact for every k, and Fy D
Fo DD F,D..., then 32 Fy, #0.

Proof. Supose not, then Fi C X = (N2, Fy)° = U2 Ff. Therefore {F¢} is
an open cover of F;. Hence there exists a finite subcover {F,; 1 <i <1} of
Fi, ie, Fi C U._ F¢. Therefore Ni_, Fy, C Ff. But Ni_;Fy, C Fy. Hence
Ni_, Fy, = 0, which is a contradiction since Fy, # () for all k. O

Lemma 1.51. T =[ay,b1] X + -+ X [an, by] is compact in R™.

Proof. Suppose not, then I has an infinite open cover A = {G, : a} which
does not have a finite subcover. Perform bisection of each side of I, we obtain
2" closed boxes, and at least one of them cannot be covered by finitely many
open sets in A. Hence we perform bisection of this box again, and obtain a
smaller closed box that does not have a finite subcover either, and so on, which
never ends. It is clear that the size of the box shrinks to 0 and converges
to a point x € I, which must be an interior point of some G/, i.e., 3§ > 0
such that B(z,0) C G.. Then we should have stopped within finitely many
iterations of the bisection once the box is in B(x,d) which is covered by G/, a
contradiction. O

Theorem 1.52 (Heire-Borel). Bounded closed sets in R™ are compact.

Proof. Let F be closed and bounded. Then there exists a bounded closed box I
such that F' C I. Since I is compact and F' is closed, we know F' is compact. [

Example 1.53. Suppose F' C R" is closed and bounded, and G C R”" is
open, and F C G. Then 3§ > 0 such that for every z € B(0,0), there is
F4{z} ={y+x:yeF}CQG.

Proof. Since every y € F'is an interior point of G, we know 34, > 0 such that
B(y,dy) C G. Also {B(y, %’) :y € F} is an open cover of F', and hence has
a finite subcover {B(y;, %) 11 < i < k}. Namely, for every y € F, we know

y € By, 6;i) for some ¢ € {1,...,k}. Set 0 = minj<;<i % Then for any
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z € B(0,6) and y € F, x +y € B(y;,0,,) for some ¢ € {1,...,k}, and hence
z+yeq. O

Before closing this section, we consider several examples of distances between
sets.

Definition 1.54 (Distance between sets). d(z, E) := inf{d(z,y) : y € E} and
d(Ey, Es) :=inf{d(z,y) :x € F1, y € Es}.

Example 1.55. Suppose E; = {x = (z1,22) € R? : 25 = 0} and Ey = {2 =
(1’1,%2) € R2 L X1x2 = 1} Then d(El,Eg) =0.

Theorem 1.56. If F' C R" is nonempty and closed, and xo € R", then 3y € F
such that d(zg, F) = d(xo,y).

Proof. Choose § > 0 large enough such that K = B(xg,0) N F' is nonempty.
Define f : R" — R by f(z) = d(zg,x) for any 2z € R™. Then f is continuous.
Since K is compact, we know [ attains its minimum on K at some y € K. [

Theorem 1.57. Suppose E C R™ is nonempty. Then f(z): R™ — R defined
by f(x) = d(x, E) is uniformly continuous.

Proof. We can even show that f(z) is Lipschitz continuous on R", which implies
uniform continuity. To this end, for any x,y € R™ and € > 0, there exists
z € E, such that d(y,z) —e < d(y,E) = f(y) < d(y,z). Hence f(x) — f(y) <
d(z,z) — (d(y,z) —€) = d(z,z) — d(y,z) + € < d(z,y) + e Since € > 0 is
arbitrary, we know f(z) — f(y) < d(x,y). Similiarly f(y) — f(z) < d(z,y).

Hence |f(x) — f(y)| < d(z,y), i.e., f is 1-Lipschitz. O

Corollary 1.58. If Fy, F» are nonempty and closed, and at least one of them is
bounded, then there exist x1 € Fy and xo € Fy, such that d(x1,x2) = d(F1, F3).

Proof. If F1 N Fy # 0, then trivial. Otherwise, WLOG, suppose F} is bounded
and hence is compact. Define f(x) := d(x, Fy), then f : R™ — R is continuous
and hence attains minimum over [} at some x; € F}. Note that there exists
0 > 0 such that K = B(z1,0) N Fy is nonempty. Since K is compact (since
K is closed and bounded) and g(z) : R® — R defined by g : = — d(z1,z)
is continuous, we know ¢ attains minimum over K at some xo € K. Hence

d(xl,xz) = g(xg) = d(l‘l,K) = d(.r17F2) = f(Il) = d(Fl,FQ). D

Example 1.59. Suppose F}, Fo C R™ are nonempty, closed, and disjoint. Then
there exists a continuous function f : R™ — R such that 0 < f < 1, F} = {« :

(@) =1} and Fy = {: f(z) = 0}. [Hint: f(2) = g pizl ]
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2 Measure and Measurable Sets

2.1 o-algebra

Definition 2.1 (o-algebra). Let X be a nonempty set. Then I' C 2% (i.e., T
is a collection of subsets of X) is called a o-algebra of X if:

1. el

2. If A €T then A€ €Ty

3. IfA, el forn=1,2,..., then U2 A, €T

Given the definition above, it is also easy to verify that the following state-
ments hold if T" is a o-algebra of X:

1. X eTy

2. If A,B€eT, then A\ BeT;

3. f Ay el for k=1,...,n, then U}_, Ay € T}

4. If A, el for k=1,2,..., then N2, Ay, limsup, Ay, liminf, A, €I

Definition 2.2 (Generated o-algebra). Suppose ¥ C 2%, and consider A =
{T': ¥ €T, and I is a o-algebra of X} (obviously 2% € A and hence A # 0).
Then I'(X) := Nre 4l is called the o-algebra of X generated by 3.

Remarks. It is easy to verify that I'(X) is a o-algebra of X (i.e., I'(X) € A):
for example, if A € T'(X), then A € T for all T € A. Since every I is a o-algebra,
A¢ € T'. Therefore A° € T'(X) = Npe4l’. Similar for the other two conditions.
Hence I'(Y) is the “smallest” o-algebra of X containing X.

Definition 2.3 (Borel o-algebra of R"). Let ¥ = {G C R™: GG is open}. Then
the o-algebra I'(X) generated by ¥, formally denoted by B(R™) or simply B, is
called the Borel o-algebra of R™. A set B € B is called a Borel set.

2.2 Outer measure

Definition 2.4 (Outer measure). Let {I} : k € N} be a countable set of open
boxes in R™. We call {I }) an open-box-cover of E C R™ if E C U2 | I}. Then
the outer measure of E is defined by

(oo}
u*(E) = inf {Z |Tx| : {Ir}r is an open-box-cover of E}
k=1

Remarks. If ), |I;| = oo for every open-box-cover of FE, then we define
p*(E) = oo; otherwise p*(E) < co. Note that p*(E) > 0 for any E.

Example 2.5. For any x € R", p*({z}) = 0. Forany t € R and E = {z =
(x1,...,2n) 2y =t,x; €R, Vj # i}, there is p*(E) = 0.

Theorem 2.6. Let I be an open boz, then p*(I) = |I|. [Hint: WLOG consider
|I| < oco. For any € > 0, there exists an open box J such that I C I C J and
[J| < |I| +¢€.]
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Theorem 2.7 (Properties of outer measure). The outer measure p* in R™ has
the following properties:

1. p*(E) > 0; u*(@) =0 [Note that p*(E) = 0 dose not imply E = 0.]

2. If By C Ey then p*(E1) < p*(Es).

3. (Sub-additivity) p* (U3 Ey) < > pe ) 1 (Ek).
Proof. The first two are trivial. We only show the sub-additivity. For any € > 0
and any Ej, there exists an open-box-cover {I; : | € N} of Ej, such that

Z ‘L’c,l' < ,U*(Ek) +

€
2k
=1

Then {I,; : k,I € N} is an open-box-cover of E := U2 | Ey, and hence

<ZZ|IM|<Z( ;k):kZu*(EkHe
=1

k=11=1
Since € > 0 is arbitrary, we have p*(E) < > 22, u*(Ey). O
Example 2.8 (Countable sets have measure 0). If E = {z;, € R" : k € N},
then p*(E) = 0.

Example 2.9. Suppose E C [a,b] C R and p*(E) > 0. Then for any t €
(0, u*(E)), there exists A C E such that p*(A) = ¢. [Hint: Define f(z) =
p*([a,z) N E) for every x € R. Then show that f is 1-Lipschitz on R, i.e.,
|f(x+ Az)— f(z)| < |Az]| for all x, Az € R. Then apply the Intermediate Value
Theorem of Continuous Functions to f.]

Theorem 2.10 (Outer measure is invariant of shifting). For any z € R™ and
E C R", there is p*(E) = p*(E + x).

Example 2.11. For any A € R and E C R, there is p*(AE) = |\|p*(E).
Example 2.12. If p*(A) =0, then p*(AU B) = p*(B) = p*(B\ A).

Proof. Tt follows from p*(B) < p*(AU B) < p*(A) + p*(B) = p*(B) and
u*(B\A)Su*(B)<u(B\A)+u( )= u*(B\ A). -

2.3 Measurable sets and Lebesgue measure

The problem with the outer measure is that there exist mutually disjoint Ej
for k = 1,2,..., but p* (U2, Ey) < Y poy p*(Ex). We will restrict pu* to the
so-called measurable sets, such that p*(U2 Ey) = > oo, u*(Ey), Le., p* is
countably additive. Note that countable additivity implies finite additivity.

Definition 2.13 (Measurable set). A set E C R™ is called a measurable set, or
simply that E is measurable, if for any T" C R", there is

W (1) = 1" (T NV E) + 0 (T 1 E°).
We call T a test set (note that it can be any set). The collection of all measurable

sets in R™ is denoted by M(R™), or simply M in no danger of confusion.
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Remarks. In order to show E € M, it suffices to show p*(T) > p* (TN E) +
p* (T N E*) for any test set T, since p*(T) < p*(TNE) 4 p*(T N E°) is already
implied by the sub-additivity of u*.

Example 2.14. If y*(E) = 0, then £ € M. [Hint: p*(T) > p*(T N E°) =
pP(TNE)+p*(TNE)as 0 < pu*(TNE) < p*(E)=0]

Example 2.15. Let E;, F; C R™ (not necessarily measurable). If there exists
S € M such that By C S and Ey C S, then p*(E1 U Ey) = p*(Eq) + p*(Es).

Proof. Let E7 U E5 be the test set for S, then pu*(E; U Es) = p*((E1 U Eg) N
S) + p*((Er U E2) N S°) = p*(Ev) + p*(Ea). O

Theorem 2.16 (Properties of M). The following statements hold for M:
1. P e M.
2. If E € M, then E€ € M.
3. If B1, By € M, then E1 U Ey, E1 N Esy, Eq \E2 e M.
4. If B e M for all k =1,2,..., then U2, Ey, € M. If in addition that all
Ey, are mutually disjoint, then p* (U2 Ex) = > poq w* (Eg).

Proof. Ttems 1 and 2 are trivial. For Item 3, we only need to show E1UFE; € M,
since By N Ey = (E$ U ES) and Ey \ E2 = Ey N ES. For any test set T,
consider T'N (E; U E5), which can be partitioned into three mutually disjoint
sets: TNE1NEy, TNENES, and TN EYN Ey (use Venn diagram). Also note
that TN (Ey U E2)¢ =T N E$ N ES. Therefore

p(T) = p* (T N Ey) + p* (TN EY)
= (TNENE)+pu* (TNENES)] + [ (TN ESN Ey)
+ (T N E§ N ES)]
> (TN (EyUEY)) +p*(TNEYNES)

where the first equality is due to E; € M with T as test set, the second equality
is due to By € M and T'N E; and T'N EY as test sets, and the inequality is due
to the sub-additivity of u* applied to the first three terms. Note that it is easy
to show that 35| Ej, € M and p*(UE_ Ey) = S5 1 (Eg).

For Item 4, WLOG, we assume Ej are mutually disjoint; otherwise replace
Ey by Fy, == Ei \ (Uf;llEi) for k > 2 which are also in M. Denote Sy = U¥_| E;
and S = U2, F;. Note that S, € M due to Item 3, and S° C S}. Therefore,
for any T, there is

1 (T) = p*(T N S) + p*(TNSE) > (TN E;) + p* (TN S°)

HM»

Letting k — oo, we obtain pu*(T') > Y22, p*(TNE;)+p*(T'NS°) > p*(TNS)+
p*(IT'NS°). Hence S € M. Letting T' = S yields p*(S) > Yoo, p* (SN Ey) =
220:1 W (Ek). O
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The theorem above implies that M, the collection of measurable sets in R,
is a o-algebra of R™. This is formally called the Lebesgue measure of R™.

Definition 2.17 (Lebesgue measure). For any E € M, the Lesbesgue measure
w of E is defined by p(E) = p*(E). The space R™, the set M, and p, constitute
the Lebesgue measure space (R™, M, ) on R™.

Remarks. In general, for any set X and its o-algebra A4, and an extended
real-valued p : A — R U {oo}, we call (X, A, u) a measurable space if (i) 0 <
W(E) < oo for any E € A; (ii) u(0) = 0; and (iii) p is countably additive,
Le., p(UZ Ex) = > pey w(Ey) for any countable collection of mutually disjoint
sets {Ey € A: ke N}. If u(X) = oo, but X = U2, Ej, where Ej, € M and
w(Fy) < oo for all k, then p is called o-finite.

Theorem 2.18 (Continuity of u from below). Suppose Ei, € M for all k =
1,2,..., and Ey C E5 C ..., then there is u(limy Ey) = limy u(Ey).

Proof. Tflimy u(Ey) = oo then trivial. Denote Fy = ) and Dy, = Ex—Er_1 € M
for all k =1,2,.... Then lim E), = U2, E}, = U2, Dy,. Hence,

o] k
I (khiilo Ek) =p (;L:jl Dk) = I;ﬂ(Dk) = lilgn;u(Dj) = lim u(Ex)

where we used the countable additivity of measures in the second equality. O

Corollary 2.19 (Continuity of u from above). Suppose Ey, € M for all k =
1,2,..., M(El) < o0, and By D Es D ..., then u(limk Ek) = limy /L(Ek).

Proof. Denote Fy, = FEy \ Fy, for all k. Then § = Fy C F C ---. Therefore,
p(B) = lim p(By) = lim (u(Er) = p(By) = Tim p(F) = o ( lim F)
k— o0 k— o0 k— o0 k—o0

(B 5) = (B0 0) = (5.3, 20)

(015 50) ) i )

Hence p(limy Ex) = limyg, p(Fk). O

Remarks. We need the boundedness in Corollary for example, let Ey =
[k, 00) for every k, then limy, E, = 0 and p(limy Ex) = 0 # oo = limy, u(Ey). So
we need Ej to be bounded starting from some k& (WLOG, k£ = 1 in Corollary
2.19)). This boundedness is not required in Theorem since Ej can grow
unbounded and we will just get oo both sides.

Example 2.20. Suppose E; € M for all k and Y po; u(Ey) < oo, then
p(lim supy, Ex) = 0.

Proof. Let By, = U2 E;, then By, is non-increasing and w(By) < Z
(B

(Ej) =
0 as k — oo. Hence there is u(limsup,, Ex) = p(limg By) = limy, O

=k
k) = 0.
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Corollary 2.21 (Fatou’s lemma for measures). Suppose E, € M for all k.
Then there is p(liminfy Ey) < liminfy, p(Ef).

Proof. Let By, = N;>iE; for every k € N. Then By, is non-decreasing, B, C Ej,
for all k, and hence p(liminfy Ey) = p(limy By) = limy, u(By) < liminfy p(Ey).
O

Remarks. We have two remarks regarding the Fatou’s lemma for measures.

e In general we do not have pu(liminfy Ey) = liminfy u(E)). For example,
let Ej, = [0,1] if k is odd and (3,1] if even, then liminf; E; = 0, and
p(liminfy, Ey) = 0 < § = liminfy, u(Ey) for all k.

o If £, C E for all k and p(E) < oo, then we also have u(limsup, Ej) >
lim sup,, u(E%) by substituting Ejy, with Ef, for every k and observing that

(limsupy, Ey)¢ = liminfy, EY.

Lemma 2.22 (Carathéodory). Suppose G is an open proper subset of R", E C
G (E needs not be in M). Let By, = {z € E : d(x,G) > 1} for every k € N.
Then limy, p*(Ey) = p*(E).

Proof. 1t is clear that Eqy C Eo C --- C By, C --- C E. Hence p*(Ey) < u*(E)
for all k. For any x € E C G, z is an interior point of GG, and hence there exists
0 > 0 such that B(z,d) C G, i.e., d(z,G°) > 6. Hence E = U2, Ex. WLOG,
assume p*(E) < oo.

Let Dy, = Ejy1 \ By for k =1,2,..., then we have

k
00 > 1" (B) 2 0" (Eae) 2 07, Daj) = > (D), VEeEN,
j=1

where we used the fact that d(Da;, D2j) > 0 for all ¢ < j < k to obtain the
equality (p* is additive if two sets are separated with a positive distance).
Hence 3272, ) p*(D2;) — 0 as k — oo. Similarly, 3272, p*(Dojy1) — 0 as
k — oo. Therefore, for any ¢ > 0, there exists k large enough, such that
Yo par 1 (D2j) < 5 and 3°7%, p*(Dajy1) < §. On the other hand, note that
E = Egk U (U?ik;+1D2j) U (UJO‘.;]@DQJ'-&-I)» we know that

pH(E) < p(Ba) + Y (Do) + Y p*(Dajia)
j=kt1 =k

< (Egx) + €< klim w(Ey) + e
—00
Since € > 0 is arbitrary, we have p*(F) < limy p*(Ey). O

Theorem 2.23 (Closed sets are measurable). If F C R" is closed, then F € M.

Proof. For any test set T'C R™, consider T'N F¢, which is a subset of the open
set F°. Denote F, = {x € TN F° : d(z,F) > +}. Then by Lemma [2.22]
limy, p*(Fy) = p*(T N F°). Therefore

P (T)=p" (TNF)U(TNF)) > p*(TNF)U Fy)
=p (TNF)+p*(F) = p (TNF) + p*(TNF)
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as k — oo, where we used the fact that d(T' N F, F},) >

% > 0 to obtain the
second equality above. Hence p*(T') > p*(TNF) 4+ p*(TNF°).

SoFeM. O
Corollary 2.24 (Open sets are measurable). If G C R™ is open, then G € M.
Corollary 2.25 (Borel sets are measurable). If A € B(R"™), then A € M.

Proof. Since B(R™) is the smallest o-algebra generated by the family of open
sets, and M is a o-algebra also containing all open sets due to Corollary [2.24]
we know B(R") C M. O

Theorem 2.26. Suppose E € M. For any € > 0, there exist an open set G
such that E C G and p(G\ E) < €, and a closed set F' such that F C E and
pw(E\F) <e.

Proof. First assume p(E) < co. Then there exists an open-box-cover {I} of
E such that G = U2, I, and u(G) < p(E) +e. Hence 0 < u(G\ E) =
w(G) — u(E) <e.

If u(E) = oo, then denote E, = EU B(0, k) for every k € N. Then p(E)) <
oo for all k, and F = U2, Ey. For every k, there exists G}, such that Fy, C Gy,
and u(Gr \ Ex) < 57 Now let G = U2, Gy, then £ C G and G\ E =
U (Gk \ E). Hence

oo oo

WG\ E) <Y p(Gr\E) < Y p(Gi\EBi) <) 5p =«

k=1 k=1 k=1

8

For any F € M, we know E°¢ € M. Hence there exists an open set GG, and
therefore a closed set F' = G¢, such that p(E\ F) = p(ENF°) = w(ENG) =
w(G\ E°) <e. O

Theorem 2.27. Suppose E € M. Then there eixsts a Gs-set H such that
E C H and p(H\ E) = 0. Similarly, there exists an Fy-set K such that K C E
and u(E\ K) =0.

Proof. There exists an open set Gj such that £ C Gy and u(Gy \ E) < 1
for every £ € N. Let H = N?2; G} which is a Gs-set, then £ C H and
pw(H\ E) < u(Gi \ E) < 1 for all k. Hence u(H \ E) = 0. O

Theorem 2.28. For any E C R™ (needs not be in M), there exists a Gg-set
H such that E C H and p(H) = p*(E).

Proof. There exists an open Gy, such that E C G and u(Gy) < p*(E) + ¢ for
every k € N. Let H = N>, Gy, then E C H and p*(E) < p(H) < p*(E) +
for all k. Hence pu(H) = p*(E). O

Remarks. However, there may not exist an F,-set K such that K C E and
w(K) = p*(E) if E ¢ M. See Example below.

Theorem 2.29. Suppose E, C R™ but need not be in M for all k € N. Then
p*(liminfy Fy) < liminfy u*(Ey).
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Proof. By Theorem for every E, there exists a G,-set Hj, (hence Hj, €
M), such that Ey, C Hy and p(Hg) = p*(Eg). Hence p*(liminfy Ey) <
p(liminfy, Hy) < liminfy p(Hy) = liminfy, p* (Ey). O

C

Corollary 2.30. Suppose E; C R™ but need not be in M, and E1 C FEs
< CEp C -+, then p*(limg Ey) = limy p*(Ey).

Proof. Note that p*(limy, Ex) < limy, pu*(Ey) by Theorem 2.29] The converse is
obvious because E) C lim E}, for all k. O

Example 2.31 (Cantor set). Consider the closed interval [0,1] C R. Let C; =
0,3 U [%, 1] by removing the open middle third (3,2) from [0,1]. Then let
Cy=10,5]U[2,3]U[3, Z]U[8,1], by removing the middle thirds from both of
[0, %] and [%, 1], and so on. Then C}, is compact for every k, and C1 D Cy D - - -.
Then C = N32, Cy, is called the Cantor set. In addition, C has the following
properties: (i) C is compact, nowhere dense, totally disconnected, and has no

isolated point; (ii) pu(C) = 0; and (iii) |C| = ¢.

Proof. (i) Note that C is closed and bounded, hence compact. The remaining

three are easy to check; (ii) The total length of intervals removed is % + % + % +
219—1

=Y 0oy H = 1; (iii) It can be shown that C' = {377, 4 : ax = {0,2}},
hence |C| = ¢ (see comment below Definition [1.32)). O

2.4 Non-measurable sets

We provide example of non-measurable sets. We have shown that £ € M if
p*(E) = 0. Hence a non-measurable set must have positive outer measure. To
show that there are non-measurable sets, we consider R in this subsection, and
recall that A+ E = {A+ 2 : € E} is the translation set of E C R by A € R.
Note that p*(A + E) = u*(F) since (outer) measure is translation invariant.

Lemma 2.32. Suppose E € M and p(E) < oo. If there exists a bounded
countably infinite set A C R such that the collection of translation sets {\+ E :
A € A} are disjoint, then u(E) = 0.

Proof. Since {\+ E : A € A} is a collection of countably many disjoint sets, by
the countable additivity of measures, we know p(Uxea(A + E)) = D>\ o (A +
E) =3 yca n(E). Since both A and E are bounded, we know Uxca(A + E) is
bounded and hence p(Upea(A+ E)) < co. If u(E) > 0, then u(Upea(A+ E)) =
> xea M(E) = oo, which is a contradiction. Hence u(E) = 0. O

For any F C R, we define the equivalence relation ~ for any x,y € E: z ~y
iff © —y € Q (it is easy to verify that ~ is an equivalence relation by checking
that it is reflexive, symmetric, and transitive). Then F is a disjoint union of
its equivalence classes. Let Cy C FE be the set that contains ezactly one point
from each equivalence class in E. Then we know the two properties below hold:

1. For any z,y € Cg, x —y ¢ Q since z,y belong to different equivalence

classes of E.
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2. For any x« € E, there exists ¢ € Cg and ¢ € Q such that x = ¢ + ¢, since

CEg contains a point from the same equivalence class which = belongs to.

Note that the first property also implies that {A\ + Cg : A € A} is a collection

of disjoint sets provided that A C Q. Now the following theorem shows that
non-measurable sets exist.

Theorem 2.33 (Vitali: non-measurable sets exist). Any set E with p*(E) > 0
contains non-measurable subset.

Proof. WLOG, we assume 0 < u*(E) < oo and E C [-b,b] C R (otherwise
we take B(0,b) N E for some b € N). Let A = [-2b,2] N Q. Let Cg be
the subset of F containing exactly one point from each equivalence class, then
{A+ Cg : A € A} is a collection of countably many disjoint sets.

If Cg € M, then by Lemma we know p(Cg) = 0. Now for any z € E,
there exists ¢ € Cg and ¢ € Q, such that ¢ = z — ¢. Since Cg C E C [-b, b,
we know ¢ € [—2b,2b] and hence ¢ € A. Therefore x € Upep(A + Cg). As z
is arbitrary, we know E C Uyea(A + Cg). However 0 < p*(E) < u(Urea(A +
Cg)) = 2 xea A+ CEg) = > \ca #(Cp) = 0, which is a contradiction. Hence
Cg ¢ M. O

Theorem 2.34. There exist disjoint sets A, B C R such that p*(AU B) <
w*(A) + u* (B).
Proof. If not, then for any £ ¢ M and T C R, there is pu*(T) > p*(T N E) +

w* (T N E°) since TN E and T N E€ are disjoint. This implies £ € M by
definition, a contradiction. O

Example 2.35. Let F = [0,1) C R and Cg be the subset of E containing
exactly one point from each equivalence class in E as above. Let Dy = {x +
A (mod1):z € Cg}for every A € A :=[0,1) N Q. Then E = UyepaD, is a
countable disjoint union, p*(Dy) = p*(Cg) > 0 for all A € A, and

L= ([0,1) = 1" (B) = w* (| Dx) < 3 (Dy) = oc.

AEA AEA

Moreover, for any measurable subset K C Cg, we know {A+ K : A € A} is a
family of measurable and disjoint sets, u(A+K) = u(K), and co > p*(Urea (A +
Cr)) = i(Urea(A + K)) = Syep plA + K). Hence u(K) = 0 < i*(C) (see
remark after Theorem [2.28)).
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3 Measurable Functions

3.1 Extended real numbers

Recall the following properties of the extended real numbers R = R U {£o00}:
1. For any = € R, there is —co < z < 0.
2. For any = € R, there are

x4 (+00) = (+00) + = = (4+00) + (+00) = +00
z — (+00) = (—00) +x = (—00) + (—00) = —0
T — (+00) = (—00) — (+00) = —00
x — (—00) = (+00) — (—00) = +00
+(+00) = +o0
+(—0o0) = Foo
+(Foo) = —0
| £ 00| = 400

3. For any x € R and z # 0, we denote sign(z) =1 if 2 > 0 and —1 if x < 0.
Then there are x - (£00) = +sign(z) - 0o, and

(£o0) - (£00) = 400, (Fo0) - (Foo) = —00

4. (£00) — (£o0) and +(00) 4 (Foo) are not defined. We define 0- (£oo) =0
in this course.

Definition 3.1 (Measureable function). Suppose £ C R™. We call the function
f + E — R measurable, or f is a measurable function on E, if {x € E : f(z) >
t} € M for any ¢t € R.

It turns out that we only need to show {z € E: f(x) > r} € M for all r in
a dense set D of R, for example D = Q.

Theorem 3.2. Suppose f : E — R and D is a dense subset of R. If {x € E :
f(x) >r} € M for anyr € D, then f is measurable.

Proof. For any t € R, there exist {r;} C D such that r; | t. Hence {z € E :
[@) > 1} = e {z € Bs f(z) > i} € M. 0

Example 3.3. If f : [a,b] — R is monotone, then f is measurable.

Proof. WLOG, assume f is non-decreasing. Then for any t € R, {z € [a,}] :
f(z) > t} is either the empty set, or a single point, or a subinterval of [a, b],
which are all in M. O

Theorem 3.4. If f : E — R is measurable, then the sets on the left hand side
below are all measurable sets for any t € R:

1. {zeE: f(x) <t} =E\{z € E: f(z) > t}.

2 {zeE:flx)>2t}=n2{zcE: f(z)>t—1}.
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3. {z€eE: f(x)<t}=E\{x € E: f(x)>t}.

4. {xeE:flx)=tt={zeE: f(x)>t}n{x e E: f(x) <t}
5. {zeE:f(z)<oo}=U2{x€E: f(zx) <k}

6. {reE: f(x)=+0}=FE\{z € FE: f(zx) <+oo}.

7. {zeE: f(z)>—oco}=U2 {z € E: f(z) > —k}.

8 {z€E:f(z)=-x}=E\{ze€FE: f(x)>—oo}.

Remarks. We can use any of the first three as the definition of measurable
sets.

Theorem 3.5. If f : E1 U Ey — R, and f is measurable on E1 and Es, then f
is measurable on F1 U FEs.

Proof. {r e EyUEy: f(x) >t} ={zx € FEy: f(z)>tiU{z € Ey: f(x) >t} €
M. O

Theorem 3.6. If f : E — R, and A C E is measurable, then f is measurable
on A.

Proof. {x € A: f(z) >t} =An{z € E: f(z) >t} e M. O
Example 3.7. Suppose E € M. Then yz : R® — R is measurable.

Proof. Note that all of the three sets below are measurable:

R™ ift<0
{z eR” :xg(zx) >t} =< FE if0<t<1
0 ift>1

O

Theorem 3.8. Suppose f,g: E — R are measurable. Then cf, f+g, f-g are
measurable for any c € R.

Proof. If ¢ = 0 then trivial. If ¢ > 0 then {x € E : ¢f(z) > t} = {z € E :
f(x) > t/c} € M. Similarly for ¢ < 0.
Let Q = {r}, then{z : f+g >t} =U2 {z: f>re}n{z: 9 > t—ri} € M.
We first can show f2 is measurable: {z: f2 >t} ={x: f>Vi}U{z: f<
—/t}ift > 0and {z: f2 >t} = Fif t < 0. In either case, {z: f2 >t} € M,
hence f? is measurable. Then note that f-g= 1((f +g)® — (f — 9)?). O

The result above can be generalized to functions f : E — R.

Theorem 3.9. If fi : E — R is measurable for every k, then sup, fi(z),
infy, fi(x), limsupy, fr(x), liminfy, fi(x) are all measurable functions.

Proof. Denote f = sup, fr. Then for any t € R, {z : f > t} = U2 {z :
fr > t} € M. The other three can be verified by noting that infj fr =
—supy,(—fx), limsup,, fx = lim;sup,~; fr = inf;sup,>,; fr and liminfy f, =
— lim supy, (— fx)- O
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Corollary 3.10. If fi,f : E — R, fi is measurable, and f, — f for every
x € E, then f is measurable.

Example 3.11. Suppose that f : E —
max(f(x),0) and f~(z) = max(—f(x),0

measurable.

R is measurable. Define f*(z) =
fo

) for all x € E. Then fT,f~ are

It is clear that f is measurable iff f*, f~ are measurable.

Example 3.12. If f : E — R is measurable, then |f| is measurable. However
the converse may not be true. [Hint: f(z) =2(xg(z) — %) for some E ¢ M.]

Example 3.13. Suppse f : R? = R. f(x,y) is continuous in y for every = and
measurable in x for every y. Then f is measurable on R2.

Proof. For every k € N, define fi(z,y) = f(=, %) for % <y < % Then for
every t € R, there is

o0

{(z,y) : fu(z,y) >t} = U {x e (az, %) >t} X (J;l,ﬂ

j=—00

which implies that fj is measurable. Then limy, f(x,y) = f(z,y) for all y implies
that f(x,y) is measurable. O

Example 3.14 (Continuous functions are measurable). If £ € M and f €
C(E), then f is measurable. [Hint: for every ¢, {x : f(x) > t} is open.]

Definition 3.15. Let F C R™. We say a property P holds almost everywhere
(a.e. in short) if there exists A C E such that u(E\ A) = 0 and P(x) holds for
every x € A.

Example 3.16. If f,g: E — R and pu({x € E: f(z) # g(x)}) =0, then f =g
ae. E.

Definition 3.17. If f : E — R and u({x € E : |f(z)| = +oo}) = 0, then
|f| < oo ae. E, or f is finite a.e. E.

Remarks. Note that this is different from “bounded by M a.e. E”, which is
ul{z € B [f(z)] > M}) =0,

Theorem 3.18. If f,g: E - R, f =g a.e. E, and f is measurable, then g is
measurable.

Proof. Let A = {z : f = g}, then u(E\ A) = 0 and A € M. Therefore
(reBig) >t} ={reAiga)>t}U{re A gla) >t} = {v e A:
flz) >t} U{z € A°: g(z) > t} € M since both sets are measurable. O

Example 3.19. Suppose F € M and 0 < pu(F) < co. If 0 < f < o0 a.e. E,
then for any 6 > 0, there exits Es; C E and K > 0, such that u(Es;) < § and
+ < f(z) <K for all z € E \ Ej.
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Proof. Define Ay, = {z € E : + < f(z) < k}. Then it is clear that A is
non-decreasing. Let A = U2 | Ay. Then E = AU ZyU Z; where Zy = {z € E :
f(z) =0} and Z; = {x € E : f(x) = co}. Note that u(Zy) = u(Z1) = 0. Hence
w(E) = uw(E\ (ZoUZy)) = p(A) = p(Ug2, Ag) = limy p(Ag). Thus there exists
K, such that for Es = Zy U Z1 U A%, there are p(E;5) < § and % < f(z) <K
forallz € Ak = E\Es = E\ (ZoU Z1 U A%). O

3.2 Simple functions

Definition 3.20 (Simple function). A function f : E — R is called simple
if the range set f(E) is finite. That is, E can be partitioned into p mutually
disjoint sets E4, ..., Ep, such that f(z) = >F_| ¢;xp,(x) for p distinct values
Cl,...,¢cp ER.

It is clear that, if E; € M for all 4, then the simple function f is measurable.

Theorem 3.21 (Pointwise convergence to a nonnegative measurable function
by a monotone sequence of simple functions). If f : E — R, f is measurable,
and f > 0, then there exists a sequence of non-decreasing simple functions { fi}
such that limy, fi(z) = f(x) for every x € E.

Proof. For every k € N, we partition [0, 00] into [0, k) and [k, oc], and further
partition [0, k) into k - 2¥ segments of length 5. Then define Ej ; = {z € E :
L < f@) < fYforj=1,....k-2¥ and By = {x € E: f(z) > k}, and a
simple function f; as follows:

2 ifrxe By, j=1,...,k- 2%,

— 73
fi(z) {k if 2 € By

Then it is clear that fi < f and fi is non-decreasing. For any = € E, if f(z) <
0o, then there exists an integer K > f(x), and hence 0 < f(z) — fr(z) < 5% for

all £ > K, and hence limy, f(z) = f(x); if f(z) = oo, then fr(x) = k and hence
limy, fr(x) = 00 = f(x). O

Theorem 3.22 (Pointwise (uniform) convergence to a (uniformly bounded)
measurable function by a sequence of simple functions). If f : E — R is mea-
surable, then there exists a sequence of simple functions {fr} such that |fr| < f
and fr, — f. If in addition |f| < M, then fi, = f.

Proof. The first statement can be verified by noting that f = f* — f~. If
|f| < M, then for any € > 0, by the same construction above, there exists an
integer K > M, such that |f(z) — fu(2)| < 55 < 3 < e for all z € E and

k> K. 0

Definition 3.23 (Support of a function). Suppose f : E — R. Then the support
of f, denoted by supp(f), is defined by the closure of {x € E : f(x) # 0} (hence
a support is always closed). If supp(f) is bounded, then f is said to have a
compact support.
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Example 3.24. Let gr(x) = fr(z)xB(0.x) (%) where f; is the simple function
in the previous theorem, then g is also simple and has compact support, and
gr(x) — f(z) for all z € E.

3.3 Convergence almost everywhere

Definition 3.25 (Convergence almost everywhere). Suppose fi, f : E — R.
Then fj is said to converge to f almost everywhere on E, denoted by fr — f
a.e. E, if there exists Z C F, such that u(Z) = 0 and limy fx(z) = f(x) for all
xeFE\Z.

It is clear that if fi is measurable for every k and fr — f a.e. E, then f is
measurable.

Lemma 3.26. Suppose fr, f: E — R where u(E) < oo, and fr, — f a.e. E.
Then for any € > 0, define the set Ex(e) = {z € E : |fi(x) — f(z)| > €}, there
is limy, 1(U32, B (€)) = p(limsupy, Ex(e€)) = 0.

Proof. Note that fr — f a.e. E means that pu(U2; N2, UJ"’;kE](%)) =0 (To
see this, recall that limy fx(x) # f(z) means that there exists ¢ € N, such that
for any k € N there exists j > k and |f;(z) — f(z)| > 1. But the set of such
“non-convergent” points has measure 0). Also note that Ejy(e;) C Ey(ez) for
any 0 < e5 < €1. Hence for any € > 0, there exists ig € N, such that % < € and
BB U2 L B () < (R U2, By () < U2, (72, U B (1) = 0. Note
that lim sup,, Ey(e) = N2, U2, Ej(e) and U3, Ej(€) is non-increasing in k, we
obtain that limy p(U32, Ej(e)) = p(limg U2, Ej(e)) = p(limsupy, Ex(€)) = 0,
where we needed p(FE) < oo to obtain the first equality. O

Theorem 3.27 (Egorov: almost everywhere convergence + bounded domain
= “npearly” uniform convergence). Suppose fi, f: E — R where u(E) < co. If
fx and f are finite and fr, — f a.e. E, then for any d > 0, there exists Es C F,
such that u(Es) < 6 and fr, = f on E'\ Es.

Proof. For any § > 0 and i € N, denote Ey(3) = {z € E : |fi(z) — f(z)| >
%}, then by the lemma above, we know that there exists j; € N such that
WU, Bi(3)) < o

Now consider Es = u;’;lu,;“;jiEk(%), thereis u(Es) < Y02, M(U,;“;JE;C(%)) <
S, & = 6. Moreover, there is

p\E=A A (B (3)) = A A (e if@ @)l <:)
T ey, VR G T =1 k=g * IR v i

Therefore, for any i, there exists j;, such that | fx(z)— f(z)| < 1 for allz € E\ E;s
and k > j;. This means f = f on E \ Ej. O

Remarks. A few remarks are in place:
1. The boundedness of E is necessary. [Hint: consider fi(z) = xo,x)(z) and
f(x) =1for all z € R. Or consider fi(z) = ¢ and f(z) =0 for z € R
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2. If u(E) = oo, we can still show that for any M > 0, there exists Ey C E
such that u(Ep;) > M and fi, = f on Ejs. [Hint: choose any set Fijy C R™
with u(Fay) = M 4§, and Epy = Fiy \ Es by applying Theorem
(Egorov) to E = Fyy.]

3. There exists a sequence of sets { E;} with non-decreasing measure to u(E),
such that fp = f on Ej for every j, and u(E\ (U2, Ej)) = 0.

4. We can choose Es such that F'\ Es is also closed. To this end, just choose
Ej,9 at the first place such that u(Es/2) < §/2 and fr, = f on E'\ Ej)s,
and choose a closed set F' C E'\ Es/ such that u((E\ Es/2) \ F) < 6/2
(by Theorem , then p(E\ F) <4, and fr = fon F.

Example 3.28. f;(z) = 2* on [0, 1]. Then for any § > 0 we can show f, = f
on [0,1—4].

3.4 Convergence in measure

Definition 3.29 (Convergence in measure). Suppose fi, f: E — R and f, f
finite a.e. E. We say that f, converges to f in measure, denoted by fi. = f, if
for any € > 0, there is limy oo u({x € E : |fi — f| > €}) = 0. [Using the Ej(¢)
notation above, this definition can be stated as: fx = f on E if for any € > 0
there is limy u(Ex(€)) = 0.]

Note that p({z € E : |fx| = oco}) = 0 for all k, so it does not affect the
convergence in measure.

Theorem 3.30 (Convergence in measure = unique limit in the sense of a.e.).
If fi ﬁ>f and [ ﬁ)g, then f = g a.e.

Proof. For any € > 0, denote Ej(e) = {z : |fu(x) — f(x)] > €} and Fi(e) = {x :
|[fe(x) — g(2)| = €}. Note that |f(z) — g(x)| < [fe(x) = f(@)] + [fe(x) — g(2)].
Hence, there is {z : [f —g| > €} C Ep(§5)UFi(5). Since pu(E(5)), p(Fr(5)) = 0
as k — oo, we know pu({z : |[f—g| > €}) = 0. Setting ¢ = 1 and taking countable
union for n € N yield that u({z: |f — g| > 0}) = 0. O

Theorem 3.31 (Convergence a.e. + bounded domain = convergence in j).
Suppose fr, [+ E — R where u(E) < oo, fi, f finite a.e. E, and fr, — [ a.e. E,

then fr = f.

Proof. Since fi, — f a.e. E, we know that for any ¢ > 0 there is (M52 UpZ;
Ei(€)) = 0 where Ex(e) = {z € E : |fr(x) — f(z)| > €}. Note that Ag(e) =
USxEj(€) is non-increasing in k and Ejy C Ay, we have limy p(Ey(e)) <
limy 1(Ag(e)) = p(limy Ax(e)) = 0 (the first equality requires pu(E) < o0).
Hence fr %5 f on E. O

Remarks. We have two remarks regarding Theorem [3.31
e An alternative proof: If f — f a.e. E, then for any ¢ > 0, there
is p(limsupy, Ex(€)) = 0. By the Fatou’s lemma for sets and u(E) <
oo, we have 0 = p(limsup, Ex(€)) > limsup, u(Fr(e)) > 0. Hence
limy p(Ex(€)) = 0.
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e The boundedness of E in Theorem [3.31] is again necessary: consider
Jr(x) = Xjo,,(z) and f(z) = 1 for all z € R. Or consider fi(z) = ¥
and f(z) =0 for x € R.

Theorem 3.32 (Almost uniform convergence = convergence in u). Suppose
feo f + E =R, fr, f finite a.e. E. If for any § > 0, there exists Es C E such

that (Es) < 6 and fr = f on E\ Es, then f & f.

Proof. For any 6 > 0, there is Es C E, u(Es) < §, and fr = f on E \ Es.
Hence for any € > 0, there exists an integer K depending on ¢ and §, such that
|fu(z) — f(z)| < eforall z € E\ Es and k > K. Therefore Ey(e) = {z € E :
|fu(z) — f(z)| > €} C Ejs, ie., p(Ex(e)) < pu(Es) < 6 for all k > K. Therefore
limg 1(E(€)) = 0, ie., fx = f on E. O

Definition 3.33 (Cauchy in measure). Suppose fi, : E — R. We say {f:} is
Cauchy in measure if for any € > 0, there is u({x € E : |fr(x)— f;(x)] > €}) = 0
as k,7 — oo. In other words, for any €,d > 0, there exists K € N, such that
p{z € E:|fu(x) — fi(x)] > €}) <dforall k,j > K.

Theorem 3.34 (Cauchy in measure = convergence in measure). Suppose { fx}
18 Cauchy in measure on E. Then there exists f : E — R finite a.e. E such that

fo 5 fonE.

Proof. We first show that there exists a subsequence of {f;} that converges to
f in measure; then we show that the entire sequence fi, = f.

Since {fr} is Cauchy in measure, we know that for every ¢ € N (and let
€ =06 = ), there exists k;, such that p({z € E : |fi(z) — fi(z)| > £}) < =
for all [,j > k;. WLOG, we assume k; < k;11, hence we have a subsequence
{fr.}, denoted by {g;} for short, of { fx}, such that u(FE;) < 5 where E; = {z €
E : |gi(z) — git1(z)] > %} Now consider S = NP2, UL, E;. Since U E; is
decreasing in [, we have

o0 o0 > 1
_ N 1 N < T Z ' m L o,
uis) 'u(lli{go = Ei) zl—lglo 'u(iL:Jl Ei) < zliglo — HiE:) < lliglo 21-1 0

Also, for any z € S¢ = U2, N2, B¢, we know Yoo, |gi(2) —gir1(z)| < Y00 5 =
st — 0 as | — oo, which means {g;(x) — gi+1(x)} is absolutely convergent
and {g;(x)} is Cauchy. Let f(z) be the limit of {g;(z)} for every z € S¢ and
arbitrary in S (it does not matter as u(S) = 0). Hence g; — f on 5S¢, and
gi — f ae. E.

Now we show g; N f on E (note that we cannot directly get this from
gi — [ a.e. E using Theorem since £ may be unbounded). Note that
lg1(x) — f(2)| < 3232, |9i(2) — gi41(2)] ae. E. Denote Fi(e) = {z € E': |gi(x) —
f(z)| > €}. Then for any €, > 0, there exists [ large enough, such that 2,%1 <
mine,8), and u(Fi(e)) < p(Fi(yir)) < p(UZ,E) < S5 u(Ey) < o < 6.
Hence g; % f.
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Finally, we will show fi £ f. To this end, for any e > 0, consider

fo: fu@)=f@)] = &}  {o: 1ful@) = @) = 5 po{a s fu(@) - f@)] = 5}

Note that the two sets on the right hand side have measure approaching 0 as
k,i — oo. Hence p({z : |fr(z) — f(x)| > €}) = 0 as k — oo. O

Remarks. It is easy to show the converse of Theorem m Hence {f} is
Cauchy in measure iff f, & f.

Theorem 3.35 (Reisz: Convergence in p = 3 subsequence converges a.e.). If
fr 55 f on E, then there exists a subsequence fe, = f ae. E.

Proof. From the proof of Theorem there exists a subsequence {fg,} of
{fx}, such that f, — g a.e. E for some g and f, = g. On the other hand,
S A f. Hence f = g a.e. E. Therefore fre, = fae E. O

3.5 Measurable functions and continuous functions

Theorem 3.36 (Lusin: finite a.e. = “nearly” continuous). Suppose f : E — R
18 finite a.e. E, then for any § > 0, there exists F C E where F is closed and
w(E\ F) <0, such that f is continuous on F'.

Proof. WLOG, assume that f: E — R (since u({z : |f| = 0o}) = 0).

We first prove the case where f is simple, ie., f(z) = Y7 | cixr, () for
mutually disjoint Ey,...,E,. To this end, for every E;, there exists a closed
subset F; C E; and p(FE; \ F;) < % (by Theorem . Let F = UY_,F;. Then
F is closed, and u(E \ F) < ¢. Moreover Fi,...,F, are also mutually disjoint,
and f is constant on each F;. Hence f is continuous on F.

Next we prove the case where f is a general measurable function. WLOG,
assume |f| < 1 (note that the transformation g(x) = f(x)/(1 + |f(z)|) and its
inverse f(x) = g(x)/(1—|g(z)|)). Then there exists a sequence of non-decreasing
simple functions {fx}, such that fr — f a.e. E. Then for every k, there exists
a closed subset F, of F with u(E\ Fy) < %, such that f; is continuous on F},.
Let F' = N2, Fy, then F is closed, and p(E\ F) = p(Ug2(E\ Fy)) < ¢. Hence
ft = f on F'. Since fi is continuous, we know f is continuous on F. O

Corollary 3.37. Suppose f: E — R is finite a.e. E. Then for any § > 0, there
exists a continuous function g : E — R such that p({z : f(x) # g(z)}) < 0.

Corollary 3.38. Suppose f : E — R is finite a.e. E. Then there exists a
sequence of continuous functions {gr} such that g — f a.e. E.

Proof. Consider sequences €, §x J. 0. Then for every k, there exists g such that
p({z : |f(x) — gr(x)| > ex}) < 6. Hence gp % f. By Reisz theorem above,
there exists a subsequence of {gx}, still denoted by {gr}, such that g, — f
a.e. E. O
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3.6 Measurability of composite functions

Lemma 3.39. Suppose f : R™ — R. Then f is measurable iff f~*(G) € M for
any open set G C R.

Proof. Necessity is obvious. Now suppose f is measurable. Then for any (a,b) C
R, we know f~!((a,b)) = f~1((a,00)) \ f~1([b,o0)) € M. Recall that for any
open set G C R, it can be written as the union of countably many disjoint open
intervals as G = U2 | (ax, bg). Hence f~1(G) = U2, f~1((ak,br)) € M. O

Theorem 3.40. Suppose f : R — R is continuous and g : R™ — R is measur-
able, then fog:R™ — R is measurable.

Proof. Since f is continuous, we know that for any open G, f~!(G) is open.

Hence (f 0 g)™1(G) = g7 (f71(G)) e M. 0

Remarks. Note that if f is measurable and g is continuous, f o g is not neces-
sarily measurable.

Theorem 3.41. Suppose T : R™ — R™ is continuous, and u(T~*(Z)) = 0 for
any Z C R™ with u(Z) = 0, and f : R™ — R is measurable, then f o T is
measurable.

Proof. For any open set G in R, f~1(G) € M. Hence there exist a Gs-set H
and a measure zero set Z such that f~1(G) = H\ Z. Therefore T-1(f~1(G)) =
T=YH)\T7Y(Z) € M since T"Y(H), T~Y(Z) € M. O

Corollary 3.42. Suppose f : R™ — R is measurable and T : R® — R™ is a
linear nondegenerate transformation, then f o T is measurable.

Example 3.43. Suppose f : R? — R is measurable. Show that g(z,y) =
f(z —y) : R? x R? — R is measurable.

Proof. Define h(z,y) = f(x). Then for any t € R, {(z,y) : h(z,y) >t} = {z:
f(z) >t} x R € M(R?). Hence h is measurable. Let T(x,y) = (z — y,7 + v)
then T is a linear nondegenerate transformation. Therefore g(z,y) = h(T(z,y))
is measurable. O
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4 Lebesgue Integrals

4.1 Integral of simple nonnegative functions

Definition 4.1 (Integral of simple nonnegative function). Suppose f : R" —
R, is a simple measurable function such that f(z) = >°%_ ¢;xa,(z), where
{A;} are mutually disjoint and R™ = UY_; A;. Then for any E € M, the integral
of f on E is defined by

| @ aua ZczuEﬂA)

Recall that we define 0 - co = 0. Hence the integral is not affected if ¢; =0
or u(E N A;) = 0. For notation simplicity, we write the integral of f over E in
either of the ways below:

[ t@au) = [ s@xs@ano = [ fau= [ 5w [ 1= [

Example 4.2. Let f = >% | ¢;xa, be a simple nonnegative function. Show
that p(A;) < oo for all i if [ f < co.

Example 4.3. Consider the function f(z) = xg(x) =1 if z € Q and 0 other-
. 1
wise. Then [; f =0

Theorem 4.4 (Linearity of integral). Suppose f,g: R" — R are simple non-
negative measurable functions. Then for any E € M and ¢ € R, there are

Jpef=cfpfand [o(f+9) =[]+ [p9

Proof. The first one is trivial to show. Now suppose f(z) = > ", az xa, () and
g(z) = 23:1 bixp,(x). Then it is clear that f(z) 4+ g(z) = - Zj=1(ai N
b;j)xa,nB, (z). Hence

p q

/f+g => "> (ai + b))u(EN A; N B;)

=1 j=1
p

—ZaluEﬁA +ijuEﬁB)

Jj=1

=/f+/g,

E E
which proves the linearity. O

Theorem 4.5. Suppose Ej, € M and is increasing in k. Let E = U2, E.
If f : R" — R is a simple nonnegative measurable function, then fEf =

limk fEk f
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Proof. Suppose f(z) => Y, aixa,(x). Then there is
P p
i f 9= i DB A9 =3 (i (B 4)

Zaw(hm Ey) ﬂA) Zal,u (ENA) /f,

which completes the proof. O

4.2 Integral of general nonnegative functions

Definition 4.6. Suppose f : E — R is nonnegative measurable function. The
integral of f on F is defined by

/ f =sup {/ h : h is simple nonnegative, h(z) < f(z), Vz € E}
E E

We call f integrable if [}, f < oc.

Theorem 4.7 (Properties of integral). The following statements hold:
1. If f,g: E =Ry and f < g, then [, f < [, 9. Hence if g is integrable
then f is integrable. If f < M and u(E) < oo, then f is integrable.
2. If A C E is measurable, then [, f = [, fxa.
3. If f=0 a.e E, then [, f =

Proof. Ttem 1 is trivial. Item 2 can be verified by
/ f =sup {/ h : h is simple nonnegative, h < f}
A E

=sup {/ hxa : h is simple nonnegative, hxa < fXA}
E

:/EfXA

For Item 3, let By = {z € E : f(z) > +}. Then E} is non-decreasing.
Moreover, §u(Ey) < [ f < [z f =0, which implies that p(Ey) = 0 for all k.
Moreover {z € E : f(z) > 0} = U2, Ey, therefore u({z € E : f(x) > 0}) <
>kt M(ER) = 0.

Theorem 4.8 (Integrable functions are finite a.e.). Suppose f : E — R, is
integrable. Then f is finite a.e. E.

Proof. Let Ey, = {z : f(z) > k}. Then Ej is decreasing and A := {x : f(z) =
oo} = M2, Ey. Note that k- u(Ex) < [ f < [ f < ocand pu(Ey) < oo for all
k, we know p(A) = limy u(Ey) < ¢ [ f — 0 as k — oo. Hence u(A) =0. O
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Theorem 4.9 (Beppo Levi: fx + f = [ fi 1 [ f). Suppose fi, : E — R,
fr(@) < frp1(x) for every x € E and k, and limy, fr(z) = f(z) for all x € E.
Then limkafk = fEf

Proof. 1t is clear that [, f is well defined. Since fi T f, we know [, fi 1 and

For any simple function h < f and any ¢ € (0,1), consider Ej, = {z : fi(z) >
ch(z)}. Then Ejy 1 E. Hence

lim/fk>hm/ fr > lim/ ch:/ch:c/h
k— o0 E k— oo By E E

Letting ¢ — 1, we have limy, [, fr > [, h. Hence limy, [}, fr > [ f. O
Remarks. If [, fi <ooand fi | f >0, then [, fi | [5 f

Theorem 4.10 (Linearity of integral). Suppose f,g: E — R, and a, 3 > 0.
Then [ (af +Bg9)=o [, f+8[59-

Proof. Only need to show this for « = 8 = 1. Let fx 1 f and gx T g, then
fe+ gk T f+g. Hence

/E(f+g)Zkli_{T;o/E(fk-l-gk)Zkh_{go{/Efk-i-/Egk}Z/Ef+/Eg

Example 4.11. Suppose f,g: E — Ry and f =g a.e. E. Then [, f = [, 9.
[Hint: f = fxg, + fxg, where By ={x: f =g} and Ex = E'\ Fy.]

Theorem 4.12. Suppose fi : E — R,. Then fE Z;O:l k= Z:i1 fE fr-

Proof. Let sg(x) = Zle fi(z) and s(z) = >"p— fu(x) for every z and k. Then

s, 1T s. Hence limy, [ s = [ s. O

Corollary 4.13. Suppose {Ey}r C M are mutually disjoint. If f is integrable
on E=U2, Ey, then [, f =37, fEk f

Proof. Let fr = fxg,. Then

g[Ef Z/ffo/ me /f

by the theorem above. O
Remarks. If f =1, then the corollary above reduces to u(E) = > ;- p(Ey).

Example 4.14. If E4,..., E, are subsets of [0,1], and every point on [0,1] is
covered by at least k of En, ..., E, where k < p. Then p(E;) > % for some 1.

Proof. Ezlﬂ fo leE )Zfollf:k' O
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Lemma 4.15 (Fatou’s lemma for integrals). Suppose fi : E — Ry. Then
fE liminfk fk S liminfk fE‘ fk

Proof. Define gi(x) = inf;>y fj(z) for every x € E and k. Then g; is non-
decreasing and nonnegative. Hence

/liminffk:/ lim gx = lim /gk gliminf/ frs
since gi(z) < fr(x) on E. O
Remarks. If [, fi < M for all k, then [, liminfy . fr < M.

Example 4.16. We may have “<” hold in Lemma [£.15] in some cases: let

0, ifz=0
fe(z) =Sk, if0<z<i
0, if<z<i1

for every k. Then f; — 0 on [0,1]. But fol limg fr, = 0 < 1 = limy, fol fr-

Theorem 4.17. Suppose f : E — R, is finite a.e. E and u(E) < co. If[0,00)
is partitioned such that 0 = yo < y1 < --+ and Yg11—yx < 6 for all k, and define
Ey={xz € E:yr < f(x) < yps1}. Then f is integrable iff Y ro i yrp(E)) < 00.
Moreover lims_o Yoy Yxi(Ex) = [ f-

Proof. For every k, there is ypu(Fr) < fEk f <ypr1p(Er) < ou(Ex)+yru(Ey) <
Su(E) + yrp(Ey). By the squeeze theorem, f is integrable iff 27 yru(Ex) <
0o. Taking § — 0 completes the proof. O

4.3 Integral of general functions

Definition 4.18. Suppose f : E — R is measurable. If at least one of [, fT
and [, f~ is finite, then the integral of f is defined by [ f= [, fT— [pf~.
If both are finite, then f is called integrable, denoted by f € L(E).

Remarks. Note that [ |f| = [, fT+ [, f~. Hence f € L(E) iff |f| € L(E).
In addition, | [, f| < [5 f]-

Example 4.19. If f : F — R is bounded, u(F) < oo, then f € L(F). [Hint:
There exists M > 0 such that |f| < M. Hence [, |f| < M - pu(E) < oo

Theorem 4.20 (Properties of integral). The following statements hold:
1. If f € L(E), then |f]| is finite a.e. E.
2. IfE€e M and f =0 a.e. E, then [, f=0.
3. If f: E — R is measurable, g € L(E), and |f| < g, then f € L(E).
4. If f € L(R™), then limy f]R"\B(O,k) f=0.
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Proof. Item 1 follows Theorem Item 2 follows from f* =0 a.e. E. Ttem 3
follows from 0 < f* < g due to |f| < g. Item 4 follows from [ f* < [|f| < o
and fiF | 0 where fif := xR\ B(o.k)- O

Theorem 4.21 (Linearity of integral). For any ¢ € R, [,cf = ¢ [, f and
fE(f+g) = fEerng'

Example 4.22. Suppose f : [0,1] — R is measurable. If fol |f ()] log(1 +
F(@)]) < oo, then f € L(0,1]).

Proof. Let By = {x: |f(z)| > e — 1}, then |f(z)| < |f(z)|log(1 + |f(z)]) for all
x € Ey. Let E5 = E\ Fy, then |f(z)] < e—1. Hence fol lf] = fEl |f]log(1 4+
|f\)+fE2(e—1)<oo. O
Example 4.23 (Jensen’s inequality). Suppose w : E — R, and fE w=1.1If
¢ : la,b] = R is convex, f : E — [a,b] is measurable and f € L(E). Then
([ fw) < [z o(f)w.

Proof. Denote yo = [, fw. Then a < yo < b. Since ¢ is convex, there exists

z € R such that ¢(y) > é(yo) + 2z - (y — yo) for all y. Hence by setting y = f(x),
multiplying w on both sides, and taking integral over F, we obtain

[ otr@yute) = ([ w)otm)+=- ([ fo=m) = o)

which is the claimed inequality. O

Theorem 4.24. Suppose E, € M are mutually disjoint. If f € L(E) where
E =2, B, then [, f = D he fEk f

Proof. Note that >, , e, 2= o fF < [plfl < oo Hence 07, [5f =
Z?:lef+*Zliilef7:fEf- O

Theorem 4.25 (Absolute continuity of integral). Suppose f € L(E). Then for
any € > 0, there exists 6 > 0, such that for any Es C E satisfying u(Es) < 0,

there is | [ fI < [, |fI <e

Proof. WLOG, assume f : E — R;. Then there exists a simple function g such
that 0 < g < fand 0 < [, f— [, g < §. Let M be the bound of g and § = 5%;.
Then for any Es satisfying u(E;) < 6 = 557, there is

/Eéf:/Eé(f—gH/Es%/E(f—g)+M-u(E5)<e,

which completes the proof. O

Example 4.26 (Intermediate value theorem of integrals). Suppose f € L(E)
where E C R and 0 < C := [, f < co. Then for any ¢ € (0,C), there exists
t € R such that fEﬁ(foo gf=c
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Proof. Define g(t fEﬂ( 0o,t] f(z). From the theorem above, we know that
for any € > 0, there exists & > 0, such that for any |At| < 0, there is

9t + A8) — g(t)] < [E WL

Hence g(t) is continuous. Since g(—o0) = 0 and g(+o0) = C, by the interme-
diate value theorem of continuous functions, there exists ¢ such that g(t) = ¢ €
(0,0). O

Theorem 4.27. If f € L(R"), then for any yo € R", there is [, f(z + yo) =

f]Rn f(x)

Theorem 4.28 (Lebesgue dominated convergence theorem). Suppose fi €
L(E) and fi, — f a.e. E. If there exists g € L(E) such that |fi] < g, then
Jete—= It

Proof. Define hy, = |fi — f]|, then hy — 0 a.e. E and 0 < hy < 2g¢ for all k.
Hence hg,2g € L(E). Moreover, by Fatou’s Lemma

/29—/ lim (2g — 2hy) <hm1nf (Qg—Qhk):/ Qg—limsup/ 2hy
E E E

k—oco k—o0

Hence limsupy, [}, hy < 0 and therefore | [, fo— [ f1 < [p1fe—f1 = [z he =0
as k — oc. O

Remarks. The Lebesgue dominated convergence theorem actually implies a
stronger result: fE |fi — f| = 0 as k — oo.

Example 4.29. In general, [}, fx — [, f does not imply [, |fx — f| = 0. For

example, let fy(z) = 1 if z € [, 25) and j is odd, and 0 otherwise. Let

f(m):% ThenfEfk:fEf7buth|fk—f =1

Example 4.30. In general, fE |fx — f| = 0 does not imply fr — f a.e. For

example, let fiy(z) = 1if 2 € [, 2!) and 0 elsewhere for k = 27 + i, where

j>1landi=0,...,27 —1. Then fi % f, but we do not have f, — f a.e.

Theorem 4.31. If [, |fx — f| = 0, then f X f. Moreover, there exists a
subsequence fr, — [ a.e.

Proof. For any € > 0, denote Ey(e) = {z € E : |fr(x) — f(z)| > €}, there is

eu(Ek<e>>=/Ek(€)e</Ek(e)|fk—f<e/E|fk—f|+o.

Hence u(Ey(€)) — 0 as k — oo, ie., fi 57 O

Remarks. The converse is not true in general. See Example
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Theorem 4.32 (Bounded convergence theorem). If |fix| < M, fr — f a.e. E,
and p(E) < oo, then [, fr = [5 f

Proof. Set g(z) = M and note that ¢ € L(E) since u(E) < co. Then by
Dominated Convergence Theorem, [, fr — [, f. O

Theorem 4.33 (Dominated convergence theorem for fi, £ f). Suppose fi, €
L(R™), fr & f, and there exists g € L(R™) such that |fx| < g. Then f € L(R")
and [o fro = Jgn [

Proof. Since f, %5 f, there exists a subsequence Jr;, = f ae. and I} gl =
[z - Hence f € L(R"), and | f| < g a.e. It remains to show that [o, fx = [g. f

For any € > 0, we first choose R > 0 large enough, and denote B = B(0, R)
for short, such that 2 fRn\B g < § (by Theorem Item 4). Then

€
[ oin-ns2 [ g<t
R\ B R\ B

Now we work on B which is bounded. We choose § > 0 small enough, such
that for any Es C B satisfying u(Es) < 4§, there is 2[13,; g < § (by Theorem
. Hence fEs If — f] < 2fEa g < §. Since f £ f, there exists an integer
K large enough, such that u(Cy) < § for all k > K, where Cy, := {x € B :
|fe — f| > 557} € B and m := p(B). Then there is

€ € €
Jumsi= [ temais [ femnin [ i< g gemas =

for all k > K. Hence [ |fi — f| = 0. O

Example 4.34. Suppose f € C(]0,00)), and f(z) — | as x — oo, then for any
A> 0, there is limy, [} f(ka) = Al

Proof. Since f(x) — I, we know there exists X > 0 such that |f(z)| < |{|+1 for
all z > X. Since f is continuous, there exists m = maxo<,<x |f(z)| < co. Then

|f(z)] < M for all > 0 where M = max(m,|l| +1). Define fi(z) = f(kz),
then fr(z) < M on [0, A]. By the bounded convergence theorem, there is

A A
i [ st = i [ = [ g o= [ g gt =

k—o0

O

Example 4.35. For any o > 1, show that fl ffsl;;)”” dz — 0as k — 0.

Proof. Denote fy(r) = £2sh2  Then |fy(r)] < r2 o < (km)la,l — 0. By

1+ (kz)> 1+ (kxz)™
DCT Theorem , limy, fol f= fol limy fr = 0. O
k242
Example 4.36. For any a > 0, show that [~ 7"32"’%1;2 — 0 as k — oo.
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Proof. Consider change of variable u = kz and then

® k2pe—kw o et & ue—
FrC gp= [ M qu= Y qu
LS [ = ) o0 G

a2
Denote fi(u) = X[ka,o0) (u)lﬁuw, then it is clear that fi(u) — 0 a.e. and
|fi(u)| < ue™* € L(R). Hence by DCT there is limy, [;° f = 0. O

Corollary 4.37. Let f, € L(E). If >0 [ | fi| < oo, then -2, fu(x) con-
verges a.e. E. Define f(x) = > po fx(x) for every x € E. Then f € L(E) and

fEf = Ziozl fEfk

Proof. Let si(x) = Zle |fi(z)| and s(z) = > ; | |fr(x)] for every x € E. Then
Jps =limy [pse =Y 0=y [ ]fr] < oo by Theorem Hence s € L(FE) and

s is finite a.e. E. Define gp(z) = Zle fi(x), then |gi(x)| < s(z). By Theorem
(DCT), there is [, f = [plimg gp = limy [ = > 0eq 5 fr- O
Theorem 4.38 (Interchange derivative and integral). Suppose f : E x (a,b) —
R, f(-,y) € L(E) for every y € (a,b), and f(x,-) is differentiable on (a,b) for
every x € E. If there exists g € L(E) such that |0y f(z,y)| < g(z) for any
(z,y) € E x (a,b), then for any y € (a,b), there is

d%/ </E f(z,y) du(x)) = /E (@;f(%y)) du(z).

Proof. For any y € (a,b), consider any nonzero sequence e, — 0, and define
fr(x) = é(f(a:,y +ex) — f(z,y)) for every x € E. By the mean value theorem
of derivatives, there exists &, € (y,y + ex), such that |fp(z)| = [0, f(z,&)| <
g(z) € L(E). Note that lim fi(z) = 8, f(z,y). Hence by Theorem 4.2 (DCT),
there is

d% (/E f(z,y) du(x)> = lim Eka[EkILr&fk:/E(ayf(x’y)> du(z),

which completes the proof. O
Example 4.39. Let f € L(R) and ) -, i < 0o where aj > 0 for all k. Then

limy, f(arx) =0 a.e.

Proof. Denote fi(z) = f(agz). Then > 2=, [|fx] = Zzilf%:md(akx) =
Zzilf%dx < oo. Hence > 72, |fx| is finite a.e., which implies f; — 0
a.e. O

Theorem 4.40. If f € L(E), then for any € > 0, there exists g € C(R™) with
compact support, such that fE lf—g| <e.
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Proof. For any € > 0, there exists a compact set K such that fE\K |f| < €/4

and a simple function A with supp(h) C K such that S I = h| < €/4. Define
h = iLXK, then

/Ef—h=/Ef—71XK|=/K|f—71I+/E\Kf|<;

Let M > 0 be such that |h| < M. By Theorem [3.36] (Lusin), for § = €/(4M),
there exists (closed) F' C K and a continuous function g where |g| < M and
supp(g) C K, such that u(K \ F) < § =¢/(4M) and h|p = g|p. Then

€ €
h—gz/ h—g:/ h—g| <2Mupu(K\F)<2M - — = —.
fomai= [ mmai= [ gl <o ) <on g = 0

Hence [, |f —gl < [ |f —hl+ [p|h—g| <e O

Corollary 4.41. Suppose f € L(E). Then there exists a sequence of continuous
functions {gi} with bounded support for every k, such that [ |gr — f| = 0 and
g — f a.e E.

Proof. The first claim follows the theorem above. Since [, |gr — f| = 0, we

know g % f and there exists a subsequence of {gy }, still denoted by {gx}, such
that g — f a.e. F. O

Example 4.42. Suppose f € L(R"). If [;, f¢ = 0 for any continuous function
¢ with compact support, then f =0 a.e.

Proof. Suppose not, i.e., p({z : f(z) # 0}) > 0. WLOG, assume pu({z : f(x) >
0}) > 0, then there exists ¢ > 0 and E C R™ such that u(E) > 0 and f(z) > ¢
on E (because {z : f(z) > 0} = U2, Ej, where Ej, = {z : f(z) > }} and
0 < p(UZ, Br) < >, 1(Eyg), which means p(E)) > 0 for some k). Then
there exists a sequence of continuous functions {¢y, } with compact supports such
that ¢, T xp and [ |xg — ¢x| — 0. Note that |for| <|fxr| < |f|] € L(R"), we
have

0<aulB) < [ fue= [t son =t [ fon=o.

where we applied Theorem (DCT) to obtain the second equality. Contra-
diction. 0

Example 4.43. Suppose f € L([a,b]). If fab f¢' = 0 for any differentiable
function ¢ with support supp(¢) C (a,b), then f = c a.e. for some c.

Proof. For any continuous function g with supp(g) C (a,b) and continuous
function h with supp(h) C (a,b) and f; h =1, define

qs(x):/;g(t)dt—/abg(t)dt-/j h(t) dt.
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Note that supp(¢) C (a b). Then (b’( f g(t)dt - h(z andf fo' =

f; fg—fab fhfabg = f (f— f fh)g(z)dz. Slnce g is arbitrary, we have f(x) =
fab fh a.e. for all continuous h and fa h =1. O

Theorem 4.44. If f € L(R"), then limp,_¢ [o. |f(z+h) — f(z)|dz = 0.

Proof. By Theorem [£.40] above, we can decompose f = fi + fa, where fy is
continuous and has compact support, and fy is such that fR” |f2] < €/4. Since

f1 is continuous on a compact set K, f; is uniformly continuous, there exists
0 > 0 such that |fi(z+ h) — f1(2z)]| < ¢/(2u(K)) for any h € (0,9). Therefore

/” |fiz +h) = fi(z)|dz = /K |fi(z +R) — fi(z)]de < p(K) - T %

Therefore, we obtain that

[ fatn-1@l < [ Anen-h@h [ -] < 5+5 =«

where we used the fact that [, |[f2(z 4+ h) — fa(z)] < 2[5,

fal <6/2. O

Corollary 4.45. If f € L(FE), then there exists a sequence of simple functions
{¢r} where supp(dy) is compact for every k, such that ¢ — [ a.e. E and

fE |¢k - f| — 0.

Proof. For any € > 0, there exists continuous g with bounded supp(g) such that
S |f — gl < §. For g, there exists simple function ¢ such that [|g—¢| < §.
Hence [|f — ¢| < e. Let e = 4, then there exists ¢4 such that [|f — ¢x| — 0.

Hence ¢}, - f and there exists a subsequence of {¢}, still denoted by {¢},
such that ¢, — f a.e. O

4.4 Relation between Riemann and Lebesgue integrals

We consider the integrals of bounded functions defined on I = [a, b] only. Recall
(n) (")

(n)

the definition of Riemann integral: consider a partition A
(n) _

<‘Tk L
For such a partition A("), denote
M"Y =sup{f(x) : 2{”) <z <2}, m{” =inf{f(x): 2l <z <al™}

Then the Darboux upper and lower integrals are defined by the two limits below
as |[AM| = 0 and n — oo:

) b
_ (n) (" (") _ n) (" (n)
/a - ‘A(ITILI)I‘I_)OZM Ly 1) /a = lA}iﬁ?_)OZm Ly mi—l)

Definition 4.46 E{iemann integral). We call a function f : I — R Riemann
integrable on I if f;f = f;f.
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For a sequence of partitions {A(™ : n € N} where A™*1) is a refinement of
A™ for every n (i.e., A+ retains all the partition points in A and may
add new points). Define w,(x) = Zizl(Mi(n) — mz('n))X[m("ﬁw{n)l)(x) > 0, then
Wnt1(z) < wy(z) for all n and . Suppose |f| < M for some M > 0, then
|wp (z)] < 2M (b — a).

We also define the oscillation of the function f at every point z € I by

wy () = lim sup{|f(z) — f(")] : 2',2" € B(x,0)}

It is easy to verify that f is continuous at x iff wy(x) = 0: Sufficiency is trivial;
For necessity, for any € > 0, there exists g > 0 such that |f(z') — f(z)| < €/4 for
all 2’ € B(xz,dp). Hence |f(2') — f(a")] < ¢/2 for all ', 2" € B(x,dy). Denote
We(x,0) :=sup{|f(z’) — f(a")| : 2, 2" € B(z,0)}, then for all § € (0,dp), there
is Wy(z,d) < Wy(x,do) < €/2 <e. Hence wy(z) = lims_o Wy(x,d) = 0.

Lemma 4.47. The oscillation wy : (a,b) — R is a measurable function.

Proof. Tt suffices to show that F; := w}?l((—oo,t)) is measurable (we actually
can show it is open) for any ¢t € R. For any z € E;, we know wy(z) < ¢, and
hence there exists dp > 0 such that W(z,dp) < t. For any y € B(x,dp), there
exists d, > 0 such that B(y,d,) C B(z,do), and hence W(y,d) < W(y,dy) <
W(z,60) <t for all § < d,. This implies that w¢(y) = lims_o W(y, ) < t, i.e.,
y € E;. As y is arbitrary, we know B(x,dg) C E;, which means F; is open. [

It is trivial to extend the domain of wy to I = [a, b] and keep its measurabil-
ity. We hereafter consider its domain on I. Moreover, it is easy to verify that
wy, — wy as [AM| = 0 and n — co. Since |w,| < 2M(b—a) and pu(I) < co, we
know [w, — [ws by DCT. Due to the definition of the Darboux upper and

lower integrals, we also have [w; = fabf - f:f

Theorem 4.48. Suppose f : [a,b] — R is bounded. Then f is Riemann inte-
grable iff u({zx € [a,b] : f(x) not continuous at x}) =0

Proof. Necessity. If f is Riemann integrable, then [w; = 0. Hence wy = 0 a.e.
Sufficiency. Suppose f is continuous a.e. Then wy = 0 a.e. Then 0 = [w; =

Ef - fff. Hence f is Riemann integrable. O

Theorem 4.49. If f is Riemann integrable on [a,b], then f € L([a,b]).

Proof. From the theorem above, f is continuous a.e. [a,b]. For any partition

Ata=um<x1 < -+ <xp =b, thereis [ f =31, ;_1f Hence
S mi(zi—wiog) < f;f <3 M;(z;—z;—1). Since f is Riemann integrable
by taking limit |A| — 0, we obtain f;f = f;f = f;f O
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4.5 Iterated integrals

We denote F the set of all nonnegative measurable functions f : R™ = RPxR? —
R, that satisfy the following three properties:

1. For a.e. € RP, f(z,-) > 0 is measurable on RY.

2. Let Fy(x) = [g, f(z,y) dy. Then F} is measurable and Fy > 0 a.e. RP.

3. There is [, Frdz = [5, (Jgo f(2,y)dy) do = [, fdzdy.

Lemma 4.50. The following statements hold for the set F:
(i) If f € F and a > 0, then af € F.
(i) If f1, f2 € F, then f1 + fa € F.
(iii) If f,ge F, f—g >0, and g € L(R™), then f —g € F.
(w) If fo € F, fr < fr1 for all k, and imy, f, = f, then f € F.

Proof. 1t is trivial to verify (i) and (ii). For (iii), since g € F and g € L(R"),
we know Fy is finite a.e. RP. For every z € RP where F,(z) < oo, we know
g(z,-) € L(R?) and hence g(z, -) is finite a.e. RY. Hence g(x,y) is finite a.e. R™.
Then it is easy to verify the three properties of f — g, which implies f — g € F.

For (iv), it is easy to verify Property 1 of F for f. By Theorem 4.9 (Beppo-
Levi), we know

Fy(r) = A flz,y)dy = lim /R fe(w,y)dy = lim Fy,(x)
q o0 q o

which implies that Fy > 0 is measurable (as the limit of a sequence of measurable
functions). Moreover, as Fy, 1 Fy, we know

/ Fi(z)dr = lim Ft (z)dz = lim fededy = fdxdy
RP R

k—oo Jrp k—oo Jrn
where we used Theorem [4.9| (Beppo-Levi) to obtain the first equality, the Prop-

erty 3 of fr € F for the second equality, and Beppo-Levi again for the last
equality. This verifies Property 3 of f. Hence f € F. O

Theorem 4.51 (Tonelli). If f : R = RPxR? — R is measurable, then f € F.

Proof. By Lemma [4.50)(iv) and that every measurable function is a limit of a
sequence of simple functions, it suffices to prove the case where f is simple. Due
to Lemma [4.50{ii), it suffices to prove xp € F where E is measurable. As E
can be written as a disjoint union of an F,-set K and measure zero set Z, we
prove the claim in the following steps.

Firstly, it is easy to verify that xg € F if E is a (possibly) half-open half-
closed box (an open box plus some of its 2n facets) in R™.

Secondly, for any open G C R", we can rewrite G as a disjoint union G =
U2 I where each I}, is a half-open half-closed box. Let Fj, = U;?:IIJ-, then we
know that xg, € F from Lemma ii), and then xg € F from xg, T x¢ and
Lemma iv).

Thirdly, we show that xp € F if FF C R™ is bounded and closed. To this end,
we first know F' C G := B(0, k) for some k € N. Hence Go = G1\ F = G NF*
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is open. Since xg, — X@, > 0 and xg, € L(R™), we know by Lemma iii)
that xr = x¢, — xc, € F-

Fourthly, we show that if Ey, | E and p(F;) < oo, xg, € F for all k, then
Xg € F. To this end, let Dy = E41 \ By, and D = E; \ E, then 0 < xp, T XD
and xp € L(R™) (since pu(Ey \ E) < u(E;) < o0). Hence by Lemma iv)
and Theorem (DCT) we can see that xp € F. Hence xg = xg, — xXp by
Lemma [£.50[(iii).

Fifthly, we show that if u(E) = 0 then xg € F. To this end, consider a
sequence of non-increasing open sets Gy such that £ C Gy and u(Gg) — 0.
Let H = N2 Gy, then E C H and p(H) = 0. From the second and fourth
points above, we know xgz € F and hence xg(z,-) = 0 and [, xug = 0. As
0 < xe < xm, we know x g satisfies all three properties of F and hence yg € F.

Sixthly, we show that if K is an F,-set and u(K) < oo, then xx € F.
Suppose K = U2, Fj, where Fj, is closed and bounded for all k. Let Dy =
Sk \ Sk—1 where Sy := U;?:OF;C (assume Fy = )). Note that both F} and Sg_1
are closed bounded sets, and hence by Lemma [4.50(iii) and the third point
above, we know that xp, = xs, — xs,_, € F. Therefore, by Lemma ii),
Xuk_, p; = X5y € F. Since Sy T K, we know yx € F by Lemma iv .

Finally, let £ = K U Z where K is an F,-set and Z is a measure zero set,
and KNZ =0. Then xg = xx + xz € F. O

Theorem 4.52 (Fubini). If f € L(R"™), then the following statements hold:
1. For a.e. x € RP, f(x,-) € L(R?).
2. Let Fy(x) = [g, [(z,y)dy, then Fy(x) € L(RP).
3. There is [gn f = [ (Jau fz,y) dy) dz = [p, (fgo f(2,y) dz) dy.

Proof. Let f = f* — f~. Since f € L(R"), we know f* € L(R"). From
Theorem we know f* € F, which implies the claims as all integrals are
finite. O

Example 4.53. Suppose f € L([0,00)) and a > 0, then

/000 (/OOO fy)e™™¥ dy) sin(az) do = a/ooO aéf—(fzﬁ dy

Proof. Note that for any fixed y > 0, there is fooo e *Ysin(ax)dr = ﬁ
(apply integration by parts twice). Hence we just need to show the condition in
Theorem m (Fubini) holds, i.e., sin(az)f(y)e %Y € L(]0, 00)?).

Note that |sin(az)f(y)e=*¥| < |f(y)| € L([4, X] x (0,00)) for any 0 < § <
X < oo (the integrand is bounded by fooo |f(y)| dy). Hence, by Theorem
(Fubini) on [0, X] x (0, 00), there is

/5X (/ooo J)e™" dy) sinfaz) de = /f / " sin(az) f(y)e dyda
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For any fixed y > 0, e™*¥ is decreasing in = and hence the second mean value
theorem for integrals implies that there exists ¢ € (4, X) such that

X c X
/ e~ sin(az)dz = e~% / sin(az) dz + =XV / sin(ax) dz.
S 1) c

Therefore, we can show that

X c
’/ e~ " sin(ax) da:’ < ‘/ sin(ax) d:l:‘ +
5 §

forallO<5<X<oo Leték%Oanka—)ooask%oo and denote
f5 “"sin(ax) f(y) dz, then we know Gy (y) — fo e "sin(ax) f(y) dz
as k —> 00, and |Gr(y)] <4|f(y)|/a € L((0,00)). Then we have

/OOO (/OOO fy)e™™ dy) sin(az) dr = lim :(k (/Ooo Fly)e=™ dy) sin(az) da

k—o0 Py

X 4
sin(ax) dz‘ < -
a

[e%s) Xk

= lim (

k—o0
= lim Gk
k—o0

_ /O ( /O ¢ wsm(ax)f(y)dx) dy

where the second equality is due to Theorem (Fubini) on [0, Xx] X (0, 00),
the third equality is due to the definition of Gy, and the last equality is due to
Theorem applied to the sequence G (y). O

f(y)e ™Y sin(ax) dx) dy

Example 4.54. Show that [;° e~ dz = 4

Proof. Consider [ [ ye~¥"**¢=v" dzdy. Then by Theorem (Tonelli),
we have

/00 /OO ye_yzzze_yQ dedy = /OO eV’ </°° ye_yza62 dx) dy
o Jo o 0 .
= (/0 eV dy) . (/0 e du)
([T
0

where we applied the change of variable u = yz. On the other hand,

o0 o .22 _ 2 > 1 1 oS} ™
/0 /0 ye Ve dydac:/o mdx: Earctan(x)|0 =7
Hence [ e ¥ dy = @ O

Remarks. An alternative proof is based on polar coordinate: ([, > o=y’ dy)? =

0
fooo fooo e_gg?e—y? dx dy _ 07r/2 fooo €_p2pdpd9 _ %
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4.6 Convolution

Definition 4.55 (Convolution). Suppose f, g are measurable on E C R™. We
call fR" flx—vy)g(y) dy, a function of z, the convolution of f and g, denoted by
fxgor (f*g)(z), if the integral exists for every x € E. Note that fxg=gx f.

Theorem 4.56. If f,g € L(R™), then f * g is finite a.e., and

Loarsal< ([ a)-(/f 1al)-

Proof. We first consider the case where f,g > 0. By Theorem (Tonelli),
there is

/n e flx—y)g(y)dyde = /n ( . f(xfy)d;zj) g(y) dy

= ( . f(fv)dw) - (/ng(y)dy) < o0.

For general functions f, g, note that |f = g| < |f| = |g]|. O

Example 4.57 (Convolution is continuous). Suppose f € L(R"™), and g is
measurable and uniformly bounded a.e., then F(z) = (f * g)(z) is uniformly
continuous on R".

Proof. Suppose M > 0 is such that |g| < M a.e. Since f € L(R™), by Theorem
4.44] we know for any e > 0, there exists § > 0 such that [p, |f(z + h) —
f(z)|dx < /M for all |h| < 4. Hence,

n

LMx+m—Funs/‘uu+h—w—fu—ymmmmy
<M . \f(z+h)—f(z)|dz<M-M:e,

for all |h| < 4. Hence F' is uniformly continuous on R™. O
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5 Signed Measures and Differentiations

5.1 Signed measure and decomposition

Definition 5.1 (Signed measure). Suppose (X, M) is a measurable space. A
function v : M — R is called a signed measure if (i) v(()) = 0; (ii) v can take oo
or —oo but not both; (iii) countable additivity: v(U32; Ex) = > o, v(Ey) for
any countable family of mutually disjoint sets {Ej}.

Note that if in addition v(E) > 0 for any E € M, then v is called a positive
measure, or simply measure.

Theorem 5.2 (Continuity of signed measure). If Ey is increasing and E =
Uz, Ex, then v(Ey) — v(E). If Ey is decreasing, v(E1) < oo, and E =
N2, By, then v(Ey) — v(E).

Proof. 1f Ej, is increasing, then denote Dy = Ej \ U E By countable addi-
tivity, there is

k k

v(E) = V(k§1 = Zy Dy) = IEEOZV(Di) = klgr()loz v(E;) = ZV(Ek)

k=1 i=1 1=1 k=1

If E} is decreasing, then consider Fj, = FEj \ Ej which is increasing, the rest
follows similarly. O

Definition 5.3 (v-positive/negative/null set). Suppose v is a signed measure on
(X, M). Then a set E is called v-positive (resp. v-negative, v-null) if v(F) >0
(resp. <0, =0) for any F C E.

Lemma 5.4. If {P,} are v-positive, then U2 | Py, is v-positive.

Proof. Denote Qr = Py \ Ui—‘:llPi, then for any £ C U2, Py, there is
v(B)=v(EN (T Q) =Y nENQL) >
k=1

since E N Qx C Pg. O

Theorem 5.5 (Hahn Decomposition Theorem). If v is a signed measure on
(X, M), then there exists positive P and negative N such that X = PUN,
PNN =0. If P' and N’ is another such pair, then PAP' and NAN' are null.
The pair (P, N) is called a Hahn decomposition of v.

Proof. (i) WLOG, assume that v : M — RU {—o0}. Consider the family of v-
positive sets: P = {P € M : P is v-positive}. Define m = sup{v(P) : P € P},
then there exists a sequence {Py} C P such that limy v(P;) = m < oo. Define
P = U2, P, and N = X\ P. Then, by Lemma P is v-positive, and
v(P) =m.
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(ii) Now we only need to show that N is v-negative. First of all, if E C N
and v(E) > 0, then FE cannot be v-positive: otherwise ENP C NN P = and
E U P is v-positive, and hence v(E U P) = v(E) + v(P) > m, contradiction.

Next, for any £ C N with v(E) > 0, there exists B C E such that v(B) < 0
(since E' is not v-positive), then let A = E'\ B, we have A C FE and v(A) =
v(E)—v(B) > v(E).

Now we are ready to show that N is v-negative. If not, then there exists A4y C
N such that v¥(Ag) > 0. Then choose the smallest ny € N such that there exists
Ay C Ap that satisfies v(A1) > v(Ag) + n% > v(Ap); then choose the smallest
ny € N such that there exists Ay C Ay and v(Az) > v(A;)+ n% > v(A;); and so
on. Note that Ay is decreasing, v(Ay) is increasing, and v(Ay) > v(Ax_1) + rle
for all k. Let A = N, Ay = limy Ax. Then oo > v(A4) = limyv(A4;) >
v(Ao) Y, nik > 0. Therefore n; — oo as k — oo. Since A C N and v(4) > 0,
there again exists B C A and n € N such that v(B) > v(A4) + 1 > v(4).
Therefore, there exists k large enough, such that ny > n, but B C A C Ag_1,
and v(B) > v(A) + 1 > v(Ag_1) + L1, which contradicts to the construction of
ng (smallest integer) and Aj. Hence N must be v-negative.

(iii) If P’ and N’ is another such pair, then P\ P’ C P and P\ P’ C N'.
Hence P\ P’ is both v-positive and v-negative, and therefore is v-null. Note
that NAN' = PAP’ is therefore also v-null. O

Definition 5.6 (Mutually singular measures). Two signed measures p and v
are called mutually singular, denoted by p L v, if there exist £ € M such that
FE is v-null and E€ is p-null.

Theorem 5.7 (Jordan Decomposition Theorem). If v is a signed measure on
M, then there exist unique positive measures v+ and v~, such that vt L v~
and v =vt —v~.

Proof. Let X = PU N be a Hahn decomposition of v. Define v* such that
vi(E)=v(ENP)and v (E) = —v(ENN) for any E € M. Then it is easy
to verify that both ™ and v~ are positive measures on M. Moreover, for any
ECN,vH(E)=v(ENP)=v(0) =0; and forany £ C P,v~(E) =v(ENN) =
v(0) = 0. Hence N is v"-null and P = N€ is v~ -null, i.e.,, v L v™.

If there exists another Hahn decomposition X = P’ U N’ with p* defined
similarly, then PAP’ is v-null. Hence, for any E € M, there is ut(F) =
v(ENP)=v(ENP)=v"(E). Hence u* = v*. Similarly p~ = v~. O

Definition 5.8 (Total variation of signed measure). |v| = v+ v~ is called the
total variation of v. That is, [v|(E) =vT(E) +v (E)=v(ENP)—v(ENN)
for any F € M.

Definition 5.9 (Integrable wrt. signed measure). We call f integrable with
respect to v, where the integral is denoted by [ fdv = [ fdv™ — [ fdv~,if f
is integrable with respect to both v+ and v~.
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5.2 Radon-Nikodym theorem

Definition 5.10 (Absolute continuity). We say a signed measure v is absolutely
continuous with respect to a positive measure p, denoted by v < pu, if v(E) =0
for any £ € M with u(E) = 0. Note that v < p iff v+ < p iff || < p.

Theorem 5.11. If v 1L p and v < p, then v = 0.

Proof. Let E be such that E is p-null and E€ is v-null. Then F is also v-null
since v < u. Hence X is v-null, i.e., v = 0. O

Theorem 5.12. Suppose v is a signed measure and i is a measure, then v < p
iff for any € > 0, there exists 6 > 0 such that |[v(E)| < € for oll E satisfying
p(E) < 4.

Proof. Since v < p iff |v] < p, we only need to show this for positive measure v.
Sufficiency is trivial. To prove necessity, assume that there exists ¢y > 0, such
that for any k € N there are [v(Ey)| > ¢o and pu(Ex) < 27F. Let Fy, = UX, E;
and F = N2, Fi. Then u(Fy) < 217% and pu(F) = limy u(Fy) = 0. However
v(F;) > v(Eyg) > ¢ for all k, which implies v(F) = limy v(Fy) > € and
contradicts to v < p. O

Lemma 5.13. Suppose v and p are finite measures on M. Then either v L p
or there exist € > 0 and E € M with u(E) > 0, such that E is (v — eu)-positive.

Proof. Consider signed measures v — k~'y with a Hahn decomposition X =
P, UNy, for any k € N. Let P = U2, P, and N = Ng2; N. Note that NV is
(v — k=1 p)-negative for all k, and hence 0 < v(N) < k~'u(N) — 0. Hence N
is v-null.

If Pis p-null, then v L u and done. Otherwise, u(P) > 0, and hence there
exists k such that u(Py) > 0, and Py is (v — k~u)-positive. Taking E = Py
and € = k~! completes the proof. O

Theorem 5.14 (Radon-Nikodym). Suppose v is a o-finite signed measure and
1 1s a o-finite measure. Then there exist unique o-finite signed measures \ and
p, such that A L p, p << i, and v =X+ p.

Proof. (i) We first consider the case where both p and v are finite positive
measures. Define

F={s:X 0.0 [ fau<iE), vE€ M}
E

Note that 0 € F and hence F is nonempty. For any f,g € F, h = max{f, g} €
F:let A={x: f(z) > g(x)}, then

/Eh:/EmAf+/EmAcg§z/(EﬂA)+u(EﬂAc):V(E).

Let m = sup{ [, f : f € F} < v(X) < oo, then there exists a sequence
{fr} C F, such that fX fx = m. Define gy(x) = maxi<;<y fi(z) for all z € X
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and f(x) = sup,, fr(z). Note that g, € F and g 1 f. By Theorem (Beppo
Levi), we know m < limy, [y fr <limy [ gx = [ f < m and hence [, f =m.
Moreover, [, f =limy [, gr < v(E) for all E € M, and hence f € F.

Now we claim that X, defined by A\(E) = v(E) — [, f dp for any E € M (we
write this as d\ = dv — f du for short), satisfies A L u. If not, then by Lemma
there exists € > 0 and A, such that p(A) > 0 and A is (A — eu)-positive.
Then for any E € M, there is

[rrecdn= [ gdur [ (rrec)du < o(Bna) o (EnA) = v(E),
E ENAe ENA
where we used the fact

0<(A—eu)(ENA)=XNENA)—eu(ENA)

:y(EﬂA)—/ fd,u—/eXAdu
ENA E

=u<EmA>—/EM<f+exA>du

to obtain the inequality above. Hence f +ex4 € F. However fX(f +exa)dp =
m + eu(A) > m, contradiction.

If there exists f/, A such that dv = dX +f’ du, then dA—dX = fdu—f'du =
(f = f)dp. Hence (A — N') < u. Moreover, since A\, X L u, there exist E and
E’ such that F is A-null, £’ is M-null, and E°, (E’')¢ are p-null. Hence E N E’
is (A — A)-null and E°U (E’)¢ is p-null, which means (A — X\') L pu. Therefore,
by Theorem [5.11} A — X = 0, and hence f — f’ = 0 p-a.e.

(ii) Next we consider the case where both pu and v are o-finite measures.
Since there exist {Ax} and {Bg} such that X = Ug A = Up By, p is finite on
Ay, and v is finite on By. Then {A4; N B; : 4,5 € N} is countable. Denote this
set by {Cr} (WLOG assume they are disjoint, otherwise take Cj, \ (U?;%C’j) for
all k), then p and v are both finite on Cy for any k. Define ug(E) = u(ENCk)
and v, (E) = v(ENCy) for any E € M and k. Then applying (i) we know there
exist unique Ay, fi such that dA\y = dvy — fr dps on Cp. Let A = Y7, Ay and
f =>4 fx. Then it is easy to verify that A L g and v = A+ fdp on X.

(iii) Finally consider the general case where v is o-finite signed measure. Let
v = vt — v~ be the Jordan decomposition of v, then applying (ii) to each of v+
yields unique A%, f* such that A* = v* — fFdy and A* L p. Let A = AT =\~
and f = fT— f~, then A\ L pand v = A+ f du, which completes the proof. O

Definition 5.15 (Lebesgue decomposition and Radon-Nikodym derivative).
We call dv = dX + fdp from Theorem the Lebesgue decomposition of v
with respect to p. If v < u, then dv = fdu and f is called the Radon-Nikodym
derivative of v with respect to u, denoted by STI:'

Theorem 5.16. Suppose v is o-finite signed measure, p, A are o-finite measures
on (X,M), and v < u < A. Then the following statements hold:
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1. (Change of variable) If g is v-integrable, then g - g—z s p-integrable, and

fgdyzfg~§—Zdu.

2. (Chain rule) g—’)’\ = g—; . i—’; A-a.e.

Proof. 1. By considering v* separately, it suffices to prove the result for positive
measure v. We first verify the claim for ¢ = xg where £ € M:

dv dv
gdv =v(F) = —d :/X — dp.
/ (E) L B, W

(Note that we identify dv/du with f where dv = fdu.) Then it is easy to
verify this for g being nonnegative simple functions by linearity, then general
nonnegative functions, and finally for general function g.

2. By Item 1, we have [gdp = fgg—‘; d\ for all p-integrable function g.
Then for any E € M, we substitute g by xg3%, then

dp
dv dv dp
E)= dv = —dp = ——dA.
v(E) /XEV /XEduM L dpdX
This implies that % = S—Z% a.e. A.

5.3 Differentiation
We focus on the case where f : R — R in the remainder of this chapter.

Definition 5.17 (Vitali cover). The collection F of closed intervals is called a
Vitali cover of E if for any € > 0 and any = € E, there exists I € F such that
u(I) < eand z € I.

Example 5.18. Suppose E = [a,b]. Let {ry} = [a,b] N Q and Iy, = [rp —
L rg+ L] for k,m € N. Then F = {Ix, : k,m € N} is a Vitali cover of E.

Lemma 5.19 (Vitali covering lemma). Suppose E C R and p*(E) < co. If F
is a Vitali cover of E, then for any € > 0 there exist a finite number of disjoint
sets {I; : 1 <j <k} CF, such that p*(E\ Us_, E;) < e.

Proof. WLOG, we assume F only contains bounded closed intervals. Since
w*(E) < 0o, there exists an open set G such that E C G and u(G) < co. Since
F is a Vitali cover of £, WLOG we assume I C G for any I € F.

Now we perform the following interval selection procedure: we first choose
I, € F arbitrarily. Inductively, suppose we have already chosen I1,...,[; € F.

If £C U?zll j, then we can terminate because the claim is proved. Otherwise,

we denote Fy :={I € F : IN(Us_I;) = 0} and &y, := sup{|I| : I € Fy} (here
|I| denotes the length of the interval I for short), and then choose I+ € F
such that |Ipyq1| > %’“ (this is possible since dy, is taken as the supremum over

F)-
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If this set selection procedure continues for infinitely many steps, then we
obtain a sequence of intervals {I;}52,. Since Y 2, [Ix] = p(UpZ I) < pu(G) <
oo, we know 377, ) [I;| — 0 as k — oo.

Now let € > 0 be arbitrary and fixed and k large enough so that 3°7%, | || <
€. Denote S := E\ (U5_,I;). Then we want to show x*(S) < e. To this end,
let € S be arbitrary, then z ¢ Uf:llj. Notice that Uf:llj is a closed set,
we know there exists I € F such that € I and I N (U?lej) = (). Moreover,
|| < 6 < 2|Ix41| due to the criterion to select Ixy1.

Furthermore, notice that |;| — 0 as j — co. In addition, IN(US2,,,1;) # 0
because otherwise we would have selected I over some I; during the procedure
(the former has a fixed width while the width of the latter tends to 0 as j — 0).
Let ko > k + 1 be the smallest index such that I N Iy, # 0, then |I] < §g,—1 <
2|I;,|. Now for each j > k + 1 we define I;, to be the closed interval with the
same center as I but 5 times larger radius, then x € I C I,goil. Since x € S is
arbitrary, we know S C U5, Iy, and p*(S) < p(U32, 1 17) < 5p(Use, 1) <
5 Z;’;kﬂ |I;| < e. This completes the proof. O

Remarks. Vitali covering lemma can be extended to R™. It is easy to show that
there exists a countable collection of sets {Ej} such that p*(E\ (U2, Ex)) = 0.

Definition 5.20 (Dini derivatives). Suppose f : R — R, define D* f(z) and
D, f(z) at z € R by

D* f(z) = limsup LEEM ZI@ ey Ciming L& = F@)
h—0+ h h—0* h

Then D* is called the upper right/left Dini derivative of f at x. Similarly, D
is called the lower right/left Dini derivative of f at x.

Remarks. Here are several remarks regarding the four Dini derivatives:
e For any f and x, there are Dy f(z) < DT f(z) and D_f(z) < D~ f(z).
e DH(—f) = —Dy(f) and D~(—f) = —D_{f).
o If D, f(x) = DT f(z), then we say f has right derivative at x. Similarly,
if D_f(z) = D~ f(z), then we say f has left derivative at x.
e If all four derivatives are equal, then f is called differentiable at x.

Example 5.21. Suppose a < b and a’ < V', and define
azsin®(1) + bzcos?(L), x>0,
f(x) =40, z =0,
dzsin®(L) +Vzcos?(L), z<0.

Then we can show that

D7 £(0) = limsup M = lim sup {asin2 (%) + bcos? (%)} =b.

h—0t h h—0t

Similarly, Dy f(0) = a, D~ f(0) =V, D_f(0) =d'.
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Example 5.22. If f € C([a,b]), then there exist 2o € (a,b) and k € R, such
that D_f(zg) >k > DT f(zg) or D™ f(xg) < k < Dy f(z0).

Proof. Let k = (f(b) — f(a))/(b— a). Consider g(z) = f(x) — kx. Then g €
C([a,b]). Note that g(a) = f(a) — ka = (bf(a) —af(b))(b —a) = g(b). Hence
there exists 2y € C such that g(z) attains max or min at z¢ € (a,b). If z¢ is a
maximizer, then DT g(z¢) = D f(xg)—k < 0and D_g(x¢) = D_ f(xo)—k > 0,
which implies that D_ f(xo) > k > D~ f(z¢). Similarly, if ¢ is minimizer, then
D™ f(xo) <k < Dy f(xo). O

Theorem 5.23 (Lebesgue). Suppose f : [a,b] = R is non-decreasing, then f is
differentiable a.e. [a,b] and f: f(x)dx < f(b) — f(a).

Proof. (i) Note that if D" f(z) < D_f(z) and D~ f(z) < D4 f(x), then all
four Dini derivatives are equal and f is differentiable at x. Hence, if f is not
differentiable at z, then either DT f(z) > D_f(x) or D~ f(z) > D4 f(x). Let
Ey ={z:D"f(z) > D_f(x)} and Ey = {x : D™ f(x) > Dy f(z)}. We then
need to show u(E; U E3) = 0. To this end, it suffices to show that u(E;) =0, as
p(E2) = 0 can be proved similarly. Let r,s € Q and E, s = {z : D" f(z) >r >
s> D_f(x)}, then Eq = U, scqFr s. Hence it suffices to show that u(E, ;) =0
for all r, s € Q.

Now we denote EE = E, ; for short. For any € > 0, consider an open set G
such that £ C G and p(G) < p*(E) + € (such G exists due to the definition of
outer measure), and define the collection of closed intervals:

G={lx—h,z] CG:z€a,b], f(x) — f(x — h) < sh for some h > 0}

Thus G is a Vitali cover of FE (since x € E implies that D~ f(xz) < s). Hence
there exist a finite number of disjoint intervals [x1 — h1,21],..., [Ty — hp, Tp),
such that p*(E)—e < p(EN(UL_, [z;—hy, z;])) and Y0 hy < p(G) < p*(E)+e.
Since f(z;) — f(zi — hi) < sh;, we have

P

Z(f(l“i) — f(wi — hy)) < Szhi <s(u*(E)+e).

i=1
Now define F' = EN(UY_, (x;—h;, z;)). Consider the collection of closed intervals
F=Aly,y+lCF:fly+1)— f(y) > rl for some [ > 0}

Hence F is a Vitali cover of F', and there exist a finite number of disjoint intervals
i, y1 + U], ..., [Yq: Yg + 4], such that Zgzl l; > u(F) —e> p*(E) — 2¢. Hence
doim (flyy+1) = fy;) > 72251 lj > r(u*(E) —2¢). Since f is non-decreasing
and [y;,y; + ;] C [; — hi, 2] for some 4, we know >0, (f(z;) — f(@i — hi)) >
i1 (flyy +15) = f(y;)). Hence r(u*(E) — 2¢) < s(u*(E) + ¢). Since € > 0 is
arbitrary, we have ru*(E) < sp*(E), which implies that p*(E) = 0 since r > s.
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(ii) Consider f(z) = k(f(z + 1) — f(x)). Then fi — f" a.e. and

/ i 7/ lim fk<hm1nf/ fk*hmlnf/ k(f( k)*f($)>

_hmlnfk bbJrkf—/a f)Sf(b)_f(a)

k—o00

as k — oo, where we used Lemma (Fatou) to obtain the first inequality
and f is non-decreasing (and constant over [b,b + +]) to obtain the second
inequality. O

Remarks. In general we only have the inequality above. For example, let

Then f' =0 a.e., but f; f/=0<1= f(1) — f(0).

Theorem 5.24. Suppose fi : [a,b] — R is non-decreasing in x for all k, and

> ok fr(x) converges for any x € [a,b], then (3, fu(x)) =, fi.(x) a.e. [a,b].

Proof. Since fi, is non-decreasing, fj exists and f;, > 0 a.e. [a,b] for all k.

Denote sy(r) = Z?Zl fr(x) and ry(z) = 3772, 1 fj(z). Then both sy and 7y
are nondecreasing and hence have derivatives a.e. [a, b]. Note that

(ka) $k+Tk) = ;g zk: —|—7‘k

Hence it suffices to show that rj — 0 a.e. as k — oco. Note that 7, = f; | +
Tht1 = Thy1 = 0 ae. Hence 1y | ¢ for some ¢ > 0 a.e. [a,b]. Then

b b
0< / o= / lim 7}, <lim 1nf/ r, < likminf(rk(b) —ri(a)) = 0.
a a — 00

k—o0 k—oc0

where we used Theorem (Lebesgue) to obtain the last inequality and the
fact that ry,(z) = 3272, fi(z) — 0 as k — oo for every x to obtain the last
equality. Hence ¢ = 0 a.e. [a, b]. O

Example 5.25. Consider {r;} = [0,1] N Q. Define

fk(ﬂ?){of 0<xr<rg

2k Tk;Sl'Sl

and s(z) = > po fe(x). It is then easy to verify that s(z) < s(y) if < y, and
s'(z) =3, fr(x) =0 a.e. [a,b]. Namely, s is strictly increasing but s’ = 0 a.e.
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5.4 Functions of bounded variation

Definition 5.26 (Functions of bounded variation). Suppose f : [a,b] — R and
there is a partition A:a =xzp < 1 < -+ < &, = b of [a,b]. Then the variation
of f by partition A is defined

V(f, [a,b], Z|f ) = f(zioa)l-

The total variation of f on [a,b] is defined by
TV(f,[a,b]) = sup{V(/f, [a,b],A) : A is a partition of [a,b]}

and f is called a function of bounded variation if TV(f,[a,b]) < co. The set
of functions of bounded variation is denoted by BV ([a,b]). (We simply denote
TV(f) if the interval [a, ] is clear from the context.)

Example 5.27. If f : [a,b] — R is monotone, then f € BV([a,b]).

Proof. WLOG, assume f is non-decreasing. Then for any A > 0, there is

n

V(fola, b, A) =Y |f(@:) = flwio1)| = F(b) = f(a) < oo

Hence TV(f) = f(b) — f(a) < o0, and f € BV([a, D]). O

Example 5.28. If f : [a,b] — R, and f is differentiable, and |f’| < M for all
z. Then f € BV([a,b]).

Proof. For any partition A, there is
V(fa[a7b]’A):Z|f( xz 1|<MZ — Xi— 1 M(b—a).

Hence TV(f) < M(b—a) < . O

Example 5.29. Suppose f : [a,b] — R is defined by f(z) = xsin(n/z) if
0<z<1land0if z=0. Then f ¢ BV([0,1]).

Proof. Consider partition Ay : 0 < 2k 7 < 2,3—_3 << % < 1. Then

2 2 2 P oo
1,A L2,
VI [01] A) = 2k71+(2k71+2k73)+ *3 ;2‘7'*1_“)0

as k — oo. Hence TV(f) = oc. O

Theorem 5.30. The following statements hold:
1. If f € BV([a,b]) then f is uniformly bounded.
2. BV([a,b]) is a linear space.
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3. TV(f,a,b]) = TV(f,[a,c]) + TV(f,[c,b]) for any c € [a,b].
4. If f € BV([a,b]), then |f| € BV([a,b]).
5. If f,g € BV([a,b]), then max{f, g} € BV([a,b]).

Proof. Ttems 1 2, and 4 are trivial to prove. For item 5, note that max{f, g} =

% + @ and hence it follows from item 4.
For item 3, consider any partition A of [a,b], then A’ = AU {c} is also a
partition of [a, b]. Moreover,

V(f,[a,b],A) < V(f,[a,b],A")
= V(f,la,c], A" N[a,c]) + V(f,[c,b], A" N e, b])
< TV(f,la,c]) + TV(f,[c,b]).
Hence TV(f,[a,b]) < TV(f,la,c]) + TV(f,[c,b]).

On the other hand, for any e > 0, there exist partition Ay of [a,c] and Ag
of [¢, b], such that

TV(fifacd) = 5 < V(£ ladi ), V(S [eb]) = 5 < V(£ [e.b], o)

Note that A = A; U Ay is a partition of [a, b]. Hence

TV(f, [CL, C]) + TV(f, [C, b]) —€< V(fv [a7 C]v Al) + V(f’ [C’ b]7 A2)
= V(fa [avb]vA)
< TV(f,[a,b])

As e is arbitrary, we know TV(f, [a,c]) + TV(f,[c,b]) < TV(f,]a,b]). O

For a partition A : a = x9 < 1 < -+ < x, = b of the interval [a,b], we
can obtain a set of n+ 1 points: (zg, f(x0)), .-, (Tn, f(xs)) in RZ. We connect
these n + 1 points using straight line segments, and sum the lengths of these
line segments to obtain the total length:

n

() = 3 (@i = i) + (e — fi)?)

i=1
Then we can take the supremum of A (f) over all partitions:

I(f) =sup{la(f) : A is a partition of [a, b]}.
The following theorem reveals the relation between TV (f) and I(f):
Theorem 5.31. Suppose f : [a,b] = R. Then TV(f) < oo ¢ff I(f) < oo.

Proof. For any partition A, there is In(f) < >0 @ — x|+ | f(z4) — f(zi-1)]
(because (u? + v2)Y/2 < w + v for any u,v > 0). Hence Ia(f) < (b —a) +
Sy [f(xi)=f(xi—1)|. Therefore V(f,[a,b],A) <Iap) < (b—a)+V(f,[a,b], A).
As A is arbitrary, we know TV(f, [a,b]) <I(f) < (b—a) 4+ TV({,[a,b]), which
implies that TV(f) < oo iff I(f) < oo. O
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There is a very elegant characterization of functions of bounded variation:
they can always be written as the differences of two non-decreasing functions,
as shown in the following theorem.

Theorem 5.32 (Jordan). Suppose f :[a,b] = R. Then f € BV([a,b]) iff there
exist two non-decreasing functions g, h : [a,b] — R such that f = g — h.

Proof. First we show the necessity. Suppose f € BV([a,b]). Denote Ty(z) =
TV(f,[a,z]) for any x € [a, b], which is therefore well defined since TV (f) < oo.
Then define g(z) = (Ty(z) + f(z)) and h(z) = 1(Ty(x) — f(z). We can show
that both g and h are non-decreasing: for x < y, there is

o(9) ~ 9(x) = 3 (Ty(y) + F()) — 5(Ty(x) + (=)
= STV el + 5 () — (&)
> SV [0l A) = 31£) — £(@)] 20
where At ¢ = 29 < 71 < -+ < x, = y is a partition of [z,y]. Similarly h is

non-decreasing, and obviously f =g — h.
Now we show the sufficiency. If g, h are non-decreasing, then g, h € BV([a, b]).
Hence f = g — h € BV([a,b]) as BV([a, b]) is a linear space. O

From Theorem we know both g and h are differentiable a.e. since they
are monotone. Hence f = g — h is differentiable. Therefore f is differentiable
a.e. if f € BV([a,b]).

Lemma 5.33. Suppose f € L([a,b]). Define Fp(x) = %f;+h f@)dt (Assume

f(x) = f(a)ifz < aand f(x) = f(b) ifx >b). Thenlimy_o f; | By (z)—f(x)] =
0.

Proof. Since f € L([a,b]), we know for any e > 0, there exists § > 0, such that
f: |f(z 4+ h) — f(z)| < € for any h with |h| < 0. Note that Fy(z) — f(z) =
%f;+h(f(t) — f(x)) dt. Therefore, for any ¢ < h < J, there is

b b z+h
[ 1R - s@lae < [ 3 7150 - f@lavas
bl h
=[5 [ e - @)
hl b
= |3 ] e - ra@)ara
1

h
< —edt=¢
I

where we applied Theorem (Tonelli) to obtain the second equality. O
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Now we have the main theorem of this subsection.
Theorem 5.34. Let f € L([a,b]). Define F(z) = [ f(t)dt. Then F'(z) =
f(z) a.e. [a,b].
Proof. Note that F’(x) = limp_,o Fi(z) exists a.e. [a,b]. Hence

b b b
[ 1@ = F@) = [ Jim @) - Fu@)de <timint |17 - Bl do =0,
which implies that F'(z) = f(x) a.e. [a, b]. O

Corollary 5.35. Suppose f € L([a,b]). Then limp_ + foh |[fz+t)— f(x)|dt =
0 a.e. [a,b].
Proof. For any r € Q, we know |f(z) — r| € L([a,b]). Hence, for almost every
z € [a,b], there is
1
ki
by Lemma Denote Z, = {z : limp0 + foh [f(z +t)—r|dt # |f(z) — 7]}
Then pu(Z,) =0. Let Z = (UpegZr) U{x : f(z) = oo}, there is also p(Z) = 0.
For any x ¢ Z (i.e., limy_0 + foh |f(z+h)—r|dt = |f(x)—r|forall r € Q and
|f(z)| < 00) and € > 0, there exists 7 € Q and § > 0, such that [f(z) — 7| < §
and |L [ |f(z+1t) = r|dt — |f(z) — r|| < § for all h with |h| < . Hence

h
/0 @+ k) — vl dt = [f(z) — 1]

h h
i [ @0 = s@la < [ < ridi= 1) =i+ 20 @)

h
g‘%/o [Fla+8) = rldt = |f(z) = || +2|f(x) 7]

€ €
2492 —¢.
<3+ 3 €

Therefore limj,_,o foh |f(z+1t)— f(x)]dt =0 on Z°. O

Remarks. We call z a Lebesgue point if x satisfies limj,_,o + foh |f(z+1t) —
f(z)|dt = 0. The corollary above says that f has Lebesgue points a.e. [a, b] if
f € L(Ja,b]). Note that the corollary can also be proved by invoking Lemma

(Fatou) on G(h,z) i= L [M|f(z +1) — f(z)|dt.

Example 5.36. Suppose f € L(R). For [a,b], if lims_o + f; |f(x + h) —
f(z)|dx = 0, then there exists constant ¢ > 0 such that f(z) = c a.e. [a,b].

Proof. Consider any two Lebesgue points x1,x2 on [a,b] where z; < 3. Then

z2

‘;/ITQ(f(erh)—f(x))dx‘ < %/I |f(z+h) = f(x)]dz

1
b
a

<i [ i - f@lds >0
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as h — 0. On the other hand,

‘1 Y e n) - fa '—’ e fayde— 2 [ f(:v)dx‘
h Sy h Jai+n h S,
_ ’ ! </w2+h oo - /:1+h o) dx) ’

= [f(z2) — f(21)]

as h — 0. Hence f(x2) = f(x1) = ¢. Since [a,b] has Lebesgue point a.e., we
know f(x) = ¢ for all Lebesgue point z. O

Example 5.37. Let f € L([a,b]) and F(z) = [ f(t)dt. Then F € BV([a,b])
and TV(F) < [7|f(z)|da.

Proof. For any partition A :a =29 < 1 < --- < x, = b, there is

Z|sz x11|f Z/ ()| dt = /|f )| dt.

Therefore V(F, [a,b], A) < fj| f(x)| da. Hence, TV(F) < [ |f| dz. O

5.5 Absolute continuity

We would like to ask the following questions: suppose f € [a,b] — R, then in
what case, there exists a function g such that f(z) — f(a) = [ g(t) dt for a.c. x
in [a,b]. We have shown before that if such g exists, then f is bounded, has
bounded variation, and is continuous. But is the converse true?

Example 5.38. The Cantor function ¢ is continuous and satisfies ¢'(z) = 0
a.e. but ¢(0) =0 and ¢(1) =

So we need stronger condition than continuity. This is called the absolute
continuity.

Lemma 5.39. Suppose f : [a,b] = R, and f' = 0 a.e. If f is not constant,
then there exists ¢g > 0 such that for any § > 0 there exist a finite number of
mutually disjoint intervals (x1,y1), ..., (€n,Yn), Do [f(us) — f(v5)] > €o.

Proof. Suppose ¢ € (a,b) such that f(c) # f(a). Then choose ey € (0, M)
and 7 € (0, 32-). Define the set E. = {x € (a,c) : f’(x) = 0} and the collection
of closed intervals

F =A{[z,z+h] C (a,¢) : |f(x+ h) — f(x)] < rh for some h > 0}
Hence F is a Vitali cover of E.. Then for any § > 0 there exist mutually disjoint

intervals (1,21 + 1], ..., [®p, xp + hypl, such that u(E. \ U_; [z, x; + hi]) < 4.
WLOG, assume a =29 < 21 < 21+ hy < - < 2p < 2p+ hp < Tpy1 = c. Note
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that by letting u; = x;41 and v; = x; + h; (ho =0, ug — v9 = 1 — ), we have
up = Tpy1 and v, =z + hy, and Y0 Ju; — v < 6.
On the other hand, there is

2e0 < [f(c) = f(a)| <D [F(wi) = f(wi)| + Y |f (@i + ha) — f(x)]

=0 i=1

-

<D ) = fl +r D Jhi <D 1f(ws) = f(i)] + (b~ a).
i=0 i=1 i=0
Note that r(b — a) < €, we know Y7_ | f(u;) — f(vi)| > eo. O

Definition 5.40. f : [a,b] — R is absolutely continuous if for any ¢ > 0, there
exists § > 0, such that for any mutually disjoint intervals (z;,y;), i = 1,...,p,
satisfying >0 o |y; — @;| < 6, there is >0 | [f(y;) — f(2i)| < e. The set of
absolutely continuous functions is denoted by AC([a, b]).

Theorem 5.41. The following statements hold:
1. If f € AC([a,b]) then f is continuous.
2. AC([a,b]) is a linear space.

Example 5.42. If f is Lipschitz continuous then f € AC(]a, b]).
Proof. S0, () — fla)l < MY i — 1] < M. =
Theorem 5.43. Suppose f € L([a,b]) then F(z) = [T f(t)dt € AC([a, b]).

Proof. Since f € L([a,b]), we know for any € > 0, there exists § > 0, such that
Ji f| < e for any E C [a,b] satisfying p(E) < 6. For any disjoint intervals
{(zivys) i = 1,...,ph if D8 |yi — 2] < 6, then p(E) < § where E =
> [z, y;]. This implies

P p Yi
S~ Fal <3 [ 1@lde = [ 17@lde <
i=1 i=17Ti
which completes the proof. O

Theorem 5.44. If f € AC([a,b]) then f € BV([a,b]).

Proof. Let e = 1, then there exists § > 0 such that > ©_, |f(y;) — f(z;)| < 1 for
any mutually disjoint intervals {[z;,y;] : 1 < i < p} satisfying >, |y; —z;| < 6.
(Clearly it is true for p = 1.) Consider the partition A :a =x9 < 21 < -+ <
X, = b where |z; —2;,_1] < § for all i, we know that TV(f, [z;—1,z;]) < 1. Hence
TV(f, [a,b]) = >0 TV(f, [#i—1,25]) <n < oco. O

Corollary 5.45. If f € AC([a,b]), then [ is differentiable a.e. [a,b] and [’ €
L(la, b]).

Theorem 5.46 (Fundamental theorem of calculus). If f € AC([a,b]), then
f(a) = f(a) = [, f'(t)dt for any x € [a,b].
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Pmof If fe AC([a b)), then f’ exists a.e. [a,b] and f' € L([a,b]) by Corollary
Define g(x f f'(t)dt then g € AC([a,b]) by Theorem Since

f geAC, f' — g =0 a.e., we know f — g = ¢ for some constant ¢ (ot herwme
f — g is not absolutely continuous due to Lemma a contradiction). Hence

¢ = f(a) — g(a) = f(a) as g(a) = 0, which implies that f(x) = f(a) + g(x) =
a)+ [, f(t)dt
Remarks. The results above can be summarized as follows: f € AC([a,b]) iff

there exists g € L([a, b]) such that f(z) = f(a) + [ g(t)dt for all € [a,b]. In
this case, f' = g a.e. [a,b)].

Example 5.47. Suppose gi € AC([a b)) for all k. If there exists ¢ € [a,b] such

that >, gi(c) converges and ), f lg;,(x)| dz < oo, then ), gi(x) exists for all
x. Let g(x) = >, gx(x), then g € AC([a,b]) and g( ) = >k 91 (x) ae. [a,b].

Proof. Since Y po f lgj.(x)] dz < oo, we know by Corollary that h(x) =

Y ore 9k (x) exists, h € L([a, ]), and Zk 1f = [Th(t dt Since g, €
AC([a,b]), we know gi(z) = gi(c) + [ g}.(t) dt for all x. This 1mpl1es that

S on@) = > (o) +Z/m G dt = 3 gulo) +/mh<t> dt
k=1v¢ k=1 c

k=1 k=1

as n — oo for all z. Therefore g(z) = >, gr(z) = Zk Lok(e) + [T h(t
exists and g € AC([a, b]). Moreover ¢'(z) = h(z) = > 1o Jk- D

Example 5.48. Composition of absolutely continuous functions is not neces-
sarily absolutely continuous. For example, let f(y) = y'/3 for y € [~1, 1], and

2?cos?(Z), if € (0,1],
g(x)_{a if 2 = 0.

Then both f and g are absolutely continuous (they are Lipschitz continuous as
|f'| and |¢’| are bounded), but (f o g)(x) = x cos(Z) is not.

Example 5.49. Absolute continuity is not closed under uniform convergence.
Consider the functions

0, ifo<z<i,
fk(ff):{ -k

zsin(Z), if <z <1,

which are absolutely continuous. Then f, = f := wsin(%). Hence f is uni-
formly continuous, but not of bounded variation, hence not absolutely continu-
ous.
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6 LP Spaces

6.1 Important inequalities

Definition 6.1. Let £ € M. If p € (0,00], then the L? norm of f on E is

defined by y
P
I, = ([ 1)

LP(E) ={f : || fllp < oo} is called the L? space. If p = 0o, the L*> norm (also
called the essential supremum) of f on E is defined by

| fllooc =inf{M € R :|f| <M a.e. E}
and L™ = {f : || flloo < o0} is the L™ space.
Theorem 6.2. If u(F) < oo, then limy_oo || fllp = || flloo-
Proof. Denote M = ||f||c. First we have that

1= (/. ) " < ( / )" = aruE  ue

as p — oo. Hence limsup,_, . [ fll, < M.
On the other hand, for any € > 0, let A ={x € E: |f(x)] > M — €}. Then
1(A) > 0 (by definition of M). Hence

1/p 1/p )
1= ([ 1) "2 ([ 107) = = ot = 21 —
E A
as p — oo. Hence liminf, .o ||f|l, > M —e. As € is arbitrary, we have
limp o0 || fllp = [1f oo O

Theorem 6.3 (LP space is linear). Let p € (0,00], and f,g € LP(FE), then
af + Bg € LP(E) for any o, B € R.

Proof. Note that for any u,v > 0, there is
(u+v)? < (2max(u,v))? = 2P max(uP, vP) < 2P (uP 4 vP).
If p € (0,00), then there is
laf + Bgl” < 2°(lel|F” + [BI71g17),

integrating on both sides shows af + fg € LP. If p = oo, then |af + fg| <
|all[flleo + [Blllglloo a-e. O

We only consider the case p € [1, 00] hereafter unless otherwise noted.
Definition 6.4 (Conjugate). The two numbers p,q > 1 are called conjugate if
11
=4 = =1.

p
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Notethatq:ﬁ. If p=2, then ¢ =2. If p =1, then g = occ.

Theorem 6.5 (Young’s inequality). Let p,q be conjugate. For any u,v > 0,
there is uv < %p + %.

Proof. If either u or v is zero, then trivial. Now suppose both are nonzero. Note
that e” is convex, and % + % =1, therefore

W — 6% log(u?)+ 5 log(v?) < lelog(u") + lelog(vq) _ f gq7
p q p q
which completes the proof. O

Theorem 6.6 (Holder’s inequality). For any p € [1,00] and q be its conjugate.
If f € LP(E) and g € LY(E), then || fgllx < [|fllpllgllq-

Proof. Tt is trivial if p or ¢ is co. Now suppose p, ¢ € (1,00) and || f||,, ||gll4 # O.

Then ) , 1 lale Lo
IR AT N S
ellflle lalle = Je\plflp  alglla/  p q
where we used Holder’s inequality above. Multiplying the constant || f,lgllq
on both sides yields the inequality.

Corollary 6.7 (Schwarz inequality). If f,g € L*(E), then ||fgll < |l fll2llgll2-
Theorem 6.8. If u(E) < 0o and 0 < p1 < p2 < oo, then LP2(E) C LP(E) and

1

1f oy < (u(E))7E 22| f 1,

Proof. The proof is trivial if ps = co. Now suppose 0 < p; < py < co. Then
1/s 1/P1

i = (1) < (L) ()7

where r;s > 1 are conjugate. By choosing r = Z—f > 1 and its conjugate
r_ _— _DPp2

S=ra= P2—p1

, we obtain the claimed inequality. O

Example 6.9. Suppose f € L" N L* where 0 < r <p < s < oo. Let A € (0,1)
such that = 2 + 152, Then || f|l, < [ FIIMI I

T

Proof. Note that )\Lp and ﬁ are conjugate. Hence
19 = [ 15 = [rapriga-oe

Ap A=Mp

< (fieres) " ([ )
= £

Taking p-th root on both sides completes the proof. O
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Example 6.10. Let 0 < r < p < s < oo and f € LP(F). Then for any ¢t > 0,
there exist g, h such that f = g+h, and [|g[|; < t"7P||f||} and [|h]|5 < 577 f][b.

Proof. For any x, define g(z) = f(x) if f(z) > t and g(x) = 0 otherwise. Let
h = f —g. Then, by r — p < 0, there is

loll; = [ 1" = [ talrrigl <o [ oy = el
E {r>t} E

Similarly we can show the inequality for h. O

Example 6.11. Suppose f, € L?([0,1]) for all k, fr, £ 0in [0,1], | fxlle < 1.
Show that limy [ [ f.| = 0.

Proof. For any € > 0, let Ej(¢) = {x € [0,1] : |fx(x)| > €}. Then fx % 0 implies
that limy Ej(e) = 0. Hence

1
og/ |fk\=/ \fk|+/ 5l
0 [0,1]\E¥(¢) Ey(e)

< / et / Xsr ol fil
[0,1]\ Ex (€)
< e+ (E() 2| fillz — €

as k — oo, where we used Holder’s inequality to obtain the last inequality
above and ||fx|l2 < 1 to obtain the limit. Hence 0 < limsupy fol Ifx] <€ Ase
is arbitrary, we know limy fol |fx] = 0. O

Theorem 6.12 (Minkowski’s inequality). Let p € [1,00]. If f,g € LP, then
1+ 9llp < [If1lp + llgllp-
p

Proof. The proof is trivial if p =1 or p = co. Suppose p € (1,00) and ¢ = Py
is its conjugate. WLOG we assume ||f + g||, > 0. Then

/|f+g|” :/|f+g\"’1|f+g| < / gl +/|f+9|p’1\9|-

Now for the first term on the RHS, we have

Jusarin=(fis O / 1) = 17+ gl

where we used Hoélder’s inequality. Similarly, there is [ |f + g|P"tg| < || f +
9||§71H9Hp- Therefore

I+ gl = [15+ 57 < 1F + 91 (U1 + gl

Dividing both sides by ||f + g|[5~" yields the Minkowski’s inequality. O

62



6.2 LP space

We identify two functions f,g € LP(E) if f = g a.e. E. Suppose we define
d:LP(E) x LP(E) — R by d(f,9) = ||f — gll, for any f,g € LP(E). Then it is
easy to verify that d is a metric: (i) d(f,g) >0, and d(f,g9) =0iff f = g a.e. E}
(i) d(f,g) = d(g, /) (iii) d(f,g) < d(f,h) +d(h,g) for all f,g,h € LP(E) by
using Theorem (Minkowski).

Definition 6.13. Let p € [1,00] and d(f,g) = ||f — gll, for any f,g € LP(E).
Then (LP(E),d) is a metric space.

Theorem 6.14. If |[fi — fll, = 0. then || fully = [1£ll,
Proof. Note that [[[fill, = Ifll,] < Ilfi — fll, by Minkowskd’s inequality.

Theorem 6.15 (LP space is complete). If {fr} is Cauchy in LP, then there
exists f € LP such that || fx, — f|l, — 0.

Proof. First consider p € [1,00). Since ||fx — f;ll, — 0 as k, j — oo, we know
for any e > 0, denote Ej ;(e) = {x € E : |fx(z) — f;j(x)| > €}, there is

: | fr — fj|p)1/p < (/E | fr — fj\p)l/p -0

as k,j — oo. Hence pu(Ej j(€)) = 0 as k,j — oo. Therefore {fi} is Cauchy in
measure, which implies that there exists a subsequence {f,} and f such that
fr, = [ ae. Eas j — oo. Therefore

/|fk—f|p:/ lim \fk—fwgnmmf/ o= il
E EJ—0 j—oo Jg

Taking limit & — oo on both sides yields || fx — f|l, — 0. Moreover, ||f|l, <
1 = Fllp + Ifillp < o0, and hence f € LP(E).

Next consider p = oc. Since || fr — fjlloc — 0, there exists Z C E, such that
w(Z) =0 and fr(z) — fj(z) > 0as k,j - ocoon E\ Z. Let f(z) = limy, fi(z)
for x € E\ Z and arbitrary on Z. For any € > 0, there exists K sufficiently
large, such that

|fe(x) — f(z)] = jlgglo |fe(z) = fi(z)] < jhjélo Ilfe — fillo <€

e(u(E ()" < ([

Ek,j(e

forall k > K and x € E\ Z. Hence ||fx — flloo < €. In addition, ||f|le <
Ife = flloo + | fxlloo < 00, hence f € L®(E). O

Definition 6.16. A metric space (X,d) is called seperable if X contains a
countable dense subset. Namely, X has a countable subset Y, such that for any
x € X and € > 0, there exists y € Y that satisfies d(z,y) < e.

Lemma 6.17. Letp € [1,00) and f € LP(E), then for any € > 0, the following
statements hold:
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1. There exists g : E — R which is continuous and has compact support,
such that [, |f —glP <e.

2. There exists a simple function ¢ : E — R which is of form ¢(x) =
Zle ciXxa; where every A; is a finite union of open boxes on regular grids
and has compact support, such that [, |f — ¢|P <e.

Proof. Proof of Item 1 is similar to that of Theorem [£.40] For Item 2, note that
the tolerance e allows approximating f by such type of simple function ¢. O

Theorem 6.18. Suppose p € [1,00). Then LP space is separable.

Proof. (i) Suppose E = R™. Then for any f € LP(E) and € > 0, there exists a
simple function ¢ = Zle cixa, such that ||f — ¢|, < ¢/2. Hence there exists
M > 0, such that |¢;| < M and p(A4;) < MP for all i < k. Note that there exists
r; € Q such that |¢; — ;| < €/(2kM) for every i < k. Let ¢ = Zle TiXA,;, then

k k k
6 = 0l = eixa = Y rixa| <D ler —rillia,
i=1 i=1 p A=l

P

€ €
M= —.
2kM 2

k
= Z e = ril p(A) P < k-
i=1

Hence ||f — ¢llp < |If — éllp + l¢ — ¢|l, < €. Note that the set I' = {¢ =
Ele rixa, : v € Q} is a countable, hence T is a countable dense set of LP(R™).

(ii) For general E C R"™, consider g(x) = f(z) if x € E and g(z) = 0
otherwise. Then g : R” — R. By (i), there exists a simple function ¢ € T" such
that [, [g — ¢|? < e. Hence

Lir=vr=[lg-vr< [ lg-vr<e

which also implies that I" is dense in LP(E).

Example 6.19. Let p € [1,00) and f € LP(R"). Show that lim; 0 [5n
[l =P de =2 [, |f(2)P da.

Proof. For any € > 0, consider the decomposition f = g + h where g is a
continuous function with compact support and h = f — g such that ||h||, < €/4.
For notation simplicity, we denote fi(x) = f(x —t), g(x) = g(xz — t), and
hi(z) = h(x —t) for any fixed t. Since g has compact support, we know that
the supports of g(x) and g;(z) do not overlap if |¢| is sufficiently large, which
implies that

fx)+

lo+ally= [ lo+ar=[ (P +lol) =2 [ gl = 2Nl
R™ R Rn
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Hence we have

1F + filly = 272111 <[5 + Flly = 27 ligll| + 277l — 1111

=[5 + fely = g + el + 2| lgllp — 1711

< lIh+ hllp +2V7Ihly < £+ 5 +247 2 <6

which completes the proof. O

6.3 L? space and inner product

Definition 6.20 (Inner product). Let f,g € L?(E), then the inner product of

f and g is defined by
)= [ fa
E

Note that |(f,9)| < [ |fgl < [[f]l2llgll2 < oo

It is easy to verify that the following identities hold:

b <fag>:<g7f>'
o <f1+f23g>:<f17g>+<f23g>'
o (af g)=a(f,g) = (f,ag) for all « € R.

Example 6.21. Suppose f,g € L? then 2||fg|l1 < t||f||3 + $]|g]|3 for all ¢ > 0.
Proof. Note that |fg| = V| f] - %|g| < @ + % by Young’s inequality. [

Example 6.22. Suppose f :[0,00) — R is integrable, then

(/Ooofdx)47r2 (/Oooﬂdx) (/OOOfozdx).

d

Proof. Recall that for any a, 8 > 0, there is fooo L

1 _ 1 o0 —
=5l mpdy=

\/%73% using the change of variable y = \/gz Therefore

00 2 0o

(10" ([ g v
</Oooa+161;2dx-/ooo(a+ﬁx2)f2dx
—g\/ZTB<a/()wf2dx+5/()wm2f2dx>

Letting a = [ 2?f*dz and 8 = [;° f? da yields the claimed inequality. O

2

Theorem 6.23. If || fx — fll2 — 0, then (fx,g) — (f,g) for all g € L.
Proof. Note |(fk,g) — (f,9)| = [{(fx = f. )| < [Ifx — fll2llgll2 — 0. O
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Definition 6.24. f,g € L? is called orthogonal if (f,g) = 0. {¢s : @ € A} is
called an orthogonal set if (¢q,Ps) = 0 for all distinct o, 8 € A. If in addition
lpall2 = 1, then {¢,} is called an orthonormal set.

Example 6.25. {\/%, ﬁ cos(kx), ﬁsin(kx) : k € N} is an orthonormal set
of L?([—=,7]).
Theorem 6.26. An orthonormal set of L*(E) is at most countable.

Proof. Suppose {¢, € L?(E) : a € A} is an orthonormal set. Then for any
distinct a, 8 € A, there is

I$a — 05113 = l¢all3 + lléslz = 2.

Since L?(E) is separable, there exists a countable dense set I' C L%(E) such
that for any a € A, there exists z, € T satisfying ||zo — ¢all2 < v2/2. Hence
AL < T = Rp. O

Example 6.27 (Parallelogram law). Suppose f,g € L?, then ||f + g||3 + ||f —
gll3 = 201713 + llgll3)-

Definition 6.28 (Generalized Fourier series). Suppose {¢y} is an orthonormal
set of L2. For any f € L2, let ¢, = (f,¢1) for any k € N. Then {c;} are
called the generalized Fourier coefficients of f under {¢x} and > o, ko is
generalized Fourier series of f.

Theorem 6.29. For any fized k, let Fy = {Ele a;¢; : a; € R}. Then fi, =
Zle citi, where ¢; = (f,¢;) for every i, uniquely minimizes ||f — g|l2 among
all g € Fy.

Proof. For any fj, = Zf;l a;p; € Fy, there is

If = fell3 = I1FI15 = 20F, fu) + [1.fx]13
k k
= || £1I3 _QZai<fa¢i>+Zazz

i=1 i=1

k k
=IfI5 -2 aici + > _a?
i=1 i=1
k k
=I5 +2) lai— il =D
i=1 i=1
which is minimized only if a; = ¢; for all 3. O

Theorem 6.30 (Bessel inequality). Let {¢x} be an orthonormal set in L?. Sup-
pose f € L* and {cy} is the generalized Fourier coefficients. Then Y -, ¢z <

13-
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Proof. For any fr = Zle civi, 0 < |If — fell> = IfII3 — Zle c?. Hence
Ele c? <||f|13 for all k, which implies that >, ¢z < || f[3. O

Lemma 6.31. Suppose {¢1} is an orthonormal set of L?> and f € L?. If
fre= Ele cip; where c; = (f, ¢:), then (f — fx, fx) = 0.

Proof. Note that (f, fi) = S| cilfodi) = S 2 = (fi, fi)- 0

Theorem 6.32 (Riesz-Fischer). Suppose {¢1} is an orthonormal set of L*. If
> re i < oco. Then there exists g € L?, such that (g, ¢y) = cx for all k.

Proof. Define s, = Zle ci$i, then s, € L?. Note that, for any [ € N,

bt ket
sk —skl3 =1 D> cdills=Y_ ¢ =0
=kt 1 i=k+1

as k — oo. Hence {s;} is Cauchy in L?, and there exists g € L? such that
sk — glla = 0 as k — oco. Let a; = (g,¢;) for all i € N, g, = Zle a;¢;, and
hk =9 9k, then

k

D lei—ail® = lsk—gil3 < sk —gell3+17nl3 = llsk—ge—hell3 = sk —gll3 — 0
i=1

where we used the fact that (g, hr) = 0 from Lemma to show that (s, —
gk, hi) = 0 and obtained the second equality. Hence a; = ¢; for all i. O

Definition 6.33 (Complete orthonormal basis). We call {¢r} a complete or-
thonormal basis if {¢x} is an orthonormal set, and (f, ¢x) = 0 for all k implies
f=0ae.

Theorem 6.34. Suppose {¢y} is a complete orthonormal basis in L*. Let
feL? ¢ = (f,ox) for all k, then limy, || 25 | ciy — fll2 = 0.

Proof. By Theorem (Bessel’s inequality), we know > o~ ¢ < || f[|3 < oc.
By Theorem (Riesz-Fischer), there exists g € L? such that g = > 1, cxr,

and || 31, ¢ — gll2 — 0. Note that (f — g,6x) = (f,éx) — (9, éx) = 0 for all
k, we know f = g a.e. Hence || Zle cii — fll2 = 0. O

Definition 6.35 (Linear independency). {¢; : 1 < i < k} is called linearly
independent if Zf:l ci¢; = 0 implies ¢; = 0 for all i < k. {¢y, : k € N} is called
linearly independent if any finite subset is linearly independent. It is obvious
that 0 cannot be in a linearly independent set.

Example 6.36. If {¢;} is an orthonormal set in L2, then it is linearly inde-
pendent.

Proof. Suppose Ele ci¢; = 0, then multiplying both sides by ¢; yields ¢;||¢:]|3 =
0, which implies that ¢; = 0, for every 1. O
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Example 6.37 (Gram-Schmidt). If {¢ : kK € N} is a linearly independent set,
then we can construct an orthonormal set {¢, : k € N}: define ¢1 = 11 /||¢1]|2;
suppose we already have constructed ¢1,...,dr_1, then define ¢ = (VY —

Zi:ll (Vs Pi) i)/ |0k — Zf:ll(wk, bi)pill2. Tt is easy to verify that {¢y} is an

orthonormal set.

Theorem 6.38. Suppose {¢; : i € N} is an orthonormal set in L?. If for any

f € L? and € > 0, there exists a finite subset {¢i; + 1 < j < k} such that

Ilf — Z?:l cjdill2 <€, then {¢;} is complete.

Proof. Assume {¢;} is not complete. Then there exists nonzero f € L? such that

(f,#i) = 0 for all i. On the one hand, there exist a finite subset {¢;, : 1 < j < k}
k

such that [|f — 327, ¢;¢i;[l2 < [|f|l2/2. Moreover,

= d If 13
(o f =D eioi) | < fllz - If = D s llo < 252
j=1

j=1

On the other hand, there is

=113,

k k
(5,8 =D esoi)| =[1713 = (1.2 o)
j=1 j=1

which is a contradiction. O

6.4 Dual space of L”

Theorem 6.39. Let p € [1,00) and f € LP(E). Then there exists g € LI(E),
lgllg =1, and || fllp = [5 fg-

Proof. (i) First consider p = 1. Then letting g = sign(f) proves the claim.
(ii) Next consider p € (1,00). Let ¢ = ;%7 be the conjugate, and define

. |p—1
g = sign(f) - Hljzl\lﬁ_l' Then (p — 1)g = p and

S o= g [ 1 =1

e e
[ 5o e Tt =

which prove the claim. O

Remarks. Note that Holder’s inequality implies that ||fg|l1 < || fllllgllq, and

% = supg),=1 [fg[l1. The theorem above implies
aq

that the supremum can be replaced by maximum, and shows the maximizer for
p € [1,00).

hence | f|[, > SUDgera

Theorem 6.40. Suppose f € L=(E), then | flloo = supyy,=1 | [z fgl-
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Proof. Note that, if [lgy = 1, then | [, fgl < [ [fgl < Ifllscllglly = [[f]loo-
Hence || flloo > supy gy, =1 | [5 fol-
On the other hand, let M = ||f||co- Then for any € > 0, there exists A C E,

such that u(A) =a >0 and |f| > M — € on A. Define g = sign(f)xa/a, then

‘/Efg‘:%A|f|Z(M—6)-a-%=M—E,

where [lg]i = 1. Hence M — e < supj =1 | [ fg] < M. As ¢ is arbitrary, we
know || f{|eo = supygy,=1 | [ f9l- O

Example 6.41. We cannot replace the supremum by maximum in the theorem
above: consider E = [0,1] and f(x) = z, then ||f||oc = 1 but for any g € L' and
llglli = 1, there is | fol fgdz| < folx\g(xﬂdx < 1 (otherwise fol(l—x)|g(a:)|dx =
0 implies g = 0 a.e., a contradiction).

Definition 6.42 (Dual space of L?). We call L? the dual space of L? if ¢ is the
conjugate of p.

Theorem 6.43. Suppose g : E — R is a measurable function. Let p € [1,00]
and q be its conjugate. If there exists M > 0 such that for any simple function
¢ there is | [, g¢| < M||@||p, then g € LT and ||gq < M.

Proof. (i) First consider p € (1,00). Let {¢x} be a sequence of simple functions
such that ¥y 1 |g|ﬁ and ¢ = sign(g)vg. Then

/ g6k — / g7 = / gl and / g6k < M gwll, = M|l
E B E E

from which we can obtain ||g|l, < M.

(ii) Now consider p = co. Let ¢ = sign(g) then [, gp = [}, |g| < M||¢]|c =
M? i'e'v ||g||1 < M.

(iii) Next consider p = 1. WLOG assume g > 0, a.e. If g ¢ L°°(FE), then
for any k € Nlet Ay = {x € E : g(x) > k}. Then Ay is non-increasing, and
w(Ag) > 0 for all k. Let ¢, = x4,, then

ku(Ak)S/A g:/EgckaMHmHl:Mu(Ak)

which implies that M > k for all k € N, contradiction. Therefore g € L>®(E).

Now we need to show ||g|lcc < M. If not, then ||gllcc = M’ > M. Let
e = (M’ — M)/2, then there exists A C FE such that u(4) = a > 0 and
lg(x)] > M +efor all x € A since ||g]loc = M’ > M+e. Let ¢(x) = sign(g)xa/a,
then ||¢]|1 = 1 and

1
Joo=2 [ 1oz 4= 01+ ool

which is a contradiction. Hence ||g||cc < M. O
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Theorem 6.44 (Generalized Minkowski’s inequality). Suppose p € [1,00) and
[ R"x R" — R. If for almost every y € R", f(x,y) € LP(R™), and M =
oo g [ f (@, )P da) /P dy < oo, then

(L.

Proof. Proof is trivial for p = 1. For p € (1,00), let F(z) = [, f(z,y)dy.
Then for any simple function ¢, there is

[ F@o ad] < [1P@liewlds < [ ([ 1@ )ldy) o) da
~ [ ([ 1r@wlot)dar) ay
< [([1smoras)”

where we applied Theoremm (Tonelli) to obtain the first equality and Holder’s
inequality to obtain the last inequality. Hence F(x) € LP and |F|, < M.
Applying Theorem yields the claimed inequality. O

1/p 1/p

faa| @) <a= [ ([ @)

R

P
dyllollq = Mo ll4;

Example 6.45 (Reduction to Minkowski’s inequality). Suppose f,g € LP(R).
Define the function h: R x [0,2] — R by

) flx) if0o<y <1,
h(m’y){g(x) if1<y<2.

Then f02 hz,y)dy = f(x) + g(x) and

(/ |h<x,y>\pdz>”” _ {nm 0 <y <1,

lgll, if1 <y <2.

Hence the generalized Minkowski’s inequality implies || f + gll, < || fll» + llg]l,-
Example 6.46. Define the function f : (—o0,00) x [0,2] — R by

ag, ifk<zr<k+1, 0<y<I1,
f(x,y) = .
b, fk<zx<k+1, 1<y<2

where ag, by, > 0 for all k. Then f02 flx,y)dy = ax + by, and

(/oo\f(x y)lpdx)l/p_ (O larl?) /P, ifk<z<k+1,0<y<1,
’ | (on2y belP)VP, ifk<z<k+1, 1<y<2.

Hence the generalized Minkowski’s inequality implies (3 r; |ax + bi|P)V/P <
(Rs lawlP)P + (252, [ox[P) /P
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7 Probability Theory

7.1 Basic concepts

Example 7.1 (Terms in measure theory vs probability theory). See Table

Table 1: Terminology correspondences in measure theory and probability theory

Measure theory Probability theory

Measure space (X, M, u) Probability space (2, F,P) (P(Q2) =1)
o-algebra M o-field F

Measurable set F € M Event F € F

Measurable real-valued function f Random variable X

Measure on R induced by f Probability distribution P x
Integral [y f(z)du(x) Expectation E(X) = [, X (w) dP(w)
felrr X has finite pth moment
Convergence in measure Convergence in probability

Almost everywhere (a.e.) Almost surely (a.s.)

Borel probability measure Distribution

Fourier transform of a measure Characteristic function of P x
Laplace transform of a measure Moment generating function of P x

Definition 7.2 (Expectation and variance). Suppose X is a random variable
on (€, F,P), then the expectation of X is defined by E(X) = [, X (w)dP(w),
and the variance of X is defined by V(X) = E[(X — E(X))?]. Note that is is
easy to verify that V(X) = E(X?) — (E(X))2.

Definition 7.3 (Image measure). Suppose (€2, F, P) is a probability space, and
(Y, F') is a measure space. Let ¢ : Q — Q' be a measurable function, i.e.,
¢~ Y(E) € Fif E € F'. Then ¢ induces a probability measure on (', F’),
called image measure, defined by Py(E) = P(¢p~*(E)) for all E € F'.

Theorem 7.4. Suppose f : F' — R is a measurable function, then fQ, fdPy =
Jo fopdP.
Proof. Let E € F' and f = xg : F' — R. Note that for any w € Q there is

xe(dpw)) = 1iff p(w) € Eiff w € ¢71(E), e, xp 0 = Xp-1(p) : & = R.
Hence

fdPy = /Q xe dPg = /EdP¢ =Py(E) =P(¢"'(E))

6—1(E) Q Q

Therefore the identity holds for f = xg. It is straightforward to show that it
holds for simple functions by linearity. Taking limit of a sequence of simple func-
tions and applying Theorem (DCT) prove the claim for general measurable
functions. U

Q
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Definition 7.5 (Distribution). Suppose X is a random variable on (92, F,P).
Let Px be the image measure of X on R, called the distribution of X. The
function F(t) = Px((—o0,t)) = P(X < t) is called the distribution function of
X. A family of random variables {X,, : a € A} is called identically distributed
if their image measures {Px_ : « € A} are identical.

Definition 7.6 (Joint distribution). Suppose {X; : 1 < k < n} are random
variables on (2, F,P). Then (Xi,...,X,) : Q@ — R”, and the image measure
Px,.. .. x, is called the joint distribution of X1,..., X,.

Remarks. The behaviors of random variables are completely determined by
their (joint) distributions. Therefore, we often use

E(X):/QX(w)dP(w):/thPX(t), V(X)Z/R(t—E(X))2 dPx (1).

We also use

E(X +Y) = /R (t+5)dPx .y (, 5).

Definition 7.7 (Independency). Suppose (2, F,P) is a probability space. A
set of events {E, : @ € A} are called independent if for any finite subset of
distinct events {E,, : 1 <k <n, ay € A} there is

n
P(Eq4, M-+ N Eq,) = [[ P(Ea,)-
k=1

A set of random variables {X, : a« € A} are called independent if the events
{X;'(By) : @ € A} are independent. Note that this is different from and
stronger than pairwise independency. An alternative definition of independent
random variables is that for any finite subset of these random variables, say
X1,...,X,, which are distinct, there is

Px,, .x,(B1 XX By)= H Px, (Bk).
k=1

We can see this because on the one hand we have

P(X; (B1) N+ N X, (By) = P((Xy,.... X)) " {(By x -+~ x By))
=Px,  x,(B1x---xBy)

and on the other hand we have

[P (Br) = [ Px.(Bi) = (][ Px.)(B1 x -+ x By).
k=1

k=1 k=1

Hence X1,...,X,, are independent iff the two quantities above are identical,
i'e'7 PX11-<~7X71 = 221 PXk'
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Theorem 7.8. Suppose X1, ..., X, are independent random variables, and f :
R — R are measurable, then f1(X1),..., fn(Xy,) are also independent.

Proof. Let Yy, = fr(Xy). For any By, € F, there is

Py, v (Byx - x By) =Px,  x, (fi(B1) x -+ x f 1 (By))
= H Pch (fk 1(Bk)) = H PYk(Bk)7
k=1 k=1
which completes the proof. O

Theorem 7.9. Suppose { Xy :1 <k < n} are independent and Xy, € L', then
k=1 Xk e L' and E( ZZI Xk) k=1 E(Xk)

Proof. Note that

|Xk /H|Xk\dPXh X /H|Xk|dPX1... x..
= H/|Xk\dPXk = HE(|Xk\) < o0
k=1 k=1

which implies that []}_, X) € L'. Remove the absolute values and redo this to
show E([]j_; X&) = [T—; E(Xk). O
Theorem 7.10. Suppose {Xj : 1 < k < n} are independent and Xy, € L?, then
V(ZZ:1 Xi) = ZZ:l V(Xg).

Proof. Let Y, = Xy —E(Xj). Then Y7, ...,Y,, are independent, E(Y}) = 0, and
E(Y?) = V(Xj. Moreover E(Y;Y;) = E(Y;)E(Y;) = 0 whenever k # j since
they are independent. Therefore

V(X1 4+ X,) E[<éXkéE(Xk))2] —E Kkilyky}

= Y EWY;) = ZE(YIS) = ZV(Xk),

k,j=1 k=1 k=1

which completes the proof. O

7.2 The law of large numbers

Theorem 7.11 (Chebyshev’s inequality). Suppose X is a random variable with
mean E(X) and variance V(X). Then for any € > 0, there is

V(X)

P(X ~E(X)| > ¢) < +5

€
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Proof. Note that

P(X B0 2 0 = | dPsA(”m)QdPx<t>V(§),

X —B(X)[2e

which proves the claim. O

Theorem 7.12 (Weak law of large numbers). Suppose { Xy : k € N} are inde-
pendent random variables with means py, and variances . If % Sh_i0i =0
as n — oo, then for any e > 0,

1 & 11,
(PICRIBIEDE TO Sy
k=1 k=1
Proof. Applying Theorem (Chebyshev) to 30 (X — px), which has

mean 0 and variance = Z 4—1 0%, to obtain the clalmed inequality. O

Theorem 7.13 (Borel-Cantelli). Suppose (2, F,P) is a probability space, and
{E} : k € N} are events. Then

1. If 5" P(Ey) < oo, then P(limsup,, Ex) = 0.

2. If {Ey} are independent and Y _,-, P(E)) = oo, then P(limsup, Ey) = 1.

Proof. Ttem 1 can be easily verified: as k — oo, there is

. _ [S o o) N < [ee] N <
P(h]zrlsolip Ey) P(kgljgk E;j) < P(jgk Ej) < ka E
iz

For Item 2, we know {Ef} are independent since {E}} are so. Hence

n

UEC ﬁ :ﬁ(1_ H P(E;) _ o~ S P(E))
j=k =k

as n — oo. Hence P(liminfy Ef) = P(UpZ, N2, ES) < 3777 P(NS2,LES) = 0,
which implies that P(limsup, Fx) = P((lim 1nf;C Ek) )=1. O

Theorem 7.14 (Kolmogorov’s inequality). Suppose {X : 1 < k < n} are
independent random variables with mean 0 and variances 0’,% for all k. Let

Sk = 25:1 Xj fork=1,...,n. Then for any € > 0, there is

n
P( > )< 7
1 Skl 2 ¢) <)o

Proof. Note that E(Xk) =0 and V(X}) = o7, hence E(Sy) = 0 and V(Sy) =

E(S%) = Zf , 03. Moreover, Si and S,, — S, are independent. Now let Ay =
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{ISk| > e} N{|S;| < e:1<j <k}, then Ay N A; = () whenever k # j. Thus
{maxi<k<n |Sk| > €} = U¥_, Ay, is a disjoint union. Therefore

P (g, 901 = P( 5, A1) = 3P40 < 55 3 Blxas )

where we used P(4x) = [, dP < [, ‘%Izdf’ = LE(xa,5}) to obtain the
inequality. On the other hand, we have

B(52) > B [(ZXAk) i [im (52 +250(5, — 50 + (S — 5)2)

>ZE (xa,S?) +2ZE (xa,,Sk(Sn — Sk)) ZE (x4, 5%)s

k=1

where we used the fact E(xa, Sk(Sn — Sk)) = E(xa,5:)E(S, — Sk) = 0 due to
the independency between x4, Sk = Sp, — Sk. Combining the two inequalities
above and recalling E(S2) = >__, 07 completes the proof. O

Theorem 7.15 (Strong law of large numbers). If {X,, : n € N} is a sequence
of mdependent L? random variables with mean p,, and variances o2 such that
S < 0o, then £ 370 (Xp — i) = 0 a.s. asn — 0.

n=1 712

Proof. Denote S, = >, _;(Xy — pi). It suffices to show that, for any € > 0,
P(lim supn{% > ¢}) = 0. Now we define

S
Ak:{ max Mze}c{max |S\>2k1}
2k—1<n<2k N 1<n<2k

Then it is clear that

limsup{ } ﬂ U {|S a } n U Ay = limsup Ag.

n— 00 m=1n— e k—o0

On the other hand, by Theorem (Kolmogorov’s inequality), we know P(A) <

k—1,-252" 2 : : :
(2% te)==>>" _, on, summing of which over k yields

oo 2k

> 4 & , 16
S PN gl = 5 (X )i 9y Hen
k=1 k=1n=1 n=1 k>logy,n n=1

Hence, by Theorem (Borel-Cantelli), we know P(limsup;, Ay) = 0. O

7.3 Central limit theorem

Definition 7.16 (Moment generating function). The moment generating func-
tion of a random variable X with distribution function F is defined by E[e!X] =
[ e dF(z) for every t € R.
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Remarks. The name of moment generating function is due to the fact that

E[X*] = M{¥(0), the kth derivative of My at t = 0 for all k = 0,1,....

. . . _ oo E[XF] .k . .
This also implies that Mx(t) = >, —, =%—t". Moment generating function

M is essentially the Laplace transform of the distribution function F. Thus,
two random variables are identical iff their moment generating functions are
identical.

Remarks. It is straightforward to verify that M,y 5(t) = e®*Mx (at) for any
a,b € R and Mx;y(t) = Mx(t)My(t) for any independent random variables
X and Y.

Theorem 7.17 (Central limit theorem). Let { X} be a sequence of independent
and identically distributed L? random variables with mean p and variance o2,
then Y, := (oy/n) "t Y7 (Xx — p) has mean 0 and variance 1. Moreover, for

any a € R, there is

1/ s
lim P(Y, <a)= — e~ t/2qt.
n—oo ( - ) vV 27 [m

That is, lim, P(Y,, < a) = P(Z < a) where Z ~ N(0,1) is the standard normal
random variable.

Proof. We assume i = 0 and 02 = 1 since it is straightforward to extend
to the general case by changing variable Xj with (X — p)/o. Let F be the
distribution function of Z and Fj, the distribution function of Y,,, then we need
to show that F,, — F pointwisely. To this end, we consider their moment
generating functions Mz and My, . We know My, (t) = Mx(t/+/n)". Noting
that Mx(t) = 1+ t2/2 + o(t?), we have My, (t) = (1 +t2/(2n) + o(t?))". On
the other hand, Mz (t) = 1 +t2/2 + o(t?). Hence My, (t) — Mz(t) as n — oo
for all ¢t € R sufficiently close to 0, and applying inverse Laplacian transform to
the moment generating functions yields the claim. O
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